首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After wheat, rice, maize, and barley, sorghum is the fifth most widely grown cereal on the planet. Due to its high production, drought resistance, and heat tolerance, this crop is replacing maize in some areas. Sorghum is available in a variety of colors, including cream, lemon-yellow, red, and even black. The principal grain anatomical components are pericarp, germ or embryo and endosperm. This review provides an overview of key sorghum grain components, including starches, fiber, proteins, lipids, and vitamins. Also, we summarized phenolic compounds, flavonoids, tannins, carotenoids, vitamin E, amines, Policosanols and Phytosterols in sorghum grains. Sorghum is used to manufacture bread and porridge, and it provides a significant source of energy and nutrition for humans; sorghum is extensively farmed for animal feed. However, because the natural components in sorghum are useful in the development of healthy and functional foods, sorghum farming for both biofuel production and human consumption is gaining popularity. Pigmented sorghum grain is high in antioxidants such as polyphenols, primarily tannins, which have a variety of health benefits, including antiproliferative properties linked to the prevention of certain cancers, antioxidant activities linked to the prevention of diseases linked to oxidative stress, and anti-inflammatory effects, as well as improving glucose metabolism. Because these chemicals cannot be assimilated, their application in the food business has been limited, as sorghum is regarded as a lownutritional grain due to the presence of anti-nutritional components such as strong tannins, which form complexes with proteins and iron, limiting their digestibility. This review aims to show the utilization of sorghum as a source of bioactive chemicals and the value they bestow on human health due to the general biological potential it possesses.  相似文献   

2.
Respiratory diseases are the major cause of human illness and death around the world. Despite advances in detection and treatment, very few classes of safe and effective therapy have been introduced to date. At present, phytochemicals are getting more attention because of their diverse beneficial activities and minimal toxicity. Tannins are polyphenolic secondary metabolites with high molecular weights, which are naturally present in a wide variety of fruits, vegetables, cereals, and leguminous seeds. Many tannins are endowed with well-recognized protective properties, such as anti-cancer, anti-microbial, anti-oxidant, anti-hyperglycemic, and many others. This review summarizes a large body of experimental evidence implicating that tannins are helpful in tackling a wide range of non-malignant respiratory diseases including acute lung injury (ALI), pulmonary fibrosis, asthma, pulmonary hypertension, and chronic obstructive pulmonary disease (COPD). Mechanistic pathways by which various classes of tannins execute their beneficial effects are discussed. In addition, clinical trials and our perspective on future research with tannins are also reviewed.  相似文献   

3.
Epidemiological studies suggest that consumption of whole grain cereals and whole grain cereal products have many benefical health effects, including reducing risk of diabetes, obesity, coronary heart diseases, stroke and even some cancers. Precise knowledge protective compounds present in cereal grains can be achieved only when specific biomarkers (biological marker, indicator), that could provide estimation of grain cereals absorption and intake, are established and determined. 5-n-alkylresorcinols (main fraction of phenolic compounds in cereals), because of their specific occurrence only in bran fraction, obtained in refining of milling fractions process, could be a very good candidate to play the role of biomarker of whole grain intake. They are absorbed by animals and humans, present in human plasma and as metabolites in urine. Because composition of saturated homologues of 5-n-alkylresorcinols is different in rye and wheat grains, they could be used as an indicator of the intake of the specific type of cereals and whole grain cereal products.  相似文献   

4.
Trimethylamine-N-oxide (TMAO) has been reported as a risk factor for atherosclerosis development, as well as for other cardiovascular disease (CVD) pathologies. The objective of this review is to provide a useful summary on the use of phytochemicals as TMAO-reducing agents. This review discusses the main mechanisms by which TMAO promotes CVD, including the modulation of lipid and bile acid metabolism, and the promotion of endothelial dysfunction and oxidative stress. Current knowledge on the available strategies to reduce TMAO formation are discussed, highlighting the effect and potential of phytochemicals. Overall, phytochemicals (i.e., phenolic compounds or glucosinolates) reduce TMAO formation by modulating gut microbiota composition and/or function, inhibiting host's capacity to metabolize TMA to TMAO, or a combination of both. Perspectives for design of future studies involving phytochemicals as TMAO-reducing agents are discussed. Overall, the information provided by this review outlines the current state of the art of the role of phytochemicals as TMAO reducing agents, providing valuable insight to further advance in this field of study.  相似文献   

