首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative genetics of flowering time   总被引:30,自引:0,他引:30  
Analysis of genes controlling flowering time (heading date) contributes to our understanding of fundamental principles of plant development and is of practical importance because of the effects of flowering time on plant adaptation and crop yield. This review discusses the extent to which plants may share common genetic mechanisms for the control of flowering time and the implications of such conservation for gene isolation from the major cereal crops. Gene isolation may exploit the small genome of rice in map-based approaches, utilizing the conservation of gene order that is revealed when common DNA markers are mapped in different species. Alternatively, mechanisms may be conserved within plants as a whole, in which case genes cloned from the model dicot Arabidopsis thaliana provide an alternative route.  相似文献   

2.
3.
拟南芥——一把打开植物生命奥秘大门的钥匙   总被引:6,自引:0,他引:6  
张振桢  许煜泉  黄海 《生命科学》2006,18(5):442-446
在过去的20年中,拟南芥作为模式植物广泛用于植物生命科学研究。历时10年的模式植物拟南芥的全基因组测序工作于2000年完成,通过测序获得的拟南芥基因组核苷酸序列全部公布在互联网上,有力地推动了植物生命科学研究向前发展。科学家提出的“2010计划”旨在通过全世界植物科学家的努力,到2010年能够尽可能多地了解拟南芥基因的功能。通过拟南芥研究所获得的信息将有助于人类对控制不同植物复杂生命活动机制的认识。  相似文献   

4.
基因芯片技术在拟南芥研究中的应用   总被引:1,自引:0,他引:1  
基因芯片是研究生物大分子功能的新技术,目前此技术已经广泛地应用到植物研究中。拟南芥是植物分子生物学领域的模式植物,通过对其基因结构及功能的详尽研究,可以更好地理解和认识遗传上更为复杂的高等植物的生长和发育过程。本综述了基因芯片在模式植物拟南芥研究中的应用。  相似文献   

5.
基因组编辑技术的出现对植物遗传育种及作物性状的改良产生了深远意义。CRISPR/Cas(clustered regularly interspaced short palindromic repeat)是由成簇规律间隔短回文重复序列及其关联蛋白组成的免疫系统,其作用是原核生物(40%细菌和90%古细菌)用来抵抗外源遗传物质(噬菌体和病毒)的入侵。该技术实现了对基因组中多个靶基因同时进行编辑,与前两代基因编辑技术:锌指核酶(ZFNs)和转录激活因子样效应物核酶(TALENs)相比更加简单、廉价、高效。目前CRISPR/Cas9基因编辑技术已在拟南芥(Arabidopsis thaliana)、烟草(Nicotiana benthamiana)、水稻(Oryza sativa)、小麦(Triticum aestivum)、玉米(Zea mays)、番茄(tomato)等模式植物和多数大作物中实现了定点基因组编辑,其应用范围不断地向各类植物扩展。但与模式植物和一些大作物相比,CRISPR/Cas9基因编辑技术在非模式植物,尤其在一些小作物的应用中存在如载体构建、靶点设计、脱靶检测、同源重组等问题有待进一步完善。该文对CRISPR/Cas9技术在非模式植物与小作物研究的最新研究进展进行了总结,讨论了该技术目前在非模式植物、小作物应用的局限性,在此基础上提出了相关改进策略,并对CRISPR/Cas9系统在非模式植物中的研究前景进行了展望。  相似文献   

6.
Structural features of the shoot system and inflorescence are the most important morphological features, on which plant systematics are based. The present review provides information on the genetic control of shoot morphogenesis in the model plant Arabidopsis thaliana. The results obtained made it possible to reveal a small group of genes responsible for the main taxonomic features of the shoot structure in this species. Cloning of these genes opened new avenues for directed search of homologous genes in other plants. Comparative analysis of the shoot structure and studies of the function and expression of these genes in various plants suggest that morphological evolution may be based on changes in the pattern of expression of single regulatory genes.  相似文献   

7.
The model plant Arabidopsis thaliana has long been used for genetic, cellular and molecular studies. Whereas this plant was used as a model of genetics in the 1940's, the first cytogenetic observation of A. thaliana chromosomes was published in the beginning of the 20th century. Although Arabidopsis was not originally considered to be a good plant model for cytogenetics due to smallness of its genome, the number of published chromosome studies has expanded enormously in recent years. The advent of fluorescence in situ hybridization techniques on meiotic chromosomes together with indirect immuno-fluorescence localization of key chromosomal and nuclear proteins and wide accessibility of Arabidopsis mutants have resulted in a synergistic boost in Arabidopsis cytogenetics. In comparison to other plant species, the small genome with under-represented DNA repeats together with a small number of chromosomes makes this model plant easy to comprehend for a cytologist.  相似文献   

