首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Genomics》2022,114(3):110319
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have been proposed as a promising strategy for myocardial infarction (MI). This study aims to explore the mechanism of human umbilical cord MSCs (hucMSCs)-derived EVs loaded with miR-223 on MI. Inflammation, cell biological functions, and fibrosis in vitro were measured. Furthermore, MI rat models were established to verify the role of EVs-miR-223 in vivo. The binding relationship between miR-223 and P53 was confirmed. ChIP assay was utilized to observe the combination of P53 and S100A9. The suppressed fibrosis of cardiomyocytes occurred with cells overexpressing miR-223. MiR-223 contributed to the angiogenesis of HUVECs. P53 was a target gene of miR-223. In vivo, miR-223 relieved myocardial fibrosis and inflammation infiltration, and promoted the angiogenesis in MI rats. HucMSC-derived EVs loaded with miR-223 mitigates MI and promotes myocardial repair through the P53/S100A9 axis, manifesting the underlying therapy values of hucMSC-derived EVs loaded with miR-223 in MI.  相似文献   

2.
The adult mammalian heart is thought to be a terminally differentiated organ given the postmitotic nature of cardiomyocytes. Consequently, the potential for cardiac repair through cardiomyocyte proliferation is extremely limited. Low-density lipoprotein receptor-related protein 6 (LRP6) is a Wnt co-receptor that is required for embryonic heart development. In this study we investigated the role of LRP6 in heart repair through regulation of cardiomyocyte proliferation. Lrp6 deficiency increased cardiomyocyte cell cycle activity in neonatal, juvenile and adult mice. Cardiomyocyte-specific deletion of Lrp6 in the mouse heart induced a robust regenerative response after myocardial infarction (MI), led to reduced MI area and improvement in left ventricular systolic function. In vivo genetic lineage tracing revealed that the newly formed cardiomyocytes in Lrp6-deficient mouse hearts after MI were mainly derived from resident cardiomyocytes. Furthermore, we found that the pro-proliferative effect of Lrp6 deficiency was mediated by the ING5/P21 signaling pathway. Gene therapy using the adeno-associated virus (AAV)9 miRNAi-Lrp6 construct promoted the repair of heart injury in mice. Lrp6 deficiency also induced the proliferation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Our study identifies LRP6 as a critical regulator of cardiomyocyte proliferation, which may lead to the development of a novel molecular strategy to promote myocardial regeneration and repair.Subject terms: Cell-cycle exit, Cytokinesis  相似文献   

3.

Introduction

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have recently been shown to express key cardiac proteins and improve in vivo cardiac function when administered following myocardial infarction. However, the efficacy of hiPSC-derived cell therapies, in direct comparison to current, well-established stem cell-based therapies, is yet to be elucidated. The goal of the current study was to compare the therapeutic efficacy of human mesenchymal stem cells (hMSCs) with hiPSC-CMs in mitigating myocardial infarction (MI).

Methods

Male athymic nude hyrats were subjected to permanent ligation of the left-anterior-descending (LAD) coronary artery to induce acute MI. Four experimental groups were studied: 1) control (non-MI), 2) MI, 3) hMSCs (MI+MSC), and 4) hiPSC-CMs (MI+hiPSC-derived cardiomyocytes). The hiPSC-CMs and hMSCs were labeled with superparamagnetic iron oxide (SPIO) in vitro to track the transplanted cells in the ischemic heart by high-field cardiac MRI. These cells were injected into the ischemic heart 30-min after LAD ligation. Four-weeks after MI, cardiac MRI was performed to track the transplanted cells in the infarct heart. Additionally, echocardiography (M-mode) was performed to evaluate the cardiac function. Immunohistological and western blot studies were performed to assess the cell tracking, engraftment and cardiac fibrosis in the infarct heart tissues.

