首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human esophageal epithelium obtained from intermediate autopsies (<12 h) was maintained as cell and explant cultures. In order to develop a serum-free, defined media culture model, several medias and additives were evaluated. The viability and differentiation of the epithelial cells cultured with serum-free, Keratinocyte Growth Media (KGM, Clonetics Co., San Diego, CA) was improved over that of esophageal cells and explants cultured in either serum-supplemented CMRL 1066 (OCM), serum-free additive-supplemented CMRL 1066, or cimetidine-supplemented CMRL 1066. The KGM component EGF was determined to be trophic for esophagus cells on the basis of findings of increased 3H-TdR tabelling in KGM cultures when compared to control cells grown in KGM without EGF (KBM). The morphologic pattern of the cytoskeletal proteins actin, keratin, and vimentin were characterized in isolated cell populations. The intermediate filaments, keratin, and vimentin were co-expressed in these epithelial cells. Esophageal explant viability, differentiation, and outgrowth from 15 cases were also evaluated in dishes coated with basement membrane associated proteins. Explants cultured in these dishes were equally well-preserved and differentiated. There were no significant differences in the explant histology when there was protein coating of the culture dishes, although one case showed improved outgrowth with laminin coating. A main advantage for using this culture system is that the same medium (KGM) can be used for both the culture of explants and isolated epithelial cells. Future applications of this model include determining: (1) the effect different concentrations of EGF and calcium in the media will have on esophageal proliferation and differentiation, and (2) the role of different basement membrane associated proteins on the plating efficiency of either isolated or outgrowth epithelial esophageal cells.This is publication #2544 from the Pathobiology Laboratory.  相似文献   

2.
Ghosh C  Liu Y  Ma C  Collodi P 《Cytotechnology》1997,23(1-3):221-230
The zebrafish is a polular nonmammalian model for studies of neural development. We have derived cell cultures, initiated from blastula-stage zebrafish embryos, that differentiate in vitro into neurons and astrocytes. Cultures were initiated in basal nutrient medium supplemented with bovine insulin, trout serum, trout embryo extract and fetal bovine serum. After two weeks in culture the cells exhibited extensive neurite outgrowth and possessed elevated levels of acetylcholinesterase enzyme activity. Ultrastructural analysis revealed that the neurites possessed microtubules, synaptic vessicles and areas exhibiting growth cone morphology. The cultures expressed proteins recognized by antibodies to the neuronal and astrocyte-specific markers, neurofilament and glial fibrillary acidic protein (GFAP). Poly-D-lysine substrate stimulated neurite outgrowth in the cultures and inhibited the growth of nonneuronal cells. Medium conditioned by the buffalo rat liver line, BRL, promoted the growth and survival of the cells in culture. Mitotically active cells were identified in cultures that had undergone extensive differentiation. The embryo cell cultures provide an in vitro system for investigations of biochemical parameters influencing zebrafish neuronal cell growth and differentiation.  相似文献   

3.
The proliferation and differentiation of mouse epidermal cells can be sequentially analyzed by modification of extracellular calcium. Newborn cells cultured in low calcium medium (less than 0.1 mM) proliferate as a monolayer and maintain a typical basal cell phenotype in culture but have a limited proliferative capacity and short lifespan. Elevation of the magnesium content of the culture medium from 1 to 5 mM stimulated the proliferation of newborn mouse (1-3 days old) keratinocytes. Maximal DNA synthesis rates, as determined on day 5 of culture, were up to 2-3-fold higher in the magnesium-enriched cultures. Exposure to high magnesium caused 3-4-fold increases in the DNA content of newborn keratinocyte cultures, and extended the confluent phase of epidermal cell growth to over 10 days. Other divalent cations (strontium, copper, zinc, nickel, beryllium, and barium) did not improve keratinocyte growth in culture. Keratinocytes from the tail skin of adult (3 months old) mice displayed an absolute requirement for high phosphate in the culture medium. The medium containing an optimal (10 mM) phosphate concentration prevented the cell detachment caused by the standard low (1 mM) phosphate medium, and in combination with an elevated magnesium content (10-15 mM) it markedly increased both DNA synthesis rates and DNA content of the adult cell cultures. Optimally growing, newborn or adult cultures contained less cells in the G1 phase of the cell cycle and more cells in S and G2 +M. The addition of phosphate and magnesium per se did not induce keratinocyte differentiation and did not interfere with the high calcium (1 mM)-induced differentiation.  相似文献   