8.
Glycine max is a photoperiodic short-day plant and the practical consequence of the response is latitude and sowing period limitations to commercial crops. Genetic and physiological studies using the model plants Arabidopsis thaliana and rice (Oryza sativa) have uncovered several genes and genetic pathways controlling the process, however information about the corresponding pathways in legumes is scarce. Data mining prediction methodologies, including multiple sequence alignment, phylogeneUc analysis, bioinformaUcs expression and sequence motif pattern identification, were used to identify soybean genes involved in day length perception and photoperiodic flowering induction. We have investigated approximately 330 000 sequences from open-access databases and have identified all bona fide central oscillator genes and circadian photoreceptors from A. thaliana in soybean sequence databases. We propose a working model for the photoperiodic control of flowering time in G. max, based on the identified key components. These results demonstrate the power of comparative genomics between model systems and crop species to elucidate the several aspects of plant physiology and metabolism.  相似文献   

9.
Meiosis is a central feature of sexual reproduction. Studies in plants have made and continue to make an important contribution to fundamental research aimed at the understanding of this complex process. Moreover, homologous recombination during meiosis provides the basis for plant breeders to create new varieties of crops. The increasing global demand for food, combined with the challenges from climate change, will require sustained efforts in crop improvement. An understanding of the factors that control meiotic recombination has the potential to make an important contribution to this challenge by providing the breeder with the means to make fuller use of the genetic variability that is available within crop species. Cytogenetic studies in plants have provided considerable insights into chromosome organization and behaviour during meiosis. More recently, studies, predominantly in Arabidopsis thaliana, are providing important insights into the genes and proteins that are required for crossover formation during plant meiosis. As a result, substantial progress in the understanding of the molecular mechanisms that underpin meiosis in plants has begun to emerge. This article summarizes current progress in the understanding of meiotic recombination and its control in Arabidopsis. We also assess the relationship between meiotic recombination in Arabidopsis and other eukaryotes, highlighting areas of close similarity and apparent differences.  相似文献   

10.
Progress in the genetic understanding of plant iron and zinc nutrition   总被引:10,自引:0,他引:10  
In this review, we describe the need and progress to improve the iron and zinc contents in crop plants by genetic means. To achieve this goal either by transgenic approaches or classical breeding, knowledge about the physiological and molecular mechanisms of mineral uptake and mineral homeostasis will be very helpful. The progress in our understanding of the molecular processes and genes is described, and the use of the identified genes by transgenic approaches is illustrated. Genetic mapping of the existing variation will allow marker-assisted breeding to exploit the available natural variation in crop plants. For this application, ultimately the knowledge of the genes underlying this quantitative variation, called quantitative trait loci (QTL), will be required. It is expected that research in this field in the model species Arabidopsis thaliana , where the molecular tools are available, might help in the identification of the allelic variation at QTL.  相似文献   

11.
王磊  陈景堂  张祖新 《遗传》2007,29(9):1055-1060
随着拟南芥、水稻等模式植物基因组测序计划的完成, 比较基因组学作为一门新兴学科, 近年来发展迅速, 为植物基因组的进化、结构和功能研究开辟了新的途径。文章综述了比较基因组学在作物比较遗传作图、基因结构区域的微共线性、ESTs和蛋白质水平的比较以及基于比较基因组学的基因和QTL的克隆等方面内容与研究进展, 分析了不同水平上比较基因组学研究策略的原理、特点、可行性, 以期为利用模式生物的基因和基因组数据、采用比较基因组学策略克隆作物重要性状功能基因、阐明基因组结构与进化提供帮助。  相似文献   

12.
Depending on their genetic origin, plant mitochondrial tRNAs are classified into three categories: the "native" and "chloroplast-like" mitochondrial-encoded tRNAs and the imported nuclear-encoded tRNAs. The number and identity of tRNAs in each category change from one plant specie to another. As some plant mitochondrial trn genes were found to be not expressed, and as all Arabidopsis thaliana mitochondrial trn genes are known, we systematically tested the expression of A. thaliana mitochondrial trn genes. Both the "chloroplast-like" trnW and trnM-e genes were found to be not expressed. These exceptions are remarkable since trnW and trnM-e are expressed in the mitochondria of other land plants. Whereas we could not conclude which tRNA(Met) compensates the lack of expression of trnM-e, we showed that the cytosolic tRNA(Trp) is present in A. thaliana mitochondria, thus compensating the absence of expression of the mitochondrial-encoded trnW.  相似文献   