Results

Echocardiography data showed a significantly improved cardiac function in the hiPSC-CMs and hMSCs groups, when compared to MI. Immunohistological studies showed expression of connexin-43, α-actinin and myosin heavy chain in engrafted hiPSC-CMs. Cardiac fibrosis was significantly decreased in hiPSC-CMs group when compared to hMSCs or MI groups. Overall, this study demonstrated improved cardiac function with decreased fibrosis with both hiPSC-CMs and hMSCs groups when compared with MI group.  相似文献   

4.
Current rodent models of ischemia/infarct or pressure-volume overload are not fully representative of human heart failure. We developed a new model of congestive heart failure (CHF) with both ischemic and stress injuries combined with fibrosis in the remote myocardium. Sprague-Dawley male rats were used. Ascending aortic banding (Ab) was performed to induce hypertrophy. Two months post-Ab, ischemia-reperfusion (I/R) injury was induced by ligating the left anterior descending (LAD) artery for 30 min. Permanent LAD ligation served as positive controls. A debanding (DeAb) procedure was performed after Ab or Ab + I/R to restore left ventricular (LV) loading properties. Cardiac function was assessed by echocardiography and in vivo hemodynamic analysis. Myocardial infarction (MI) size and myocardial fibrosis were assessed. LV hypertrophy was observed 4 mo post-Ab; however, systolic function was preserved. LV hypertrophy regressed within 1 mo after DeAb. I/R for 2 mo induced a small to moderate MI with mild impairment of LV function. Permanent LAD ligation for 2 mo induced large MI and significant cardiac dysfunction. Ab for 2 mo followed by I/R for 2 mo (Ab + I/R) resulted in moderate MI with significantly reduced ejection fraction (EF). DeAb post Ab + I/R to reduce afterload could not restore cardiac function. Perivascular fibrosis in remote myocardium after Ab + I/R + DeAb was associated with decreased cardiac function. We conclude that Ab plus I/R injury with aortic DeAb represents a novel model of CHF with increased fibrosis in remote myocardium. This model will allow the investigation of vascular and fibrotic mechanisms in CHF characterized by low EF, dilated LV, moderate infarction, near-normal aortic diameter, and reperfused coronary arteries.  相似文献   

5.
猪急性心肌梗死模型发生心室颤动的相关因素分析   总被引:2,自引:0,他引:2  
目的探讨猪冠状动脉前降支(LAD)结扎后发生室颤的特点及其相关因素,以期提高猪急性心肌梗死模型的成活率。方法57只小型猪开胸结扎心脏LAD不同位点,对室颤和体重、性别、术前心率、术前左室射血分数(LVEF)、开胸径路(旁正中/肋间)、手术时间、结扎百分位点、术后心率、术后发生室早或短阵室速等因素进行单因素相关分析和Logistic回归分析,进而对室颤的发生时间、室颤前心电图特点等进行评价。结果57例动物手术过程发生室颤18例,死亡11例。室颤均发生在结扎冠脉后35 min内,高峰时间为结扎冠脉后5 min和20 min;心率快于160 bpm或慢于60 bpm时容易诱发室颤。与非室颤组动物比较,室颤组动物的结扎位点高,术后最快心率>60 bpm的动物较多,短阵室速发生率高(P<0.01)。Logistic回归分析显示结扎位点过高是急性心肌梗死后发生室颤唯一的独立危险因素。结论结扎位点过高是猪急性心肌梗死后发生室颤的最重要危险因素;冠脉结扎后30 min内应该严密心电监护,特别注意结扎冠脉后5 min和20 min二个时间点、>160 bpm或<60 bpm二种心率、以及短阵室速等先兆事件。  相似文献   

