首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
目的探讨猪冠状动脉前降支(LAD)结扎百分位点和心梗体积、左室射血分数的关系,以期指导研究者能够根据急性心肌梗死模型的心功能要求选择合适的LAD结扎百分位点。方法将47只小型猪开胸结扎心脏LAD中远段约30%~75%的不同百分位点,分别于术前、术后1 h心脏超声检查左室射血分数(LVEF),术后3 d进行常规冠状动脉造影,4周处死测量前降支结扎位点和梗死体积,最后用简单直线回归模型分析LAD结扎百分位点和心梗体积、左室射血分数回归方程和相关系数。结果47例动物手术过程中死亡8只,剩余39只存活动物冠状动脉造影均显示LAD中远段结扎部位处完全闭塞,表明手术成功。LAD结扎百分位点和术后1 h LVEF、术后1 hLVEF下降值、梗死心肌体积均明显相关(相关系数r分别为0.87、0.78和0.90,P均<0.001),其回归方程分别为:术后LVEF(%)=65.88-0.55x结扎百分位点;术后LVEF下降值(%)=0.12 0.59x结扎百分位点;心肌梗死体积(%)=0.53x结扎百分位点-5.43。结论猪LAD结扎百分位点和术后左室功能、梗死心肌体积均存在显著的相关性,可根据实验目的和对心功能的要求选择合适的结扎百分位点。  相似文献   

2.
Acute or chronic myocardial infarction (MI) are cardiovascular events resulting in high morbidity and mortality. Establishing the pathological mechanisms at work during MI and developing effective therapeutic approaches requires methodology to reproducibly simulate the clinical incidence and reflect the pathophysiological changes associated with MI. Here, we describe a surgical method to induce MI in mouse models that can be used for short-term ischemia-reperfusion (I/R) injury as well as permanent ligation. The major advantage of this method is to facilitate location of the left anterior descending artery (LAD) to allow for accurate ligation of this artery to induce ischemia in the left ventricle of the mouse heart. Accurate positioning of the ligature on the LAD increases reproducibility of infarct size and thus produces more reliable results. Greater precision in placement of the ligature will improve the standard surgical approaches to simulate MI in mice, thus reducing the number of experimental animals necessary for statistically relevant studies and improving our understanding of the mechanisms producing cardiac dysfunction following MI. This mouse model of MI is also useful for the preclinical testing of treatments targeting myocardial damage following MI.  相似文献   

3.
Preclinical and clinical studies have demonstrated that stem cell transplantation can improve the left ventricular (LV) contractile performance, yet the underlying mechanisms remain unknown. We examined whether mesenchymal stem cell (MSC) transplantation-induced beneficial effects are secondary to paracrine-associated improvements in LV contractile performance, wall stress, and myocardial bioenergetics in hearts with postinfarction LV remodeling. Myocardial contractile function and bioenergetics were compared 4 wk after acute myocardial infarction in normal pigs (n = 6), untreated pigs with myocardial infarction (MI group; n = 6), and pigs receiving autologous MSC transplantation (MI + MSC group; n = 5). A distal occlusion of the left anterior descending coronary artery instigated significant myocardial hypertrophy. Ejection fraction decreased from 55.3 +/- 3.1% (normal) to 30.4 +/- 2.3% (MI group; P < 0.01) and to 45.4 +/- 3.1% (MI + MSC group; P < 0.01 vs. MI). Hearts in the MI group developed severe contractile dyskinesis in the infarct zone and border zone (BZ). MSC transplantation significantly improved contractile performance from dyskinesis to active contraction (P < 0.01 vs. MI). BZ systolic wall stress was severely increased in MI hearts but significantly improved after MSC transplantation (P < 0.01 vs. MI). The BZ demonstrated profound bioenergetic abnormalities in MI pigs; this was significantly improved after MSC transplantation (P < 0.01 vs. MI). Patchy spared myocytes were found in the infarct zone of hearts receiving MSC transplantation but not in control hearts. These data demonstrate that MSC transplantation into the BZ causes significant improvements in myocardial contractile performance and reduction in wall stress, which ultimately results in significant bioenergetic improvements. Low cell engraftment indicates that MSCs did not provide a structural contribution to the damaged heart and that the observed beneficial effects likely resulted from paracrine repair mechanisms.  相似文献   