5.
Grain processing and nutrition   总被引:1,自引:0,他引:1  
Whole grains provide a wide range of nutrients and phytochemicals that optimize health. Epidemiologic studies support the protectiveness of whole grain consumption for cardiovascular disease and cancer. Dietary guidance endorses increased whole grains in our diet. A crucial question remaining is the effect of processing of whole grains on their content of nutrients and phytochemicals. Although processing is often considered to be a negative attribute in nutrition, and some forms of processing reduce nutritional value, many factors support the importance of processing of grains to enhance grain consumption. First, whole grains as harvested are generally not consumed directly by humans but require some processing prior to consumption. While refining, that is, removal of the bran and the germ, reduces the nutrient content of grain, milling of grains otherwise concentrates desirable grain components and removes poorly digested compounds and contaminants. Cooking of grains generally increases digestibility of nutrients and phytochemicals. Studies in both animal models and humans support the notion that processed grains are often nutritionally superior to unprocessed grains, probably because of enhanced nutrient bioavailability in processed grains. Processing of grains also provides shelf-stable products that are convenient and good tasting for consumers.  相似文献   

6.
7.
《Cellular signalling》2014,26(9):1888-1896
Obesity is a serious health problem worldwide associated with an increased risk of life-threatening diseases such as type 2 diabetes, atherosclerosis, and certain types of cancer. Understanding the molecular basis of adipogenesis and fat cell development in obesity is essential to identify new biomarkers and therapeutic targets for the development of anti-obesity drugs. Recent computational and experimental studies have shown that microRNAs (miRNAs) appear to play regulatory roles in many biological processes associated with obesity, including adipocyte differentiation and lipid metabolism. In addition, many miRNAs are dysregulated in metabolic tissues from obese animals and humans, which potentially contributes to the pathogenesis of obesity-associated complications. The discovery of circulating miRNAs has highlighted their potential as both endocrine signaling molecules and disease markers. The potential of miRNA based therapeutics targeting obesity is highlighted as well as recommendations for future research which could lead to a breakthrough in the treatment of obesity.  相似文献   

8.
Dietary PUFA and flavonoids as deterrents for environmental pollutants   总被引:1,自引:0,他引:1  
Various nutrients and plant-derived phytochemicals are associated with a reduced risk of many diet-related chronic diseases including cardiovascular disease, cancer, diabetes, arthritis and osteoporosis. A common theme that links many chronic diseases is uncontrolled inflammation. The long-chain (LC) omega-3 polyunsaturated fatty acids (PUFA) and flavonoids are known to possess anti-inflammatory actions in cell cultures, animal models and humans. Minimizing the condition of persistent inflammation has been a primary aim for drug development, but understanding how food components attenuate this process is at the nexus for improving the human condition. The prevalence of environmental toxins such as heavy metals and organics that contribute to diminished levels of antioxidants likely aggravates inflammatory states when intakes of omega-3 PUFA and flavonoids are marginal. Scientists at Purdue University have formed a collaboration to better understand the metabolism and physiology of flavonoids. This new effort is focused on determining how candidate flavonoids and their metabolites affect gene targets of inflammation in cell culture and animal models. The challenge of this research is to understand how LC omega-3 PUFA and flavonoids affect the biology of inflammation. The goal is to determine how nutrients and phytochemicals attenuate chronic inflammation associated with a number of diet-related diseases that occur throughout the life cycle. The experimental approach involves molecular, biochemical and physiological endpoints of aging, cancer, obesity and musculoskeletal diseases. Examples include investigations on the combined effects of PUFA and cyanidins on inflammatory markers in cultures of human cancer cells. The actions of catechins and PUFA on muscle loss and osteopenia are being studied in a rodent model of disuse atrophy to explain how muscle and bone communicate to prevent tissue loss associated with injury, disease and aging. The purpose of this review is to introduce the concept for studying food components that influence inflammation and how LC omega-3 PUFA and flavonoids could be used therapeutically against inflammation that is mediated by environmental pollutants.  相似文献   