6.
Oxidative stress plays a critical role in the pathophysiology of cardiac failure, including the modulation of neovascularization following myocardial infarction (MI). Redox molecules thioredoxin (Trx) and glutaredoxin (Grx) superfamilies actively maintain intracellular thiol-redox homeostasis by scavenging reactive oxygen species. Among these two superfamilies, the pro-angiogenic function of Trx-1 has been reported in chronic MI model whereas similar role of Grx-1 remains uncertain. The present study attempts to establish the role of Grx-1 in neovascularization and ventricular remodeling following MI. Wild-type (WT) and Grx-1 transgenic (Grx-1(Tg/+)) mice were randomized into wild-type sham (WTS), Grx-1(Tg/+) Sham (Grx-1(Tg/+)S), WTMI, Grx-1(Tg/+)MI. MI was induced by permanent occlusion of the LAD coronary artery. Sham groups underwent identical time-matched surgical procedures without LAD ligation. Significant increase in arteriolar density was observed 7 days (d) after surgical intervention in the Grx-1(Tg/+)MI group as compared to the WTMI animals. Further, improvement in myocardial functional parameters 30 d after MI was observed including decreased LVIDs, LVIDd, increased ejection fraction and, fractional shortening was also observed in the Grx-1(Tg/+)MI group as compared to the WTMI animals. Moreover, attenuation of oxidative stress and apoptotic cardiomyocytes was observed in the Grx-1(Tg/+)MI group as compared to the WTMI animals. Increased expression of p-Akt, VEGF, Ang-1, Bcl-2, survivin and DNA binding activity of NF-κB were observed in the Grx-1(Tg/+)MI group when compared to WTMI animals as revealed by Western blot analysis and Gel-shift analysis, respectively. These results are the first to demonstrate that Grx-1 induces angiogenesis and diminishes ventricular remodeling apparently through neovascularization mediated by Akt, VEGF, Ang-1 and NF-κB as well as Bcl-2 and survivin-mediated anti-apoptotic pathway in the infarcted myocardium.  相似文献   

7.
Ke Q  Yang Y  Rana JS  Chen Y  Morgan JP  Xiao YF 《生理学报》2005,57(6):673-681
我们以往的研究表明,直接在心肌梗塞(myocardial infarction,MI)动物的心脏缺血区注射胚胎干细胞(embryonic stemceils,ESCs)可以提高其心肌功能,干细胞组织工程学可以使组织再生、修复。本研究旨在观察将ESCs接种到生物降解膜内并移植到梗塞部位的效果。通过结扎小鼠左冠状动脉制作MI模型,将培养3d的带有小鼠ESCs的聚羟基乙酸膜(polyglycolicacid,PGA)移植到心肌缺血及边缘区表面。实验小鼠分成4组:假手术组、MI组、MI+PGA组、MI+ESC组,移植操作8周后检测血流动力学和心肌功能。MI组的血压和左心室功能显著降低。与MI组和MI+PGA组相比,MI+ESC组的血压和心室功能显著改善,存活率也显著增高,在梗塞区检测到GFP阳性组织,表明ESCs存活,并可能有心肌再生。以上结果表明,移植生物降解膜内的ESCs可修复小鼠梗塞区心肌细胞并提高心脏功能。将ESCs和生物降解材料联合运用可能为修复受损心脏提供一个新的治疗方法。  相似文献   

8.
Myocardial fibrosis after myocardial infarction (MI) is a leading cause of heart diseases. MI activates cardiac fibroblasts (CFs) and promotes CF to myofibroblast transformation (CMT). This study aimed to investigate the role of miR‐21 in the regulation of CMT and myocardial fibrosis. Primary rat CFs were isolated from young SD rats and treated with TGF‐β1, miR‐21 sponge or Jagged1 siRNA. Cell proliferation, invasion and adhesion were detected. MI model was established in male SD rats using LAD ligation method and infected with recombinant adenovirus. The heart function and morphology was evaluated by ultrasonic and histological analysis. We found that TGF‐β1 induced the up‐regulation of miR‐21 and down‐regulation of Jagged1 in rat CFs. Luciferase assay showed that miR‐21 targeted 3′‐UTR of Jagged1 in rat CFs. miR‐21 sponge inhibited the transformation of rat CFs into myofibroblasts, and abolished the inhibition of Jagged1 mRNA and protein expression by TGF‐β1. Furthermore, these effects of miR‐21 sponge on rat CFS were reversed by siRNA mediated knockdown of Jagged1. In vivo, heart dysfunction and myocardial fibrosis in MI model rats were partly improved by miR‐21 sponge but were aggravated by Jagged1 knockdown. Taken together, these results suggest that miR‐21 promotes cardiac fibroblast‐to‐myofibroblast transformation and myocardial fibrosis by targeting Jagged1. miR‐21 and Jagged1 are potential therapeutic targets for myocardial fibrosis.  相似文献   