4.
Summary Cystic fibrosis (CF) involves abnormalities in mucus production and secretion of the airway. Studies of the regulation of airway mucin production and secretion has been difficult due to the lack of in vitro models of the airway epithelial cells which express functional differentiation. Because the majority of the mucin in the airway is apparently produced by the submucosal glands, we have focused our attention on the development of cell culture models of human airway submucosal glands. This report describes the propagation of CF airway submucosal gland epithelial cells which continue to express mucin production. The CF bronchus was obtained from a 31-yr-old patient who received a double lung transplant. The glands were dissected out and primary cultures prepared by the explant/outgrowth procedure. The cells were immortalized by infection with Adl2-SV40 hybrid virus. The cultures are maintained in serum-free keratinocyte basal medium supplemented with insulin (5μg/ml), hydrocortisone (0.5μg/ml), epidermal growth factor (10 ng/ml), bovine pituitary extract (25μg/ml), and antibiotics. Cultures were passaged using 0.125% trypsin in Ca+2 and Mg+2-free Hanks’, balanced salt solution. Polymerase chain reaction (PCR) analysis demonstrated that the cells were homozygous for the ΔF508 mutation. Morphologic observations showed that the cells were epithelial and were interconnected by sparsely distributed desmosomes. Their cytoplasm contained secretory-type structures including abundant Golgi, rough endoplasmic reticulum, and secretory vesicles. Immunofluorescent studies determined that all cells were positive for cytokeratins, mucin glycoconjugates, and cystic fibrosis transmembrane conductance regulator. The cultures secreted substantial amounts of mucin glycoproteins and expressed the MUC-2 mucin gene. Patch clamp experiments revealed that the cells expressed defective Cl channels which were not activated by Forskolin.  相似文献   

5.
Nerve growth from the mouse parasympathetic submandibular ganglion is stimulated by the developing target epithelium. To investigate the nature of this trophic influence, homogenates of salivary glands, gland-conditioned medium, and formalin-fixed glands were assayed for ability to elicit parasympathetic axon extension in tissue culture. Neither homogenates nor conditioned medium stimulated axon outgrowth from submandibular ganglia. However, when ganglia were added to glands in which protein synthesis and cell movement had been halted by formalin fixation, stimulation of outgrowth into the tissue was observed. Stimulation of axonal growth occurred after hyaluronidase and collagenase treatment of the glands, but not after treatment with proteases or with heat. Moreover, prolonged formalin fixation destroyed the glandular ability to elicit axon elongation. Intact ganglia cultured with whole live submandibular glands in the presence of low levels of hyaluronidase or collagenase showed extensive axon outgrowth despite disruption of the normal morphogenetic pattern of both epithelium and axons. Our results suggest that stimulation of axon outgrowth does not directly depend on the concomitant metabolic or morphogenetic activity of the epithelium, but is caused by some epithelial product, probably a protein.  相似文献   

6.
Calcium is an important regulator of terminal differentiation of cultured epidermal cells. In order to investigate the relationship between the termination of proliferative activity and the process of keratinization, we studied the time course of events induced by a sudden increase of extracellular calcium (calcium-switch) in cultures of established murine skin keratinocytes (BALB/c MK-1). These cells displayed density-dependent growth arrest without undergoing terminal differentiation in the presence of serum- and mitogen-free medium with a calcium concentration less than 0.10 mM. The calcium-switch alone was sufficient to induce a dose-dependent burst of DNA synthesis, which was followed by a state in which the cells became progressively refractory to mitogenic stimulation with epidermal growth factor. Treatment of cultures with type beta transforming growth factor during the first 6- to 10 h following the calcium-switch completely eliminated the initial burst of DNA synthesis as well as the terminal differentiation in response to calcium. On the other hand, the calcium-switch also caused the induction of a four- to fivefold increase of the activity of the membrane-associated form of transglutaminase that is required for keratinization, which was not affected by the presence of type beta transforming growth factor. These observations suggest that type beta transforming growth factor regulates the calcium-induced terminal cell division independently of the induction of phenotypic markers of keratinization, such as transglutaminase.  相似文献   