4.
Heart failure is a syndrome in which the heart fails to pump blood at a rate commensurate with cellular oxygen requirements at rest or during stress. It is characterized by fluid retention, shortness of breath, and fatigue, in particular on exertion. Heart failure is a growing public health problem, the leading cause of hospitalization, and a major cause of mortality. Ischemic heart disease is the main cause of heart failure.Ventricular remodelling refers to changes in structure, size, and shape of the left ventricle. This architectural remodelling of the left ventricle is induced by injury (e.g., myocardial infarction), by pressure overload (e.g., systemic arterial hypertension or aortic stenosis), or by volume overload. Since ventricular remodelling affects wall stress, it has a profound impact on cardiac function and on the development of heart failure. A model of permanent ligation of the left anterior descending coronary artery in mice is used to investigate ventricular remodelling and cardiac function post-myocardial infarction. This model is fundamentally different in terms of objectives and pathophysiological relevance compared to the model of transient ligation of the left anterior descending coronary artery. In this latter model of ischemia/reperfusion injury, the initial extent of the infarct may be modulated by factors that affect myocardial salvage following reperfusion. In contrast, the infarct area at 24 hr after permanent ligation of the left anterior descending coronary artery is fixed. Cardiac function in this model will be affected by 1) the process of infarct expansion, infarct healing, and scar formation; and 2) the concomitant development of left ventricular dilatation, cardiac hypertrophy, and ventricular remodelling.Besides the model of permanent ligation of the left anterior descending coronary artery, the technique of invasive hemodynamic measurements in mice is presented in detail.  相似文献   

5.
Lin JF  Lin SM  Chih CL  Nien MW  Su HH  Hu BR  Huang SS  Tsai SK 《Life sciences》2008,83(9-10):313-317
The purpose of this study was to investigate the effect of resveratrol, a polyphenol present in grapes and red wine, on ventricular remodeling after myocardial infarction (MI) in rats. After permanent ligation of the left anterior descending artery, surviving rats were randomly allocated to three groups and treated with 1 mg/kg/day resveratrol (R-1 group), 0.1 mg/kg/day resveratrol (R-0.1 group), or vehicles (control group) administered by intraperitoneal injection once daily for four weeks. We examined the effects of resveratrol by echocardiography, hemodynamic studies, histologic examinations, and real-time quantitative polymerase chain reaction. The R-1 group had significantly increased fractional shortening of the left ventricle, ameliorated left ventricular dilatation, reduced left ventricular end-diastolic pressure, and reduced infarct size. In contrast, the R-0.1 group experienced no beneficial effects on myocardial infarction. The R-1 group also had significantly attenuated expression of myocardial atrial natriuretic peptide and transforming growth factor-beta1 mRNAs. This study indicates that resveratrol is a potent cardioprotective agent in MI rats. Its cardioprotective effects may be due to a reduction of atrial natriuretic peptide and transforming growth factor-beta1, which are known to protect the heart from detrimental remodeling.  相似文献   

6.
Left ventricular pseudoaneurysm is an uncommon complication after transmural myocardial infarction, occurring when a free wall rupture is contained by adhesions of the overlying pericardium preventing acute tamponade. In this report, an unusual case of a 61 year-old male with a giant apical left ventricular pseudoaneurysm after an unnoticed myocardial infarction is presented. On coronary angiogram myocardial bridging of the distal left anterior descending artery was judged to be the infarct related lesion. The echocardiographic diagnosis allowed for a timely surgical intervention which resulted in the patient's full recovery.  相似文献   