9.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in many critical cellular processes, including proliferation, migration, and angiogenesis, through interaction with a family of five G protein–coupled receptors (S1P1–5). Some reports have implicated S1P as an important inflammatory mediator of the pathogenesis of airway inflammation, but the role of S1P3 in the pathogenesis of lung diseases is not completely understood. We used S1P3-deficient (knockout (KO)) mice to clarify the role of S1P3 receptor signaling in the pathogenesis of pulmonary inflammation and fibrosis using a bleomycin-induced model of lung injury. On the seventh day after bleomycin administration, S1P3 KO mice exhibited significantly less body weight loss and pulmonary inflammation than wild-type (WT) mice. On the 28th day, there was less pulmonary fibrosis in S1P3 KO mice than in WT mice. S1P3 KO mice demonstrated a 56% reduction in total cell count in bronchoalveolar lavage fluid (BALF) collected on the seventh day compared with WT mice; however, the differential white blood cell profiles were similar. BALF analysis on the seventh day showed that connective tissue growth factor (CTGF) levels were significantly decreased in S1P3 KO mice compared with WT mice, although no differences were observed in monocyte chemotactic protein-1 (MCP-1) or transforming growth factor β1 (TGF-β1) levels. Finally, S1P levels in BALF collected on the 7th day after treatment were not significantly different between WT and S1P3 KO mice. Our results indicate that S1P3 receptor signaling plays an important role in pulmonary inflammation and fibrosis and that this signaling occurs via CTGF expression. This suggests that this pathway might be a therapeutic target for pulmonary fibrosis.  相似文献   

10.
Recent studies demonstrated that the heart of 1‐day‐old neonatal mice could regenerate, with Wt1+ EPDCs migrating into myocardial regions after partial surgical resection, but this capacity was lost by 7 days of age. By treatment with Tβ4 to maintain Wt1 expression and retain the migrating feature of EPDCs in neonatal mice, we explored the possibility of restoring the cardiac regeneration potential of mice. We intraperitoneally injected Tβ4 into 1‐day‐old mice on daily basis and then apical resection was performed on the mice 7 days later. Twenty one days after the resection, morphological analysis revealed that the Tβ4‐treated mice regenerated the resected ventricular apex, while the mice in PBS control group developed significant fibrosis without apical regeneration. The Tβ4‐treated mice had significantly better ventricular ejection fraction and fractional shortening than controls. During the process of regeneration, Wt1+ EPDCs migrated into myocardial region and some of them expressed Islet1 and the markers for mature cardiomyocytes, such as cTnT and SαA. These characteristics of Wt1+ EPDCs were also seen in the heart regeneration of mice subjected to apical resection 1 day after birth. Tβ4 has no essential effect on cell cycle activity as no disruption of actin filaments was observed in Tβ4‐treated hearts. These results revealed that the cardiac regeneration potential of neonatal mice could be extended to the 7th post‐natal day by Tβ4 and Wt1+ EPDCs mobilization might play an important role in the extension.  相似文献   

11.
Caveolin (Cav)-1 has been involved in the pathogenesis of ischemic injuries. For instance, modulations of Cav-1 expression have been reported in animal models of myocardial infarction and cerebral ischemia-reperfusion. Furthermore, ablation of the Cav-1 gene in mice has been shown to increase the extent of ischemic injury in models of cerebral and hindlimb ischemia. Cav-1 has also been suggested to play a role in myocardial ischemic preconditioning. However, the role of Cav-1 in myocardial ischemia (MI)-induced cardiac dysfunction still remains to be determined. We determined the outcome of a permanent left anterior descending coronary artery (LAD) ligation in Cav-1 knockout (KO) mice. Wild-type (WT) and Cav-1 KO mice were subjected to permanent LAD ligation for 24 h. The progression of ischemic injury was monitored by echocardiography, hemodynamic measurements, 2,3,5-triphenyltetrazolium chloride staining, β-binding analysis, cAMP level measurements, and Western blot analyses. Cav-1 KO mice subjected to LAD ligation display reduced survival compared with WT mice. Despite similar infarct sizes, Cav-1 KO mice subjected to MI showed reduced left ventricular (LV) ejection fraction and fractional shortening as well as increased LV end-diastolic pressures compared with their WT counterparts. Mechanistically, Cav-1 KO mice subjected to MI exhibit reduced β-adrenergic receptor density at the plasma membrane as well as decreased cAMP levels and PKA phosphorylation. In conclusion, ablation of the Cav-1 gene exacerbates cardiac dysfunction and reduces survival in mice subjected to MI. Mechanistically, Cav-1 KO mice subjected to LAD ligation display abnormalities in β-adrenergic signaling.  相似文献   