7.
The effects of vitamin A on the morphological expression of differentiation were studied in cell cultures of cutaneous keratinocytes from the newborn rat. The cells were first cultivated in a medium containing 0.11 mM calcium until a confluent monolayer had been formed. Stratification and terminal differentiation were then triggered by raising the calcium concentration of the medium to 1.96 mM ('normal' culture). The rise in the concentration of calcium was coupled with the addition of retinol (RL) of retinoic acid (RAC) to the medium to produce an excess of vitamin A (high-retinoid culture). Delipidized serum was used to produce a deficiency of vitamin A (low-retinoid culture). The tissue organization and the ultrastructure of the keratinocytes in the stratified culture were the same as those seen in conventional cultures and skin explants. These stratified cultures expressed the morphological features of the epidermis of intact skin. The addition of RL or RAC to the medium enhanced features characteristic of the secretory epithelium, such as the formation of an extensive endoplasmic reticulum, an enlargement of the Golgi zone, and an increase in the number of vacuoles. At the same time, the addition of retinoids diminished features characteristic of the terminal differentiation of the stratified squamous epithelium, such as stratification and keratinization. Deficiency of vitamin A in the medium resulted in a culture with many differentiated layers. The differentiated cells of the low-retinoid cultures contained densely packed tonofilaments and synthesized products that reacted with the monoclonal antibody AE2 that is specific for keratin peptides which are markers of epidermal differentiation. In the cell culture system that is presented here, an excess of retinoids redirected epithelial differentiation from a stratifying and keratinizing epithelium towards a secretory epithelium. This system is a useful tool for elucidating the mechanisms responsible for the effect of vitamin A on the differentiation of epithelial cells.  相似文献   

8.
These studies examined the effect of exogenous pyruvate on the growth and differentiation of primary cell cultures of rat tracheal epithelial cells. The cell cultures were derived from outgrowths of tracheal explants, and require pyruvate for survival and growth in the presence of 10% FBS. In pyruvate-supplemented (2 mM) medium, the number of cells attached to the dish increased rapidly, while exfoliation of cells into the medium as well as formation of cornified envelopes were relatively low. The growth response to pyruvate was concentration-dependent in these cell cultures. In the absence of pyruvate, the extent of terminal differentiation to keratinization gradually increased. This was characterized by a cessation of growth after one week, and an increase in exfoliation until all cells had sloughed from the dish. Accompanying these changes was a marked increase in the formation of cornified envelopes. Cells undergoing DNA synthesis were present throughout 2 weeks of culture in pyruvate-deprived medium, even as the total number of cells was diminishing. Several compounds, including other 2-oxocarboxylic acids, were ineffective growth substitutes for pyruvate. These results indicate that the requirement for pyruvate is quite stringent in these cultures and that one way pyruvate promotes the growth of tracheal epithelial cells is by inhibiting terminal differentiation.  相似文献   

9.
Quantitation of in vitro ciliated cell growth through image analysis   总被引:1,自引:0,他引:1  
Summary Ciliated cell cultures can be produced in outgrowths from explants of human respiratory epithelium. An image analysis technique was develope to quantify the percentage of active ciliated cells present in these cultures. The subtraction 2 by 2 of five successive video images of the cultures, followed by the addition of the resulting images, allowed the determinaton of the culture surface covered by ciliated cells. The percentage of this surface varied according to the regions of the explant (27.7% in the outgrowth near the explant and 4.1% at the periphery of the outgrowth). High variations were observed within the same region of an outgrowth, as well as from one outgrowth to another. However, maximal differentiation was observed after 4 d of culture. The quantitation techniques described in the present work might be useful for studying in vitro the respiratory epithelial injury and the subsequent repair processes. This work was supported by CEB-INSERM and SYNTHELABO-INSERM grants.  相似文献   