7.
Inappropriate left ventricular remodeling following myocardial infarction (MI) can result in subsequent severe dysfunction. In this study, we tested the hypothesis that decellularized pericardium (DP) or seeded pericardial patch with autologous adipose-derived mesenchymal stem cells (ADMSCs) could be safely used in a MI scar and could improve heart function. Twelve rabbits were randomly divided into three equal groups. Four weeks after MI induction by ligation of the left anterior descending artery in 12 rabbits, animals of G1 (n = 4) received DP patch with labeled ADMSCs. DP patch was implanted in animals of G2 (n = 4). Rabbits of G3 (n = 4) remained without any intervention after MI induction (control group). Serial examinations including echocardiography, electrocardiography (ECG), scanning electron microscopy, histology and immunohistochemistry (IHC) were performed to evaluate the efficacy of the implanted scaffolds on recovery of the infracted myocardium. The results demonstrated that left ventricular contractile function and myocardial pathological changes were significantly improved in rabbits implanted with either DP or ADMSC-seeded pericardium. However, the seeded pericardium was more effective in scar repairing 2 months after the operation, IHC staining with Desmin and CD34 and positive immunofluorescence staining verified the differentiation of ADMSCs to functional cardiomyocytes. This approach may involve the application of autologous ADMSCs seeded on pericardial patch in an attempt to regenerate a contractible myocardium in an animal model of MI.  相似文献   

8.
Adequate growth of coronary vasculature in the remaining left ventricular (LV) myocardium after myocardial infarction (post-MI) is a crucial factor for myocyte survival and performance. We previously demonstrated that post-MI coronary angiogenesis can be stimulated by bradycardia induced with the ATP-sensitive K(+) channel antagonist alinidine. In this study, we tested the hypothesis that heart rate reduction with beta-blockade may also induce coronary growth in the post-MI heart. Transmural MI was induced in 12-mo-old male Sprague-Dawley rats by occlusion of the left anterior descending coronary artery. Bradycardia was induced by administration of the beta-adrenoceptor blocker atenolol (AT) via drinking water (30 mg/day). Three groups of rats were compared: 1) control/sham (C/SH), 2) MI, and 3) MI + AT. In the MI + AT rats, heart rate was consistently reduced by 25-28% compared with C/SH rats. At 4 wk after left anterior descending coronary ligation, infarct size was similar in MI and MI + AT rats (67.1 and 61.5%, respectively), whereas a greater ventricular hypertrophy occurred in bradycardic rats, as indicated by a higher ventricular weight-to-body weight ratio (3.4 +/- 0.1 vs. 2.8 +/- 0.1 mg/g in MI rats). Analysis of LV function revealed a smaller drop in ejection fraction in the MI + AT than in the MI group ( approximately 24 vs. approximately 35%). Furthermore, in MI + AT rats, maximal coronary conductance and coronary perfusion reserve were significantly improved compared with the MI group. The better myocardial perfusion indexes in MI + AT rats were associated with a greater increase in arteriolar length density than in the MI group. Thus chronic reduction of heart rate induced with beta-selective blockade promotes growth of coronary arterioles and, thereby, facilitates regional myocardial perfusion in post-MI hearts.  相似文献   

9.
目的应用二维斑点追踪成像超声心动图(2D-STE),评价犬心梗后自体骨髓CD34+干细胞移植对心肌功能的影响。方法 12只杂种犬行冠脉左前降支结扎术,导致前壁心肌梗死,随机分为两组,A组为对照组,结扎术后两周二次开胸手术,经心肌注射磷酸盐缓冲液(PBS)1 mL;B组为治疗组,结扎术后两周二次开胸手术,经心肌注射含自体骨髓CD34+干细胞的磷酸盐缓冲液1 mL。应用STE对12只犬结扎术前、术后左室短轴基底段及心尖段心室节段径向应变(RS)、圆周方向应变(CS)以及局部心肌旋转(Rot)进行分析,并对对照组和治疗组治疗后的RS、CS及Rot变化进行比较。结果心肌梗死后梗死节段的RS、CS以及Rot均下降,治疗后治疗组梗死段RS及Rot较对照组好转。结论 STE能够评价左室短轴局部心肌的收缩功能,心肌梗死后梗死段短轴各方向应变减低,自体骨髓CD34+干细胞移植能够提高局部心肌的收缩功能。  相似文献   