9.
The in vivo synthesis of early heat-shock proteins in young leaves of barley (Hordeum vulgare L.) and sorghum (Sorghum bicolor L.) was studied by one- and two-dimensional electrophoresis. Analysis of whole leaf protein patterns demonstrated clearly the enhanced resolution of heat-shock proteins, especially those of low molecular weight, when separated by two-dimensional electrophoresis. Comparison between the two cereals showed that a greater number and diversity of heat-shock proteins were induced in the subtropical C4 (sorghum) species compared to the temperate C3 (barley) species. Fractionation of whole leaf proteins into soluble and membrane fractions showed the majority of heat-shock proteins to be associated with the soluble fraction in both sorghum and barley. However, several low molecular mass (17-24 kilodalton) heat-shock proteins were clearly identified in the membrane fractions, indicating a likely association with thylakoid membranes in vivo during the early stages of a heat-shock response in both species.  相似文献   

10.
Fruits and vegetables have historically been considered rich sources of essential dietary micronutrients, soluble fiber, and antioxidants. More recently they are have been recognized as important sources for a wide array of phytochemicals that individually, or in combination, may benefit vascular health. Flavonoids are the largest, and most widely distributed class of phytochemicals, and can be further subdivided into several different sub-classes. Several epidemiology studies have observed an inverse association between flavonoid intake and risk of cardiovascular mortality. One sub-class of flavonoids, the flavanols, is found in foods such as grapes, red wine, tea, cocoa and chocolate; however, it is important to note that common food processing practices can significantly reduce the levels of these compounds found in finished food products. Recent studies have examined the potential of flavanol-rich cocoa and chocolates to influence vascular health. In this review, we discuss evidence for the hypothesis that the consumption of flavanol-rich cocoa can reduce the risk for cardiovascular disease through a multiplicity of mechanisms, including changes in oxidant defense mechanisms, vascular reactivity, cytokine production, and platelet function. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
12.
Anticancer effects of bioactive berry compounds   总被引:1,自引:0,他引:1  
In the present review, we describe chemical and chemopreventive properties as well as health benefits of both extracts and bioactive compounds from various types of berries including small soft-fleshed edible berries and from berry-like fruits such as strawberries, raspberries, blackberries, blueberries, mulberries, currants, gooseberries, elderberries, açai berries, and pomegranates. In particular, we describe how berry-derided phytochemicals, including anthocyanidins, proanthocyanidins, flavonols, flavanols, stilbenoids, terpenoids, ellagitannins, and ellagic acid target oxidative and UV radiation stress-induced DNA damage, Helicobacter pilori infection, pro-inflammatory as well as the major cancer hallmarks.  相似文献   

13.
Hydroxycinnamates including p-coumaric acid, caffeic acid, ferulic acid, sinapic acid, and their esterified/etherified conjugates such as chlorogenic acids are abundant in cereals, coffee, fruit and vegetables. Studies have shown their potential in the prevention of chronic diseases such as cardiovascular disease and cancer. The impact of these dietary hydroxycinnamates on health depends on their bioavailability. In this article, in vivo and in vitro studies pertaining to bioavailability of hydroxycinnamates are reviewed and discussed. The chemical structures, existing forms, and/or doses of hydroxycinnamates may affect their metabolic fate. Limited studies suggest that the relative bioavailability of hydroxycinnamates may be in the following order: chlorogenic acid < rosmarinic acid < caffeic acid < ferulic acid < p-coumaric acid. Bound hydroxycinnamates generally have lower bioavailability than their monomer counterparts. Further pharmacokinetic and phamacodynamic studies are required to characterize the metabolism of hydroxycinnamates and their potential health impact in humans.  相似文献   