10.
Primary cultures of respiratory epithelium were produced as outgrowths from human fetal and adult tracheal and nasal polyp explants. Video recordings of the epithelial cell outgrowths were carried out after 5 days of culture and the ciliary beating frequency was analyzed by using a video technique. Uniform fields of differentiated ciliated cells were observed near the edge of the explant. In the transition region of the outgrowth from the explant to the outgrowth periphery, isolated ciliated cells were present, as well as cells with fused cilia. The ciliary beating frequency of the outgrowth of well-differentiated ciliated cells (13.5 +/- 1.4 Hz) was significantly higher (p less than 0.001) than the beating frequency of both the explant (11.9 +/- 0.7 Hz) and the ciliated cells with fused cilia (9.8 +/- 1.7 Hz). The same differentiation stages and functional activities were observed in the outgrowth cultures, whatever their origin. These in vitro models are comparable with each other and therefore could be useful for studying the ciliogenesis and functional activity of the human respiratory epithelium.  相似文献   

11.
The source of neurite outgrowth in explant cultures of normal adult Apteronotus spinal cord was examined. Explants which contained the central region of spinal cord, including ependyma, showed neurite outgrowth in culture. Explants which did not contain ependyma showed no neurite outgrowth. It is concluded that the ependymal region is necessary for neurite outgrowth in these cultures of adult teleost spinal cord. In addition, our failure to observe axon outgrowth clearly attributable to fluorescently back-labeled electromotor neurons in these cultures suggests that the exuberant neurite outgrowth in vitro is most probably due to cells other than the electromotor neurons. This explant culture system provides a unique opportunity to study neuronal differentiation, regeneration, and neurogenesis in vitro.  相似文献   

12.
Summary The clonal growth and serial propagation of rat esophageal epithelial cells in low serum-containing medium has been achieved without feeder layers or conditioned medium. To date, a total of four lines have been developed and maintained for as many as 40 passages in culture. Growth of the cells was possible only after modifying the culture medium (PFMR-4) by reducing the calcium concentration from 1 to 0.1 mM, and by adding low levels of dialyzed fetal bovine serum and seven growth factors; i.e. epidermal growth factor, hydrocortisone, ethanolamine, phosphoethanolamine, insulin, transferrin, and cholera toxin. Cell lines have been developed from both explant outgrowths and enzyme dissociated esophagi. The epithelial nature of the cells was confirmed by electron microscopy and immunological methods. Clonal growth studies revealed that optimal cell growth occurred in medium containing 2.4% dialyzed fetal bovine serum and 0.1 mM calcium. Calcium levels of 0.3 mM or higher caused the cells to stratify and undergo terminal differentiation. Coating the culture dishes with collagen, or a combination of collagen, fibronectin, and bovine serum albumin, increased both the cell growth rate and the colony forming efficiency. The successful long term culture of rat esophageal epithelial cells permits their use as models in studies concerned with esophageal differentiation and carcinogenesis. This investigation was supported by U.S. Public Health Service Grant CA 28950, awarded by the National Cancer Institute, Bethesda, MD.  相似文献   

13.
The preparation, cryopreservation, and culture on type I collagen gels of lactating bovine mammary cells with prolonged milk protein synthesis and secretion in vitro is described. Cryopreserved cells prepared as acinar fragments from either lactating or developing mammary glands attached to the collagen substratum within 24-48 hr after plating in serum and hormone supplemented medium. During continued culture in hormone-supplemented (insulin, cortisol, and prolactin) serum-free medium outgrowth of cells from the attached acinar fragments was observed beginning on day 2, with continued outgrowth to near confluence by day 6. Two morphologically distinct cell types were evident; initial outgrowth was by large polygonal cells that were subsequently overlain by spindle-shaped cells. Cells from both lactating and developing mammary glands sustained substantial milk protein secretion for at least 14 days in culture. Alpha S1-casein synthesis and secretion in cultures of lactating mammary cells was dependent on a critical minimum cell population density, below which alpha S1-casein was not secreted. In contrast, lactoferrin (LF) secretion into the medium increased linearly with the increase in cell population density. Cells cryopreserved up to 16 months secreted LF at levels comparable to fresh cultures of the same cells.  相似文献   