10.
Pretreatment with cyclosporine (CsA) decreases infarct size 24h after myocardial ischemia/reperfusion (I/R). The goal of this study was to determine effects of CsA pretreatment on long-term cardiac function after I/R-injury. Rats were randomly assigned to group-1: vehicle-only, group-2: CsA-5mg/kg/day, and group-3: CsA-12.5mg/kg/day given orally for three days prior to I/R-injury (30 min of left anterior descending coronary artery occlusion). Post-I/R survival and cardiac function were evaluated 14 days after I/R-injury by echocardiography and invasive hemodynamic measurements. Rats with I/R-injury showed increased left ventricular pressure (LVEDP) compared to rats without I/R-injury (p<0.005). Although CsA initially decreased infarct size, no differences of LVEDP were seen 14 days after I/R-injury (vehicle: 21.2+/-8.9 mmHg, CsA-5mg/kg/day: 21.5+/-0.7 mmHg, CsA-12.5mg/kg/day: 20.5+/-9.4 mmHg). Ejection fraction and fractional shortening were decreased compared to baseline, but showed no differences between groups. On day 14, a dose-dependent increase in left ventricular end diastolic diameter was seen (p<0.001). CsA pretreatment was associated with a dose-dependent decrease in post-I/R-survival (vehicle: 56%, CsA-5mg/kg/day: 32%, CsA-12.5mg/kg/day: 16%; p=0.017). CsA pretreatment did not improve long-term cardiac function despite decreased infarct size 24h after I/R-injury, but increased post-I/R mortality significantly. Poor cardiac function after CsA pretreatment might be caused by left ventricular dilation.  相似文献   

11.
Current therapies for heart failure due to transmural left ventricular (LV) infarction are limited. We have developed a novel patch method for delivering autologous bone marrow stem cells to sites of myocardial infarction for the purpose of improving LV function and preventing LV aneurysm formation. The patch consisted of a fibrin matrix seeded with autologous porcine mesenchymal stem cells labeled with lacZ. We applied this patch to a swine model of postinfarction LV remodeling. Myocardial infarction was produced by using a 60-min occlusion of the left anterior descending coronary artery distal to the first diagonal branch followed by reperfusion. Results were compared between eight pigs with stem cell patch transplantation, six pigs with the patch but no stem cells (P), and six pigs with left anterior descending coronary artery ligation alone (L). Magnetic resonance imaging data collected 19 +/- 1 days after the myocardial infarction indicated a significant increase of LV systolic wall thickening fraction in the infarct zone of transplanted hearts compared with P or L hearts. Blue X-gal staining was observed in the infarcted area of transplanted hearts. PCR amplification of specimens from the X-gal-positive area revealed the Ad5 RSV-lacZ vector fragment DNA sequence. Light microscopy demonstrated that transplanted cells had differentiated into cells with myocyte-like characteristics and a robust increase of neovascularization as evidenced by von Willebrand factor-positive angioblasts and capillaries in transplanted hearts. Thus this patch-based autologous stem cell procedure may serve as a therapeutic modality for myocardial repair.  相似文献   

12.
Introduction of newly discovered cardiovascular therapeutics into first-in-man trials depends on a strictly regulated ethical and legal roadmap. One important prerequisite is a good understanding of all safety and efficacy aspects obtained in a large animal model that validly reflect the human scenario of myocardial infarction (MI). Pigs are widely used in this regard since their cardiac size, hemodynamics, and coronary anatomy are close to that of humans. Here, we present an effective protocol for using the porcine MI model using a closed-chest coronary balloon occlusion of the left anterior descending artery (LAD), followed by reperfusion. This approach is based on 90 min of myocardial ischemia, inducing large left ventricle infarction of the anterior, septal and inferoseptal walls. Furthermore, we present protocols for various measures of outcome that provide a wide range of information on the heart, such as cardiac systolic and diastolic function, hemodynamics, coronary flow velocity, microvascular resistance, and infarct size. This protocol can be easily tailored to meet study specific requirements for the validation of novel cardioregenerative biologics at different stages (i.e. directly after the acute ischemic insult, in the subacute setting or even in the chronic MI once scar formation has been completed). This model therefore provides a useful translational tool to study MI, subsequent adverse remodeling, and the potential of novel cardioregenerative agents.  相似文献   