14.
Mediterranean diet and metabolic diseases   总被引:2,自引:0,他引:2  
PURPOSE OF REVIEW: The objective of this article is to present evidence illustrating the relationship between Mediterranean diets and metabolic diseases, including obesity, type 2 diabetes, and the metabolic syndrome, and to briefly discuss potential mechanisms by which these diets can help in disease prevention and treatment. RECENT FINDINGS: Although the Mediterranean diet has long been celebrated for its impact on cardiovascular health, mounting evidence indicates a favorable effect on obesity and type 2 diabetes, as well. While health promotion strategies aimed at preventing adult obesity are emphasizing components of Mediterranean dietary patterns, a role for Mediterranean diets in attenuating the inflammatory burden associated with type 2 diabetes is also emerging. Moreover, a lower prevalence of the metabolic syndrome is associated with dietary patterns rich in fruits, vegetables, whole grains, dairy products, and unsaturated fats. Both epidemiological and interventional studies have revealed a protective effect of the Mediterranean diet against mild chronic inflammation and its metabolic complications. SUMMARY: Mounting evidence suggests that Mediterranean diets could serve as an anti-inflammatory dietary pattern, which could help fighting diseases that are related to chronic inflammation, including visceral obesity, type 2 diabetes and the metabolic syndrome.  相似文献   

15.
The efficiency with which a plant intercepts solar radiation is determined primarily by its architecture. Understanding the genetic regulation of plant architecture and how changes in architecture affect performance can be used to improve plant productivity. Leaf inclination angle, the angle at which a leaf emerges with respect to the stem, is a feature of plant architecture that influences how a plant canopy intercepts solar radiation. Here we identify extensive genetic variation for leaf inclination angle in the crop plant Sorghum bicolor, a C4 grass species used for the production of grain, forage, and bioenergy. Multiple genetic loci that regulate leaf inclination angle were identified in recombinant inbred line populations of grain and bioenergy sorghum. Alleles of sorghum dwarf-3, a gene encoding a P-glycoprotein involved in polar auxin transport, are shown to change leaf inclination angle by up to 34° (0.59 rad). The impact of heritable variation in leaf inclination angle on light interception in sorghum canopies was assessed using functional-structural plant models and field experiments. Smaller leaf inclination angles caused solar radiation to penetrate deeper into the canopy, and the resulting redistribution of light is predicted to increase the biomass yield potential of bioenergy sorghum by at least 3%. These results show that sorghum leaf angle is a heritable trait regulated by multiple loci and that genetic variation in leaf angle can be used to modify plant architecture to improve sorghum crop performance.  相似文献   

16.
The presence/absence variants (PAVs) are a major source of genome structural variation and have profound effects on phenotypic and genomic variation in animals and humans. However, little is understood about PAVs in plant genomes. Our previous resequencing effort on three sorghum (Sorghum bicolour L.) genomes, each 12? coverage, uncovered 5 364 PAVs. Here, we report a detailed characterization of 51 large-size (&gt;30 kb) PAVs. These PAVs spanned a total size of 2.92 Mb of the sorghum genome containing 202 known and predicted genes, including 38 genes annotated to encode celldeath and stress response genes. The PAVs varied considerably for repeat sequences and mobile elements with DNA trans-posons as the major components. The frequency and distribution of these PAVs differed substantial y across 96&amp;nbsp;sorghum inbred lines, and the low-and high frequency PAVs differed in their gene categories. This report shed new light on the occurrence and diversity of PAVs in sorghum genomes. Our research exemplifies a new perspective to explore genome structural variation for genetic improvement in plant breeding.  相似文献   