14.
Epidermal growth factor (EGF) in rat salivary glands is regulated by testosterone, thyroxin, and growth hormone (GH). Salivary glands of 45-day-old giant and dwarf male and female transgenic mice were examined histologically and by immunohistochemistry (IHC) for EGF. Male giants showed no significant differences from wild-type (WT) parotid and submandibular glands. However, their sublingual glands expressed EGF diffusely and strongly in granular cells within the striated ducts, where they were not found in WT mice. Submandibular gland ducts of female WT were different, having individual granular cells strongly positive for EGF and distributed sporadically along the striated duct walls. Neither female GH-antagonist dwarf mice nor GH-receptor knockout mice had any granular cells expressing EGF in any gland. Obvious presence of granular duct cells in the sublingual glands of giant male mice suggests GH-upregulated granular cell EGF expression. Furthermore, absence of granular duct cells from all glands in female GH-antagonist and GH-receptor knockout transgenic mice suggests that GH is necessary for the differentiation of the granular cell phenotype in female salivary glands.  相似文献   

15.
16.
Summary Mouse submandibular glands were dissociated and the epithelial cells embedded in a collagen gel matrix. A characteristic and reproducible pattern of growth was seen resulting in three-dimensional outgrowths with ductlike structures projecting into the matrix. A sustained cell growth leading to a 5 to 10-fold increase in cell number was observed in less than 2 wk. The extent of this growth was found to be dependent on serum concentration. Of the three sera tested, swine serum was found to promote greater growth compared to fetal bovine serum or horse serum. Swine serum dose response studies have shown that a concentration of 2 to 5% in the medium elicited only a modest increase, if any, in cell number compared to the initial value within a period of 2 wk. Various hormones and growth factors were then added to this “maintenance” medium. Insulin was found to stimulate growth consistently and reproducibly in a dose-dependent manner. Ultrastructurally, the resulting outgrowths were comprised of polarized cells joined by apical tight junctions and desmosomes. These outgrowths produced epidermal growth factor in response to dihydrotestosterone, triiodothyronine, and cortisol. The present system provides a method for sustaining growth and functional differentiation in primary culture of mouse submandibular gland epithelial cells. This investigation was supported by PHS Grants CA05388 and CA09041, awarded by the National Cancer Institute, Department of Health and Human Services.  相似文献   

17.
Summary The adult mouse submandibular salivary gland provides a good model system to study gene regulation during normal and abnormal cell behavior because it synthesizes functionally distinct products ranging from growth factors and digestive enzymes to factors of relevance to homeostatic mechanisms. The present study describes the long-term growth and differentiation of submandibular salivary epithelial cells from adult male mice as a function of the culture substratum. Using a two-step partial dissociation procedure, it was possible to enrich for ductal cells of the granular convoluted tubules, the site of epidermal growth factor synthesis. Long-term cell growth over a period of 2 to 3 mo. with at least 3 serial passages was obtained only within three-dimensional collagen gels. Cells grew as ductal-type structures, many of which generated lumens with time in culture. Electron microscopic analysis in reference to the submandibular gland in vivo revealed enrichment for and maintenance of morphologic features of granular convoluted tubule cells. Reactivity with a keratin-specific monoclonal antibody established the epithelial nature of the cells that grew within collagen. Maintenance of cell differentiation, using immunoreactivity for epidermal growth factor as criterion, was determined by both cytochemical and biochemical approaches and was found to be dependent on the collagen matrix and hormones. Greater than 50% of the cells in primary collagen cultures contained epidermal growth factor only in the presence of testosterone and triiodothyronine. In contrast, cells initially seeded on plastic or cycled to plastic from collagen gels were virtually negative for epidermal growth factor. Biochemical analysis confirmed the presence of a protein with an apparent molecular weight of 6000 which comigrated with purified mouse epidermal growth factor. Epidermal growth factor was also present in detectable levels in Passage 1 cells. This culture system should permit assessment of whether modulation of submandibular gland ductal cell growth can be exerted via a mechanism that in itself includes epidermal growth factor and its receptor and signal transduction pathway. This work was supported by Public Health Service grant DE07766 from the National Institute of Dental Research, National Institutes of Health, Bethesda, MD.  相似文献   