13.
拟南芥和作物中维生素C 生物合成与代谢研究进展   总被引:8,自引:0,他引:8  
维生素C(vitamin C, Vc)是动植物体内含量较为丰富且发挥着重要功能的小分子物质。该文综述了近年来以模式植物拟南芥为实验材料研究Vc生物合成和代谢取得的进展, 并对作物中类似的研究进行了概述。总结的信息对于在作物中进一步 开展Vc合成与代谢研究并通过分子育种提高作物的抗逆性和营养价值具有参考意义。  相似文献   

14.
Herbicide resistance is an important trait often introduced into crop plants. Mechanisms of resistance can involve a mutant target protein that is unaffected by the herbicide, or metabolic detoxification or degradation of the herbicide. Recently, we showed that overexpression in Arabidopsis thaliana of either psNTP9, the garden pea apyrase gene, or AtPgp1, the A. thaliana homolog of the plant multidrug resistance (MDR) gene, enabled A. thaliana to germinate on the toxin cycloheximide and to grow better on toxic levels of the plant hormone N6-[2-isopentyl]adenine (2iP). Here we report that overexpression of either MDR or apyrase proteins resulted in increased resistance to herbicides from different chemical classes. Apyrase inhibition by small molecule inhibitors reversed this resistance. Treatment of untransformed plants with an apyrase inhibitor increased their sensitivity to the same herbicides. These results indicate that the genes may be involved in a resistance mechanism relating to decreased retention or increased active efflux of herbicide from the plant cell.  相似文献   

15.
How to be early flowering: an evolutionary perspective   总被引:3,自引:0,他引:3  
In wild and cultivated annual plant species, flowering time is an important life-history trait that coordinates the life cycle with local environmental conditions. Extensive studies on the genetic basis of flowering time in the model species Arabidopsis thaliana have revealed a complex genetic network that can detect environmental and internal signals. Based on this knowledge and on known pleiotropic effects associated with flowering time genes, we suggest that a natural shift towards an early-flowering life cycle might involve only particular functional regions in a limited number of genes. Our predictions are supported by genetic theories of adaptation and by recent data about genes associated with natural variation. We analyse the extent to which these predictions can also apply to crop species.  相似文献   

16.
Despite the demonstrated value of chromosomal deletions and deficiencies as tools in plant and animal genome research, in the genetic model plant species Arabidopsis thaliana, such mutations have not been extensively studied. For example, it is not known whether large deletions in different regions of the genome can be tolerated in diploid plants that are heterozygous for such mutations. Similarly the viability or inviability of monosomics has not been examined in detail. To investigate these questions, we have used gamma-irradiated haploid wild-type pollen to pollinate diploid and tetraploid multimarker lines of Arabidopsis. Examination of M1 progenies revealed that chromosome loss mutations and large deletions were induced in the irradiated pollen. Such mutations were eliminated in diploid M1 plants due to dominant lethality but could be rescued in triploid M1 progeny. The use of irradiated pollen and tetraploid marker lines of Arabidopsis is a convenient way of generating deletions and modified chromosomes and provides a genetic tool for deletion mapping and for analysis of chromosomal regions essential for chromosome maintenance.  相似文献   

17.
Studies of the model plant Arabidopsis are providing knowledge about the function of plant genes with an unprecedented clarity and quantity. A major challenge now is to apply this new information to the improvement of crop plants in a systematic manner. Sequence comparisons between Arabidopsis and rice can define potential functional relationships, and conserved gene order among cereals can then be used to ascribe functions to genes in many cereals.  相似文献   

18.
维生素C(vitaminC,Vc)是动植物体内含量较为丰富且发挥着重要功能的小分子物质。该文综述了近年来以模式植物拟南芥为实验材料研究Vc生物合成和代谢取得的进展,并对作物中类似的研究进行了概述。总结的信息对于在作物中进一步开展Vc合成与代谢研究并通过分子育种提高作物的抗逆性和营养价值具有参考意义。  相似文献   

19.
植物MADS-box基因家族的不同成员在植物生长发育过程中起着非常重要的作用。拟南芥MADS-box 基因FRUITFULL(FUL) 在控制拟南芥开花时间、花分生组织分化、茎生叶形态以及心皮和果实的发育中起到重要作用。其他植物中,FUL的同源基因也在调控花发育,果实发育以及叶片发育等方面各自起到重要作用。本文综述了FUL基因及其同源基因的表达模式和功能,并就其在农作物及果树育种上的潜在应用价值进行了讨论。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号