13.
The underlying mechanism(s) of improved left ventricular function (LV) due to mesenchymal stem cell (MSC) administration after myocardial infarction (MI) remains highly controversial. Myocardial regeneration and neovascularization, which leads to increased tissue perfusion, are proposed mechanisms. Here we demonstrate that delivery of MSCs 3 days after MI increased tissue perfusion in a manner that preceded improved LV function in a porcine model. MI was induced in pigs by 60-min occlusion of the left anterior descending coronary artery, followed by reperfusion. Pigs were assigned to receive intramyocardial injection of allogeneic MSCs (200 million, approximately 15 injections) (n = 10), placebo (n = 6), or no intervention (n = 8). Resting myocardial blood flow (MBF) was serially assessed by first-pass perfusion magnetic resonance imaging (MRI) over an 8-wk period. Over the first week, resting MBF in the infarct area of MSC-treated pigs increased compared with placebo-injected and untreated animals [0.17 +/- 0.03, 0.09 +/- 0.01, and 0.08 +/- 0.01, respectively, signal intensity ratio of MI to left ventricular blood pool (LVBP); P < 0.01 vs. placebo, P < 0.01 vs. nontreated]. In contrast, the signal intensity ratios of the three groups were indistinguishable at weeks 4 and 8. However, MSC-treated animals showed larger, more mature vessels and less apoptosis in the infarct zones and improved regional and global LV function at week 8. Together these findings suggest that an early increase in tissue perfusion precedes improvements in LV function and a reduction in apoptosis in MSC-treated hearts. Cardiac MRI-based measures of blood flow may be a useful tool to predict a successful myocardial regenerative process after MSC treatment.  相似文献   

14.
Augmentation of cardiac sympathetic tone during myocardial ischemia has been shown to increase myocardial O(2) demand and infarct size as well as induce arrhythmias. We have previously demonstrated that electroacupuncture (EA) inhibits the visceral sympathoexcitatory cardiovascular reflex. The purpose of this study was to determine the effects of EA on left ventricular (LV) function, O(2) demand, infarct size, arrhythmogenesis, and in vivo cardiac norepinephrine (NE) release in a myocardial ischemia-reperfusion model. Anesthetized rabbits (n = 36) underwent 30 min of left anterior descending coronary artery occlusion followed by 90 min of reperfusion. We evaluated myocardial O(2) demand, infarct size, ventricular arrhythmias, and myocardial NE release using microdialysis under the following experimental conditions: 1) untreated, 2) EA at P5-6 acupoints, 3) sham acupuncture, 4) EA with pretreatment with naloxone (a nonselective opioid receptor antagonist), 5) EA with pretreatment with chelerythrine (a nonselective PKC inhibitor), and 6) EA with pretreatment with both naloxone and chelerythrine. Compared with the untreated and sham acupuncture groups, EA resulted in decreased O(2) demand, myocardial NE concentration, and infarct size. Furthermore, the degree of ST segment elevation and severity of LV dysfunction and ventricular arrhythmias were all significantly decreased (P < 0.05). The cardioprotective effects of EA were partially blocked by pretreatment with naloxone or chelerythrine alone and completely blocked by pretreatment with both naloxone and chelerythrine. These results suggest that the cardioprotective effects of EA against myocardial ischemia-reperfusion are mediated through inhibition of the cardiac sympathetic nervous system as well as opioid and PKC-dependent pathways.  相似文献   