12.
Heart failure is a major clinical problem worldwide. Previous studies have demonstrated an important role for G protein-coupled receptors, including protease-activated receptors (PARs), in the pathology of heart hypertrophy and failure. Activation of PAR-2 on cardiomyocytes has been shown to induce hypertrophic growth in vitro. PAR-2 also contributes to myocardial infarction and heart remodeling after ischemia/reperfusion injury. In this study, we found that PAR-2 induced hypertrophic growth of cultured rat neonatal cardiomyocytes in a MEK1/2 and p38 dependent manner. In addition, PAR-2 activation on mouse cardiomyocytes increased expression of the pro-fibrotic chemokine MCP-1. Furthermore, cardiomyocyte-specific overexpression of PAR-2 in mice induced heart hypertrophy, cardiac fibrosis, inflammation and heart failure. Finally, in a mouse model of myocardial infarction induced by permanent ligation of the left anterior descending coronary artery, PAR-2 deficiency attenuated heart remodeling and improved heart function independently of its contribution to the size of the initial infarct. Taken together, our data indicate that PAR-2 signaling contributes to the pathogenesis of hypertrophy and heart failure.  相似文献   

13.
Myocardial necrosis triggers inflammatory changes and a complex cytokine cascade that are only incompletely understood. The chemokine receptor CCR1 mediates inflammatory recruitment in response to several ligands released by activated platelets and up-regulated after myocardial infarction (MI). Here, we assess the effect of CCR1 on remodelling after MI using Ccr1-deficient (Ccr1(-)(/-)) mice. MI was induced in Ccr1(-/-) or wild-type mice by proximal ligation of the left anterior descending (LAD). Mice were sacrificed and analysed at day 1, 4, 7, 14 and 21 after MI. While initial infarct areas and areas at risk did not differ between groups, infarct size increased to 20.6+/-8.4% of the left ventricle (LV) in wild-type mice by day 21 but remained at 11.2+/-1.2% of LV (P<0.05) in Ccr1(-/-) mice. This attenuation in infarct expansion was associated with preserved LV function, as analysed by isolated heart studies according to Langendorff. Left ventricular developed pressure was 84.5+/-19.8 mmHg in Ccr1(-/-) mice compared to 49.0+/-19.7 mmHg in wild-type mice (P<0.01) and coronary flow reserve was improved in Ccr1(-/-) mice. An altered post-infarct inflammatory pattern was observed in Ccr1(-/-) mice characterized by diminished neutrophil infiltration, accelerated monocyte/lymphocyte infiltration, decreased apoptosis, increased cell proliferation and earlier myofibroblast population in the infarcted tissue. In conclusion, functional impairment and structural remodelling after MI is reduced in the genetic absence of Ccr1 due to an abrogated early inflammatory recruitment of neutrophils and improved tissue healing, thus revealing a potential therapeutic target.  相似文献   

14.
microRNAs (miRs) have emerged as critical modulators of various physiological processes including stem cell differentiation. Indeed, miR-1 has been reported to play an integral role in the regulation of cardiac muscle progenitor cell differentiation. However, whether overexpression of miR-1 in embryonic stem (ES) cells (miR-1-ES cells) will enhance cardiac myocyte differentiation following transplantation into the infarcted myocardium is unknown. In the present study, myocardial infarction (MI) was produced in C57BL/6 mice by left anterior descending artery ligation. miR-1-ES cells, ES cells, or culture medium (control) was transplanted into the border zone of the infarcted heart, and 2 wk post-MI, cardiac myocyte differentiation, adverse ventricular remodeling, and cardiac function were assessed. We provide evidence demonstrating enhanced cardiac myocyte commitment of transplanted miR-1-ES cells in the mouse infarcted heart as compared with ES cells. Assessment of apoptosis revealed that overexpression of miR-1 in transplanted ES cells protected host myocardium from MI-induced apoptosis through activation of p-AKT and inhibition of caspase-3, phosphatase and tensin homolog, and superoxide production. A significant reduction in interstitial and vascular fibrosis was quantified in miR-1-ES cell and ES cell transplanted groups compared with control MI. However, no statistical significance between miR-1-ES cell and ES cell groups was observed. Finally, mice receiving miR-1-ES cell transplantation post-MI had significantly improved heart function compared with respective controls (P < 0.05). Our data suggest miR-1 drives cardiac myocyte differentiation from transplanted ES cells and inhibits apoptosis post-MI, ultimately giving rise to enhanced cardiac repair, regeneration, and function.  相似文献   

