首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The supplementary historical discipline genealogy is also a supplementary genetic discipline. In its formation, genetics borrowed from genealogy some methods of pedigree analysis. In the 21th century, it started receiving contribution from computer-aided genealogy and genetic (molecular) genealogy. The former provides novel tools for genetics, while the latter, which employing genetic methods, enriches genetics with new evidence. Genealogists formulated three main laws of genealogy: the law of three generations, the law of doubling the ancestry number, and the law of declining ancestry. The significance and meaning of these laws can be fully understood only in light of genetics. For instance, a controversy between the exponential growth of the number of ancestors of an individual, i.e., the law of doubling the ancestry number, and the limited number of the humankind is explained by the presence of weak inbreeding because of sibs’ interference; the latter causes the pedigrees’ collapse, i.e., explains also the law of diminishing ancestry number. Mathematic modeling of pedigrees’ collapse presented in a number of studies showed that the number of ancestors of each individual attains maximum in a particular generation termed ancestry saturated generation. All representatives of this and preceding generation that left progeny are common ancestors of all current members of the population. In subdivided populations, these generations are more ancient than in panmictic ones, whereas in small isolates and social strata with limited numbers of partners, they are younger. The genealogical law of three generations, according to which each hundred years contain on average three generation intervals, holds for generation lengths for Y-chromosomal DNA typically equal to 31–32 years; for autosomal and mtDNA, this time is somewhat shorter. Moving along ascending lines, the number of genetically effective ancestors transmitting their DNA fragments to descendants increases far slower than the number of common ancestors, because the time to the nearest common ancestor is proportional to log2N, and the time to genetically effective ancestor, to N, where N is the population size. In relatively young populations, the number of genetically effective ancestors does not exceed the number of recombination hot spots, which is equal to 25 000–50000. In ancient African populations with weaker linkage disequilibrium, their number may be higher. In genealogy, the degree of kinship is measured by the number of births separating the individuals under comparison, and in genetics, by Wright’s coefficients of relationship (R). Genetic frames of a “large family” are limited by the average genomic differences among the members of the human population, which constitute approximately 0.1%. Conventionally it can be assumed that it is limited by relatives, associated with the members of the given nuclear family by the 7th degree of relatedness (R ∼ 0.78%). However, in the course of the HapMap project it was established that 10–30% of pairs of individuals from the same population have at least one common genome region, which they inherited from a recent common ancestor. A nuclear family, if it is not consanguinous, unites two lineages, and indirectly, a multitude of them, constituting a “suprafamily” equivalent to a population. Some problems of genealogy and related historical issues can be resolved only with the help of genetics. These problems include identification of “true” and “false” Rurikids and the problem of continuity of the Y-chromosomal lineage of the Romanov dynasty. On the other hand, computer-aided genealogy and molecular genealogy seem to be promising in resolving genetic problems connected to recombination and coalescence of genomic regions.  相似文献   

2.
Traditional societies are often organized into descent groups called "lineages," "clans," and "tribes." Each of these descent groups claims to have a common ancestor, and this ancestry distinguishes the group's members from the rest of the population. To test the hypothesis of common ancestry within these groups, we compared ethnological and genetic data from five Central Asian populations. We show that, although people from the same lineage and clan share generally a recent common ancestor, no such common ancestry is observed at the tribal level. Thus, a tribe might be a conglomerate of clans who subsequently invented a mythical ancestor to strengthen group unity.  相似文献   

3.
How many generations ago did the common ancestor of all present-day individuals live, and how does inbreeding affect this estimate? The number of ancestors within family trees determines the timing of the most recent common ancestor of humanity. However, mating is often non-random and inbreeding is ubiquitous in natural populations. Rates of pedigree growth are found for multiple types of inbreeding. This data is then combined with models of global population structure to estimate biparental coalescence times. When pedigrees for regular systems of mating are constructed, the growth rates of inbred populations contain Fibonacci n-step constants. The timing of the most recent common ancestor depends on global population structure, the mean rate of pedigree growth, mean fitness, and current population size. Inbreeding reduces the number of ancestors in a pedigree, pushing back global common ancestry times. These results are consistent with the remarkable findings of previous studies: all humanity shares common ancestry in the recent past.  相似文献   