15.
Myocardial infarction (MI) is a common cardiovascular disease with high morbidity and mortality. In this study, we explored the role of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in MI. MI was induced by ligation of the left anterior descending coronary artery. Lentivirus-mediated RNA interference of IFIT3 expression was performed by tail vein injection 72 h before MI modeling. Cardiac injury indexes and inflammatory response were examined 3 days after MI. Cardiac function indexes, infarct size, and cardiac fibrosis were assessed 4 weeks after MI. IFIT3 expression was upregulated in myocardial tissues at both 3 days and 4 weeks after MI. Knockdown of IFIT3 significantly relieved the myocardial injury, as evidenced by the decrease in serum levels of cTnI and CK-MB. In addition, IFIT3 knockdown significantly reduced the number of CD68+ macrophages and the levels of interleukin-1β, interleukin-6, and tumor necrosis factor-α, indicating that the inflammatory response was relieved. Moreover, IFIT3 silencing also significantly improved cardiac function and reduced infarct size, myocardial fibrosis, and collagen content in mice with MI. Mechanically, the present study showed that the activation of the mitogen-activated protein kinase (MAPK) pathway was observed in myocardial tissues of MI mice, which was blocked by IFIT3 knockdown, as indicated by the decreased phosphorylation of JNK, p-38, and ERK. Collectively, our results revealed the role of IFIT3 in the inflammatory response and myocardial fibrosis after MI, indicating that IFIT3 might be a potential target for MI treatment.  相似文献   

16.
We sought to delineate mechanisms through which the lack of plasminogen activator inhibitor (PAI)-1 in the heart affects remodeling of the heart early after myocardial infarction (MI). MI was induced by coronary occlusion in 10-weeks old PAI-1 knockout (KO) and control mice. Three days after MI, systolic and diastolic function was assessed with high-resolution echocardiography, infarct size was determined biochemically and histologically and accumulation of acute inflammatory cells in zones of infarction was characterized by immunocytochemistry. PAI-1 KO mice exhibited markedly thickened diastolic left ventricular anterior walls (1.38 ± 0.38 mm vs. 0.77 ± 0.13 SD), more profound depression of global and regional cardiac function (19 vs. 22% fractional shortening), and greater evidence of diastolic dysfunction (average E wave amplitude = 568 vs. 675 mm/s) all of which were significant. Markedly greater extent of infarction was demonstrated biochemically and histologically in knockout mice compared with controls (76 vs. 29% of the left ventricle, P < 0.05) associated with striking hemorrhage and intense inflammation. Fibrosis normalized for infarct size was markedly reduced (0.006 vs. 0.022 μg hydroxyproline/mg dry weight). Thus, lack of PAI-1 in the heart exerted deleterious effects mediated, at least in part by increased inflammation and hemorrhage and attenuating of fibrosis.  相似文献   

17.

Aims

Myocardial CCN2/CTGF is induced in heart failure of various etiologies. However, its role in the pathophysiology of left ventricular (LV) remodeling after myocardial infarction (MI) remains unresolved. The current study explores the role of CTGF in infarct healing and LV remodeling in an animal model and in patients admitted for acute ST-elevation MI.

Methods and Results

Transgenic mice with cardiac-restricted overexpression of CTGF (Tg-CTGF) and non-transgenic littermate controls (NLC) were subjected to permanent ligation of the left anterior descending coronary artery. Despite similar infarct size (area of infarction relative to area at risk) 24 hours after ligation of the coronary artery in Tg-CTGF and NLC mice, Tg-CTGF mice disclosed smaller area of scar tissue, smaller increase of cardiac hypertrophy, and less LV dilatation and deterioration of LV function 4 weeks after MI. Tg-CTGF mice also revealed substantially reduced mortality after MI. Remote/peri-infarct tissue of Tg-CTGF mice contained reduced numbers of leucocytes, macrophages, and cells undergoing apoptosis as compared with NLC mice. In a cohort of patients with acute ST-elevation MI (n = 42) admitted to hospital for percutaneous coronary intervention (PCI) serum-CTGF levels (s-CTGF) were monitored and related to infarct size and LV function assessed by cardiac MRI. Increase in s-CTGF levels after MI was associated with reduced infarct size and improved LV ejection fraction one year after MI, as well as attenuated levels of CRP and GDF-15.