15.
16.
Exogenous hydrogen sulfide (H2S) leads to down-regulation of inflammatory responses and provides myocardial protection during acute ischemia/reperfusion injury; however its role during chronic heart failure (CHF) due to myocardial infarction (MI) is yet to be unveiled. We previously reported that H2S inhibits antiangiogenic factors such, as endostatin and angiostatin, but a little is known about its effect on parstatin (a fragment of proteinase-activated receptor-1, PAR-1). We hypothesize that H2S inhibits parstatin formation and promotes VEGF activation, thus promoting angiogenesis and significantly limiting the extent of MI injury. To verify this hypothesis MI was created in 12 week-old male mice by ligation of left anterior descending artery (LAD). Sham surgery was performed except LAD ligation. After the surgery mice were treated with sodium hydrogen sulfide (30 μmol/l NaHS, a donor for H2S, in drinking water) for 4 weeks. The LV tissue was analyzed for VEGF, flk-1 and flt-1, endostatin, angiostatin and parstatin. The expression of VEGF, flk-1 and flt-1 were significantly increased in treated mice while the level of endostatin, angiostatin and parstatin were decreased compared to in untreated mice. The echocardiography in mice treated with H2S showed the improvement of heart function compared to in untreated mice. The X-ray and Doppler blood flow measurements showed enhancement of cardiac-angiogenesis in mice treated with H2S. This observed cytoprotection was associated with an inhibition of anti-angiogenic proteins and stimulation of angiogenic factors. We established that administration of H2S at the time of MI ameliorated infarct size and preserved LV function during development of MI in mice. These results suggest that H2S is cytoprotective and angioprotective during evolution of MI.  相似文献   

17.
After severe myocardial infarction (MI), heart failure results from ischemia, fibrosis, and remodeling. A promising therapy to enhance cardiac function and induce therapeutic angiogenesis via a paracrine mechanism in MI is myoblast sheet transplantation. We hypothesized that in a rat model of MI-induced chronic heart failure, this therapy could be further improved by overexpression of the antiapoptotic, antifibrotic, and proangiogenic hepatocyte growth factor (HGF) in the myoblast sheets. We studied the ability of wild type (L6-WT) and human HGF-expressing (L6-HGF) L6 myoblast sheet-derived paracrine factors to stimulate cardiomyocyte, endothelial cell, or smooth muscle cell migration in culture. Further, we studied the autocrine effect of hHGF-expression on myoblast gene expression profiles by use of microarray analysis. We induced MI in Wistar rats by left anterior descending coronary artery (LAD) ligation and allowed heart failure to develop for 4 weeks. Thereafter, we administered L6-WT (n = 15) or L6-HGF (n = 16) myoblast sheet therapy. Control rats (n = 13) underwent LAD ligation and rethoracotomy without therapy, and five rats underwent a sham operation in both surgeries. We evaluated cardiac function with echocardiography at 2 and 4 weeks after therapy, and analyzed cardiac angiogenesis and left ventricular architecture from histological sections at 4 weeks. Paracrine mediators from L6-HGF myoblast sheets effectively induced migration of cardiac endothelial and smooth muscle cells but not cardiomyocytes. Microarray data revealed that hHGF-expression modulated myoblast gene expression. In vivo, L6-HGF sheet therapy effectively stimulated angiogenesis in the infarcted and non-infarcted areas. Both L6-WT and L6-HGF therapies enhanced cardiac function and inhibited remodeling in a similar fashion. In conclusion, L6-HGF therapy effectively induced angiogenesis in the chronically failing heart. Cardiac function, however, was not further enhanced by hHGF expression.  相似文献   