4.
North Greenland Polar Eskimos are the only hunter-gatherer population, to our knowledge, who can offer precise genealogical records spanning several generations. This is the first report from Eskimos on two key parameters in population genetics, namely, generation time (T) and effective population size (Ne). The average mother-daughter and father-son intervals were 27 and 32 years, respectively, roughly similar to the previously published generation times obtained from recent agricultural societies across the world. To gain an insight for the generation time in our distant ancestors, we calculated maternal generation time for two wild chimpanzee populations. We also provide the first comparison among three distinct approaches (genealogy, variance and life table methods) for calculating Ne, which resulted in slightly differing values for the Eskimos. The ratio of the effective to the census population size is estimated as 0.6-0.7 for autosomal and X-chromosomal DNA, 0.7-0.9 for mitochondrial DNA and 0.5 for Y-chromosomal DNA. A simulation of alleles along the genealogy suggested that Y-chromosomal DNA may drift a little faster than mitochondrial DNA in this population, in contrast to agricultural Icelanders. Our values will be useful not only in prehistoric population inference but also in understanding the shaping of our genome today.  相似文献   

5.
The review surveys the development and the current state of genetic genealogy, a branch of science dealing with the history of individuals, families, and kins using molecular genetic methods. The main milestones in the development of genetic genealogy are established: the appearance of essential prerequisites (development of DNA genotyping and forensic techniques of evaluating biological kinship); the first publications on the topic in the late 1990s; the establishment of commercial companies, periodicals, and noncommercial organizations dealing with this subject. The theory and practice of calculation of time to the most recent common ancestors (TMRCA) of individuals on the basis of Y-chromosomal and mitochondrial DNA data are briefly considered.  相似文献   

6.
All life on earth descended from a single common ancestor that existed several billion years ago; thus, any pair of organisms will have had a common ancestor at some point in their history. This concept is fundamental to an understanding of evolution and phylogeny. Developing an understanding of this concept is an important goal of evolution education and a part of most high school and college biology curricula. This study examines freshman undergraduate biology majors’ understanding and application of the concept of common ancestry. We used a survey that asked students to provide a brief definition of common ancestry and to rate their confidence that different pairs of organisms shared a common ancestor. Our results show that, although many students in our sample could give a satisfactory definition of common ancestry, the overwhelming majority failed to apply their definitions correctly when assessing the likelihood that the pairs of organisms shared common ancestors. Instead, we found that these students do not treat common ancestry as a binary (yes/no) trait, but instead see it as a continuum from less probable to more probable. These students are more likely to think that closely related organisms have a common ancestor than those that are more distantly related and that humans are less likely to be connected to common ancestors than nonhuman organisms. This pattern is highly consistent from student to student and has important implications for teaching evolution.  相似文献   

7.
Davies JL  Simancík F  Lyngsø R  Mailund T  Hein J 《Genetics》2007,177(4):2151-2160
Coalescent theory deals with the dynamics of how sampled genetic material has spread through a population from a single ancestor over many generations and is ubiquitous in contemporary molecular population genetics. Inherent in most applications is a continuous-time approximation that is derived under the assumption that sample size is small relative to the actual population size. In effect, this precludes multiple and simultaneous coalescent events that take place in the history of large samples. If sequences do not recombine, the number of sequences ancestral to a large sample is reduced sufficiently after relatively few generations such that use of the continuous-time approximation is justified. However, in tracing the history of large chromosomal segments, a large recombination rate per generation will consistently maintain a large number of ancestors. This can create a major disparity between discrete-time and continuous-time models and we analyze its importance, illustrated with model parameters typical of the human genome. The presence of gene conversion exacerbates the disparity and could seriously undermine applications of coalescent theory to complete genomes. However, we show that multiple and simultaneous coalescent events influence global quantities, such as total number of ancestors, but have negligible effect on local quantities, such as linkage disequilibrium. Reassuringly, most applications of the coalescent model with recombination (including association mapping) focus on local quantities.  相似文献   