17.
Great millet (Sorghum bicolor (L.) Moench) is cultivated across the world for food and fodder. It is typically grown in semiarid regions that are not suitable for cultivation of other major cereals. Sexual incompatibility and shortage of available genes in germplasm to combat biotic and abiotic stresses resulted in marginalized yields of this crop. Genetic modification of sorghum with agronomically useful genes can address this problem. Here, we tried to review and summarize the key aspects of sorghum transformation work being carried out so far by various research groups across the world. The approaches used and the obstacles in generating transgenic sorghum are also pointed out and discussed.  相似文献   

18.
Leaves of jamun collected as agro by-produce during the cultivation of jamun is traditionally used as ayurvedic medicine to treat diabetes, gall bladder stones and other ailments. Most of the beneficial effects of jamun leaves are associated with phytochemicals found in jamun leaves such as gallic acid, tannins, mallic acid, flavonoids, essential oils, jambolin, ellagic acid, jambosine, antimellin and betulinic acid. Jamun possess curative activities like anticancer, antidiabetic, antifertility, anti-inflammatory, antidiarrheal, antimicrobial, antinociceptive, antioxidant, antiradiation, chemotherapeutic, and gastroprotective. The main goal of this review article is to provide information on the nutritional content, phytochemical composition and health promoting properties of jamun leaves. The review of literature based on the phytochemical composition and health promoting benefits of the jamun leaves, suggests that leaves can be used as potential constituent in the formulation of pharmacological drugs. From the review literature it is found that clinical, in-vivo, in-vitro studies are still required to check the health promoting effects of jamun leaves extracts on humans.  相似文献   

19.
Inheritance of inflorescence architecture in sorghum   总被引:4,自引:0,他引:4  
The grass inflorescence is the primary food source for humanity, and has been repeatedly shaped by human selection during the domestication of different cereal crops. Of all major cultivated cereals, sorghum [Sorghum bicolor (L.) Moench] shows the most striking variation in inflorescence architecture traits such as branch number and branch length, but the genetic basis of this variation is little understood. To study the inheritance of inflorescence architecture in sorghum, 119 recombinant inbred lines from an elite by exotic cross were grown in three environments and measured for 15 traits, including primary, secondary, and tertiary inflorescence branching. Eight characterized genes that are known to control inflorescence architecture in maize (Zea mays L.) and other grasses were mapped in sorghum. Two of these candidate genes, Dw3 and the sorghum ortholog of ramosa2, co-localized precisely with QTL of large effect for relevant traits. These results demonstrate the feasibility of using genomic and mutant resources from maize and rice (Oryza sativa L.) to investigate the inheritance of complex traits in related cereals.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

20.
Yu CK  Shih CH  Chu IK  Lo C 《Phytochemistry》2008,69(3):700-706
Sorghum SbSTS1, a pathogen inducible gene, was previously demonstrated to encode an enzyme with stilbene synthase activity. In this study, we attempt to identify the stilbene derivatives that accumulate in infected sorghum seedlings after inoculation with the anthracnose pathogen Colletotrichum sublineolum. Scanning for precursor ions that produced the common stilbene aglycones as diagnostic ions was performed in a triple quadrupole mass spectrometer. It was found that infected sorghum seedlings accumulated trans-piceid as the major stilbene metabolite together with an unknown resveratrol derivative. Time-course accumulation of trans-piceid was examined in two sorghum cultivars, DK18 and DK77, which are resistant and susceptible to C. sublineolum, respectively. In both cultivars, trans-piceid was not detected until 48h after inoculation, consistent with the late induction of SbSTS1 reported previously in infected sorghum plants. The levels of trans-piceid detected in DK77 seedlings were approximately three times the levels detected in DK18 seedlings at 120h after inoculation. In vitro assays demonstrated that trans-piceid did not exhibit significant toxicity on conidial germination and mycelial growth of C. sublineolum. Hence trans-piceid alone may not represent an important defense component against the anthracnose pathogen in sorghum seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号