18.
Apelin is a newly discovered peptide that has been recently shown to have cardioprotective effects in the animal model of myocardial infarction (MI) and ischemia/reperfusion (I/R) injuries. The aim of the present study was to investigate the long term cardioprotective effect of [Pyr1]-apelin-13 in the rat model of MI. Male Wistar rats (n = 22) were randomly divided into three groups: (1) sham operated group (2) control MI group and (3) MI treated with apelin (MI-AP group). MI animals were subjected to 30 min of left anterior descending coronary artery (LAD) ligation and 14 days of reperfusion. 24 h after LAD ligation, apelin (10 nmol/kg/day) was administered i.p. for 5 days. Blood sampling was performed at days 1, 3, 5 and 7 after MI for determination of serum changes of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), malondialdehyde (MDA) and nitric oxide (NO). Myocardial infarct size (IS) and hemodynamic function were also measured at the end of the study at day 14. We found out that post infarct treatment with apelin decreases infarct size, serum levels of LDH, CK-MB and MDA and increases heart rate and serum level of NO in the consecutive days, but there were no significant differences in blood pressure in the MI-AP group in comparison with MI. In conclusion, apelin has long term cardioprotective effects against myocardial infarction through attenuation of cardiac tissue injury and lipid peroxidation and enhancement of NO production.  相似文献   

19.
目的建立大鼠心肌纤维化(myocardial fibrosis,MF)模型,探讨其病变规律,为临床防治MF研究提供实验动物模型。方法 100只雄性Wistar大鼠随机分为模型组(92只)和伪手术组(8只),模型组进行心脏冠状动脉结扎(coronary artery ligation,CAL),手术后第7、14、21、28、35、42、49、56天分别处死;留取心脏标本,HE染色和Masson染色观察心肌组织基本结构,定量测定心脏组织羟脯氨酸含量、心肌胶原和转化生长因子β1(transfor-ming growth factor,TGF-β1)的表达。另设立伪手术组作为对照。结果与伪手术组组相比,模型组大鼠手术7 d后心肌组织炎性反应即已严重,心肌细胞断裂,心肌胶原含量显著升高(P〈0.01),羟脯氨酸含量升高(P〈0.05),TGF-β1表达显著增高并持续保持在较高水平(P〈0.01),纤维化反应在第42天达到高峰,其后有好转趋势。结论 CAL法能成功建立可靠的心肌纤维化动物模型,其机制可能与上调TGF-β1表达有关。  相似文献   

20.
We have previously shown that mouse embryonic stem (ES) cells transplanted following myocardial infarction (MI) differentiate into the major cell types in the heart and improve cardiac function. However, the extent of regeneration was relatively meager compared with the observed functional improvement. Therefore, we hypothesize that mechanisms in addition to regeneration contribute to the functional improvement from ES cell therapy. In this study, we examined the effect of mouse ES cells transplanted post-MI on cardiac apoptosis, fibrosis, and hypertrophy. MI was produced by left coronary artery ligation in C57BL/6 mice. Two different mouse ES cell lines, expressing enhanced green fluorescent protein and beta-galactosidase, respectively, were tested. Post-MI intramyocardial injection of 3 x 10(4) ES cells was compared with injection of medium alone. Terminal deoxynucleotidyl nick end labeling (TUNEL), immunofluorescence, and histology were used to examine the effect of transplanted ES cells on apoptosis, fibrosis, and hypertrophy. Two weeks post-MI, ES cell-transplanted hearts exhibited a significant decrease in TUNEL-stained nuclei (mean +/- SE; MI+medium = 12 +/- 1.5%; MI+ES cells = 6.6 +/- 1%, P < 0.05). TUNEL-positive nuclei were confirmed to be apoptotic by colabeling with a caspase-3 antibody. Cardiac fibrosis was 57% less in the MI+ES cell group compared with the MI + medium group (P < 0.05) as shown with Masson's trichrome staining. Picrosirius red staining confirmed a decreased amount of collagen present in the MI+ES cell group. Cardiomyocyte hypertrophy was significantly decreased following ES cell transplantation compared with medium control animals. In conclusion, transplanted mouse ES cells in the infarcted heart inhibit apoptosis, fibrosis, and hypertrophy, thereby reducing adverse remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号