8.
Recent statistical and computational analyses have shown that a genealogical most recent common ancestor (MRCA) may have lived in the recent past [Chang, J.T., 1999. Recent common ancestors of all present-day individuals. Adv. Appl. Probab. 31, 1002–1026. 1027–1038; Rohde, D.L.T., Olson, S., Chang, J.T., 2004. Modelling the recent common ancestry of all living humans. Nature 431, 562–566]. However, coalescent-based approaches show that genetic most recent common ancestors for a given non-recombining locus are typically much more ancient [Kingman, J.F.C., 1982a. The coalescent. Stochastic Process Appl. 13, 235–248; Kingman, J.F.C., 1982b. On the geneology of large populations. J. Appl. Probab. 19A, 27–43]. It is not immediately clear how these two perspectives interact. This paper investigates relationships between the number of descendant alleles of an ancestor allele and the number of genealogical descendants of the individual who possessed that allele for a simple diploid genetic model extending the genealogical model of [Chang, J.T., 1999. Recent common ancestors of all present-day individuals. Adv. Appl. Probab. 31, 1002–1026. 1027–1038].  相似文献   

9.
This paper discusses the changing relationship between population genetics, family genealogy and identity. It reports on empirical research with participants in a genetic study who anticipated that personal feedback on the analysis of their donated samples would elucidate aspects of their own family genealogies. The paper also documents how geneticists, building on the practices of offering personal feedback to research participants, have developed genetic tests marketed directly to people wishing to trace their ancestry. Some of the social and ethical issues raised by this development in the use of genetic testing are considered.  相似文献   

10.
This paper discusses the changing relationship between population genetics, family genealogy and identity. It reports on empirical research with participants in a genetic study who anticipated that personal feedback on the analysis of their donated samples would elucidate aspects of their own family genealogies. The paper also documents how geneticists, building on the practices of offering personal feedback to research participants, have developed genetic tests marketed directly to people wishing to trace their ancestry. Some of the social and ethical issues raised by this development in the use of genetic testing are considered.  相似文献   

11.
There is limited knowledge on the biological relatedness between citizens and on the demographical dynamics within villages, towns and cities in pre-17th century Western Europe. By combining Y-chromosomal genotypes, in-depth genealogies and surname data in a strict genetic genealogical approach, it is possible to provide insights into the genetic diversity and the relatedness between indigenous paternal lineages within a particular community at the time of the surname adoption. To obtain these insights, six Flemish communities were selected in this study based on the differences in geography and historical development. After rigorous selection of appropriate DNA donors, low relatedness between Y chromosomes of different surnames was found within each community, although there is co-occurrence of these surnames in each community since the start of the surname adoption between the 14th and 15th century. Next, the high communal diversity in Y-chromosomal lineages was comparable with the regional diversity across Flanders at that time. Moreover, clinal distributions of particular Y-chromosomal lineages between the communities were observed according to the clinal distributions earlier observed across the Flemish regions and Western Europe. No significant indication for genetic differences between communities with distinct historical development was found in the analysis. These genetic results provide relevant information for studies in historical sciences, archaeology, forensic genetics and genealogy.  相似文献   

12.
A simple genealogical structure is found for a general finite island model of population subdivision. The model allows for variation in the sizes of demes, in contributions to the migrant pool, and in the fraction of each deme that is replaced by migrants every generation. The ancestry of a sample of non-recombining DNA sequences has a simple structure when the sample size is much smaller than the total number of demes in the population. This allows an expression for the probability distribution of the number of segregating sites in the sample to be derived under the infinite-sites mutation model. It also yields easily computed estimators of the migration parameter for each deme in a multi-deme sample. The genealogical process is such that the lineages ancestral to the sample tend to accumulate in demes with low migration rates and/or which contribute disproportionately to the migrant pool. In addition, common ancestor or coalescent events tend to occur in demes of small size. This provides a framework for understanding the determinants of the effective size of the population, and leads to an expression for the probability that the root of a genealogy occurs in a particular geographic region, or among a particular set of demes.  相似文献   