Conclusion

Increased myocardial CTGF activities after MI are associated with attenuation of LV remodeling and improved LV function mediated by attenuation of inflammatory responses and inhibition of apoptosis.  相似文献   

18.
Leptin is known to exert cardiodepressive effects and to induce left ventricular (LV) remodelling. Nevertheless, the autocrine and/or paracrine activities of this adipokine in the context of post‐infarct dysfunction and remodelling have not yet been elucidated. Therefore, we have investigated the evolution of myocardial leptin expression following myocardial infarction (MI) and evaluated the consequences of specific cardiac leptin inhibition on subsequent LV dysfunction. Anaesthetized rats were subjected to temporary coronary occlusion. An antisense oligodesoxynucleotide (AS ODN) directed against leptin mRNA was injected intramyocardially along the border of the infarct 5 days after surgery. Cardiac morphometry and function were monitored by echocardiography over 11 weeks following MI. Production of myocardial leptin and pro‐inflammatory cytokines interleukin (IL)‐1β and IL‐6 were assessed by ELISA. Our results show that (1) cardiac leptin level peaks 7 days after reperfused MI; (2) intramyocardial injection of leptin‐AS ODN reduces early IL‐1β and IL‐6 overexpression and markedly protects contractile function. In conclusion, our findings demonstrate that cardiac leptin expression after MI could contribute to the evolution towards heart failure through autocrine and/or paracrine actions. The detrimental effect of leptin could be mediated by pro‐inflammatory cytokines such as IL‐1β and IL‐6. Our data could constitute the basis of new therapeutic approaches aimed to improve post‐MI outcome.  相似文献   

19.
目的:急性心肌梗死是危害人类健康的重大疾病之一,心肌梗死后心肌纤维化是造成心脏结构破坏、心功能下降、心律失常发生、心衰甚至猝死的微观病理机制。防治心肌纤维化是当前医学研究的重点和热点。本研究主要探讨扶正化瘀胶囊对心肌梗死大鼠心肌纤维化的干预作用。方法:大鼠随机分为假手术组、模型组、扶正化瘀胶囊组和卡托普利组,采用结扎冠状动脉前降支的方法建立心肌梗死模型,假手术组只穿线,不结扎。于造模成功后第10天开始给予相应药物治疗2个月。治疗结束后,检测左心室梗死范围和心肌胶原含量。结果:与假手术组比较,模型组、扶正化瘀胶囊组和卡托普利组的非梗死区面积显著减小(P〈0.01)。与模型组比较,扶正化瘀胶囊组和卡托普利组的梗死区面积和梗死百分比显著减小(P〈0.05,P〈0.01)。在心肌胶原表达上,与假手术组比较,模型组和扶正化瘀胶囊组胶原含量显著增加(P〈0.01)。与模型组比较,卡托普利组和扶正化瘀胶囊组胶原含量显著降低(P〈0.05,P〈0.01)。结论:扶正化瘀胶囊能够改善心肌缺血,缩小心肌梗死范围,抑制心肌胶原表达,除能用于肝纤维化的治疗外,还能用于防治心肌梗死后的心肌纤维化。  相似文献   

20.
目的:研究活化的巨噬细胞来源外泌体在心肌梗塞后心脏重塑中的作用。方法:采用超高速离心分离提取溶血磷脂酸作用下巨噬细胞来源的外泌体,将其与心脏成纤维细胞共同孵育48小时,利用Edu细胞增殖实验、Transwell实验及免疫荧光等方法检测溶血磷脂酸刺激(LPS)下巨噬细胞来源外泌体对心脏成纤维细胞的增殖、迁移以及分化的影响。选取正常C57雄性小鼠32只,根据其是否结扎左侧冠状动脉前降支及是否进行心脏原位外泌体注射,将实验小鼠随机分为:正常组,假手术组,心梗+空白外泌体组及心梗组+LPS刺激外泌体组。手术完成4周后行心脏超声、Masson染色以检测各组实验小鼠心功能状态及心脏纤维化程度。结果:在细胞实验中,LPS刺激的巨噬细胞来源外泌体可以显著增加心脏成纤维细胞的增殖、迁移以及分化能力;在动物实验中,相对于正常组、假手术组及心梗+空白-外泌体组,心梗+LPS-外泌体组小鼠的左心室射血分数及短轴收缩率显著下降,左心室舒张末及收缩末内径显著增加。Masson染色检测提示心肌梗塞+LPS-外泌体组小鼠心脏纤维化程度显著高于其余三组。结论:活化的巨噬细胞来源的外泌体可以显著加速心梗后心脏重塑的进程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号