18.
Clonal growth and serial propagation of rat esophageal epithelial cells   总被引:6,自引:0,他引:6  
The clonal growth and serial propagation of rat esophageal epithelial cells in low serum-containing medium has been achieved without feeder layers or conditioned medium. To date, a total of four lines have been developed and maintained for as many as 40 passages in culture. Growth of the cells was possible only after modifying the culture medium (PFMR-4) by reducing the calcium concentration from 1 to 0.1 mM, and by adding low levels of dialyzed fetal bovine serum and seven growth factors; i.e. epidermal growth factor, hydrocortisone, ethanolamine, phosphoethanolamine, insulin, transferrin, and cholera toxin. Cell lines have been developed from both explant outgrowths and enzyme dissociated esophagi. The epithelial nature of the cells was confirmed by electron microscopy and immunological methods. Clonal growth studies revealed that optimal cell growth occurred in medium containing 2.4% dialyzed fetal bovine serum and 0.1 mM calcium. Calcium levels of 0.3 mM or higher caused the cells to stratify and undergo terminal differentiation. Coating the culture dishes with collagen, or a combination of collagen, fibronectin, and bovine serum albumin, increased both the cell growth rate and the colony forming efficiency. The successful long term culture of rat esophageal epithelial cells permits their use as models in studies concerned with esophageal differentiation and carcinogenesis.  相似文献   

19.
Human keratinocytes have been serially cultivated in low (0.015 mM) and high (1.8 mM) calcium containing medium. The calcium concentration of the growth medium significantly influenced the cell growth period in vitro. Cells grown in low calcium medium underwent 35-40 population doublings over 16-17 passages, while cells grown in high calcium medium ceased to proliferate after 20 population doublings over 7 passages. Changing the keratinocytes from one in vitro environment to the other drastically altered the lifespan in culture of populations derived from the same primary tissue. The degree of DNA methylation of human keratinocytes was shown to decrease with age in both high and low calcium culture conditions but does not appear to be associated with differentiation.  相似文献   

20.
The purpose of this study was to establish an in vitro culture model that closely resembles whole mouse urothelial tissue. Primary explant cultures of mouse bladder were established on porous membrane supports and explant outgrowths were analysed for morphology and the presence of antigenic and ultrastructural markers associated with urothelial cytodifferentiation. When examined at the ultrastructural level, the cultured urothelium was polarized and organized as a multilayered epithelium. Differentiation was found to increase from the porous membrane towards the surface and from the explant towards the periphery of the culture. Scanning and transmission electron microscopical analysis of the most superficially-located cells revealed four successive differentiation stages: cells with microvilli, cells with ropy microridges, cells with rounded microridges, and highly-differentiated cells with asymmetric unit membrane (AUM) plaques forming rigid microridges and fusiform vesicles. The more highly-differentiated cells were numerous at the periphery of the culture, but rare close to the explant. Epithelial organization was stabilized by well developed cell junctions. Immunolabeling demonstrated that superficial urothelial cells in culture: (1) develop tight junctions, E-cadherin adherens junctions and abundant desmosomes and (2) express uroplakins and cytokeratin 20 (CK 20). Using a culture model of primary explant outgrowth we have shown that non-differentiated mouse urothelial cells growing on a porous membrane show a high level of de novo differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号