13.
OBJECTIVE: To elucidate the genetic relationships between Estonian, Latvian and Lithuanian men by studying Y-chromosomal variation in these people. METHODS: The allelic status of five deep-rooted marker loci (YAP, Tat, M9, 92R7 and SRY-1532) was determined for 346 Baltic males. On the basis of single nucleotide polymorphism (SNP) haplotypes, Y chromosomes were divided into six haplogroups, and the Baltic haplogroup distribution compared with that in 7 European reference populations. Haplogroup frequencies, diversities and genetic distances (F(ST) values) were calculated. The relationships between populations were further illustrated using Mantel test, neighbor-joining tree and principal-component map. RESULTS: We found the Indo-European-speaking Latvians and Lithuanians to be genetically very similar to the Finno-Ugric-speaking Estonians. When compared to the reference populations, Baltic males were most closely related to the Finno-Ugric-speaking Mari, followed by their Finnish and Slavonic neighbors. CONCLUSIONS: The genetic similarity existing between Estonian, Latvian and Lithuanian men suggests that they originate from the same male founder population. Since the Baltic Y-chromosomal haplogroup distribution more closely resembles that of Finno-Ugric than Indo-European-speaking populations, we propose a hypothesis that Baltic males share a common Finno-Ugric ancestry.  相似文献   

14.
When a lineage originates from hybridization genomic blocks of contiguous ancestry from different ancestors are fragmented through genetic recombination. The resulting blocks are delineated by so called junctions, which accumulate with every generation that passes. Modeling the accumulation of ancestry block junctions can elucidate processes and timeframes of genomic admixture. Previous models have not addressed ancestry block dynamics for chromosomes that consist of a finite number of recombination sites. However, genomic data typically consist of informative markers that are interspersed with fragments for which no ancestry information is available. Hence, repeated recombination events may occur between markers, effectively removing existing junctions. Here, we present an analytical treatment of the dynamics of the mean number of junctions over time, taking into account the number of recombination sites per chromosome, population size, genetic map length, and the frequency of the ancestral species in the founding hybrid swarm. We describe the expected number of junctions using equidistant molecular markers and estimate the number of junctions using random markers. This extended theory of junctions thus reflects properties of empirical data and can serve to study the genomic patterns following admixture.  相似文献   

15.
Determining the expected distribution of the time to the most recent common ancestor of a sample of individuals may deliver important information about the genetic markers and evolution of the population. In this paper, we introduce a new recursive algorithm to calculate the distribution of the time to the most recent common ancestor of the sample from a population evolved by any conditional multinomial sampling model. The most important advantage of our method is that it can be applied to a sample of any size drawn from a population regardless of its size growth pattern. We also present a very efficient method to implement and store the genealogy tree of the population evolved by the Galton–Watson process. In the final section we present results applied to a simulated population with a single bottleneck event and to real populations of known size histories.  相似文献   

16.
B K Epperson 《Genetics》1999,152(2):797-806
Population genetics theory has dealt only with the spatial or geographic pattern of degrees of relatedness or genetic similarity separately for each point in time. However, a frequent goal of experimental studies is to infer migration patterns that occurred in the past or over extended periods of time. To fully understand how a present geographic pattern of genetic variation reflects one in the past, it is necessary to build genealogy models that directly relate the two. For the first time, space-time probabilities of identity by descent and coalescence probabilities are formulated and characterized in this article. Formulations for general migration processes are developed and applied to specific types of systems. The results can be used to determine the level of certainty that genes found in present populations are descended from ancient genes in the same population or nearby populations vs. geographically distant populations. Some parameter combinations result in past populations that are quite distant geographically being essentially as likely to contain ancestors of genes at a given population as the past population located at the same place. This has implications for the geographic point of origin of ancestral, "Eve," genes. The results also form the first model for emerging "space-time" molecular genetic data.  相似文献   

17.
Homologous long segments along the genomes of close or remote relatives that are identical by descent (IBD) from a common ancestor provide clues for recent events in human genetics. We set out to extensively map such IBD segments in large cohorts and investigate their distribution within and across different populations. We report analysis of several data sets, demonstrating that IBD is more common than expected by na?ve models of population genetics. We show that the frequency of IBD pairs is population dependent and can be used to cluster individuals into populations, detect a homogeneous subpopulation within a larger cohort, and infer bottleneck events in such a subpopulation. Specifically, we show that Ashkenazi Jewish individuals are all connected through transitive remote family ties evident by sharing of 50 cM IBD to a publicly available data set of less than 400 individuals. We further expose regions where long-range haplotypes are shared significantly more often than elsewhere in the genome, observed across multiple populations, and enriched for common long structural variation. These are inconsistent with recent relatedness and suggest ancient common ancestry, with limited recombination between haplotypes.  相似文献   

18.
Blocks of linkage disequilibrium (LD) in the human genome represent segments of ancestral chromosomes. To investigate the relationship between LD and genealogy, we analysed diversity associated with restriction fragment length polymorphism (RFLP) haplotypes of the 5' beta-globin gene complex. Genealogical analyses were based on sequence alleles that spanned a 12.2-kb interval, covering 3.1 kb around the psibeta gene and 6.2 kb of the delta-globin gene and its 5' flanking sequence known as the R/T region. Diversity was sampled from a Kenyan Luo population where recent malarial selection has contributed to substantial LD. A single common sequence allele spanning the 12.2-kb interval exclusively identified the ancestral chromosome bearing the "Bantu" beta(s) (sickle-cell) RFLP haplotype. Other common 5' RFLP haplotypes comprised interspersed segments from multiple ancestral chromosomes. Nucleotide diversity was similar between psibeta and R/T-delta-globin but was non-uniformly distributed within the R/T-delta-globin region. High diversity associated with the 5' R/T identified two ancestral lineages that probably date back more than 2 million years. Within this genealogy, variation has been introduced into the 3' R/T by gene conversion from other ancestral chromosomes. Diversity in delta-globin was found to lead through parts of the main genealogy but to coalesce in a more recent ancestor. The well-known recombination hotspot is clearly restricted to the region 3' of delta-globin. Our analyses show that, whereas one common haplotype in a block of high LD represents a long segment from a single ancestral chromosome, others are mosaics of short segments from multiple ancestors related in genealogies of unsuspected complexity.  相似文献   

19.
The Siddis (Afro-Indians) are a tribal population whose members live in coastal Karnataka, Gujarat, and in some parts of Andhra Pradesh. Historical records indicate that the Portuguese brought the Siddis to India from Africa about 300-500 years ago; however, there is little information about their more precise ancestral origins. Here, we perform a genome-wide survey to understand the population history of the Siddis. Using hundreds of thousands of autosomal markers, we show that they have inherited ancestry from Africans, Indians, and possibly Europeans (Portuguese). Additionally, analyses of the uniparental (Y-chromosomal and mitochondrial DNA) markers indicate that the Siddis trace their ancestry to Bantu speakers from sub-Saharan Africa. We estimate that the admixture between the African ancestors of the Siddis and neighboring South Asian groups probably occurred in the past eight generations (~200 years ago), consistent with historical records.  相似文献   

20.
Pasekov VP 《Genetika》2000,36(2):249-256
A method for collecting genealogical data with respect to an individual, a family, and members of the whole population is suggested. The essence of vertical pedigree construction consists of the same type of steps for filling in data (in the fixed order which excludes skips in the enumeration of lines of descent) about the father and the mother of the next ancestor. Each number in the received ordered list of ancestors uniquely determines a path (line of descent) to the given pedigree member. The path is explicitly described by a sequence of digits 0 and 1 (that corresponds to the sequence of fathers and mothers in the line of descent) at binary notation of this number. As a result, a pedigree is presented as a set of numbered rows that contain information, which uniquely identifies direct ancestors as individual persons. Results of joining separate pedigrees are recorded as a family list that contains lists of children for each parental pair. A pair of parents (more exactly, pointers of their families in the previous generation and numbers of pair members in their families) plays the role of the family "heading." Such a family list permits one to trace lines of descent and relationships for any population members presented in the list. It contains all genealogical information within the bounds of the study in a compact form. Here the process of collection requires considerably less time than traditional graphic representation of pedigrees. In addition, due to repeated checks of data during accumulation of material, error is minimized. Using pedigrees that have been collected, it is possible to calculate the coefficient of inbreeding manually. In connection with the wide prevalence of personal computers at present, it is also important that the data received are in fact ready to direct input to a computer for further automated data processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号