共查询到20条相似文献,搜索用时 15 毫秒
1.
Odorant receptors (ORs) provide the core determinant of identity for axons of olfactory sensory neurons (OSNs) to coalesce into glomeruli in the olfactory bulb. Here, using gene targeting in mice, we examine how the OR protein determines axonal identity. An OR::GFP fusion protein is present in axons, consistent with a direct function of ORs in axon guidance. When the OR coding region is deleted, we observe OSNs that coexpress other ORs that function in odorant reception and axonal identity. It remains unclear if such coexpression is normally prevented by negative feedback on OR gene choice. A drastic reduction in OR protein level produces axonal coalescence into novel, remote glomeruli. By contrast, chimeric ORs and ORs with minor mutations perturb axon outgrowth. Strikingly, the beta2 adrenergic receptor can substitute for an OR in glomerular formation when expressed from an OR locus. Thus, ORs have not evolved a unique function in axon guidance. 相似文献
2.
An olfactory sensory map in the fly brain 总被引:41,自引:0,他引:41
3.
Individual olfactory sensory neurons are thought to express only one odorant receptor gene from a repertoire of hundreds to thousands of genes. How do these sensory neurons choose just one specific odorant receptor to express during their differentiation? As an initial attempt toward understanding the process of odorant receptor gene regulation, we studied when odorant receptor expression is activated during sensory neuron regeneration. We find that receptor gene expression is activated in postmitotic neurons and can occur in the absence of the olfactory bulb. These results suggest that receptor expression is restricted to the terminal stages of olfactory neuron differentiation, and sensory neurons do not simply inherit the odorant receptor that is already expressed in mitotic precursor cells. Our results also support a model in which odorant receptor gene expression occurs independent of the olfactory bulb. 相似文献
4.
Background
Our objective was to study the pattern of olfactory receptor expression within the dorsal and ventral regions of the mouse olfactory epithelium. We hypothesized that olfactory receptors were distributed based on the chemical properties of their ligands: e.g. receptors for polar, hydrophilic and weakly volatile odorants would be present in the dorsal region of olfactory epithelium; while receptors for non-polar, more volatile odorants would be distributed to the ventral region. To test our hypothesis, we used micro-transplantation of cilia-enriched plasma membranes derived from dorsal or ventral regions of the olfactory epithelium into Xenopus oocytes for electrophysiological characterization against a panel of 100 odorants.Findings
Odorants detected by ORs from the dorsal and ventral regions showed overlap in volatility and water solubility. We did not find evidence for a correlation between the solubility and volatility of odorants and the functional expression of olfactory receptors in the dorsal or ventral region of the olfactory epithelia.Conclusions
No simple clustering or relationship between chemical properties of odorants could be associated with the different regions of the olfactory epithelium. These results suggest that the location of ORs within the epithelium is not organized based on the physico-chemical properties of their ligands.5.
In the mouse olfactory epithelium, there are about ten million olfactory sensory neurons, each expressing a single type of odorant receptor out of approximately 1000. Olfactory sensory neurons expressing the same odorant receptor converge their axons to a specific set of glomeruli on the olfactory bulb. How odorant receptors play an instructive role in the projection of axons to the olfactory bulb has been one of the major issues of developmental neurobiology. Recent studies revealed previously overlooked roles of odorant receptor-derived cAMP signals in the axonal projection of olfactory sensory neurons; the levels of cAMP and neuronal activity appear to determine the expression levels of axon guidance/sorting molecules and thereby direct the axonal projection of olfactory sensory neurons. These findings provide new insights as to how peripheral inputs instruct neuronal circuit formation in the mammalian brain. 相似文献
6.
Odorant deposition in the nasal and olfactory mucosas is dependent on a number of factors including local air/odorant flow distribution patterns, odorant mucosal solubility and odorant diffusive transport in the mucosa. Although many of these factors are difficult to measure, mucosal solubility in the bullfrog mucus has been experimentally determined for a few odorants. In the present study an experimental procedure was combined with computational fluid dynamic (CFD) techniques to further describe some of the factors that govern odorant mucosal deposition. The fraction of odorant absorbed by the nasal mucosa (eta) was experimentally determined for a number of odorants by measuring the concentration drop between odorant 'blown' into one nostril and that exiting the contralateral nostril while the subject performed a velopharyngeal closure. Odorant concentrations were measured with a photoionization detector. Odorants were delivered to the nostrils at flow rates of 3.33 and 10 l/min. The velopharyngeal closure nasal air/odorant flows were then simulated using CFD techniques in a 3-D anatomically accurate human nose modeland the mucosal odorant uptake was numerically calculated. The comparison between the numerical simulations and the experimental results lead to an estimation of the human mucosal odorant solubility and the mucosal effective diffusive transport resistance. The results of the study suggest that the increase in diffusive resistance of the mucosal layer over that of a thin layer of water seemed to be general and non-odorant-specific; however, the mucosa solubility was odorant specific and usually followed the trend that odorants with lower water solubility were more soluble in the mucosa than would be predicted from water solubility alone. The ability of this approach to model odorant movement in the nasal cavity was evaluated by comparison of the model output with known values of odorant mucosa solubility. 相似文献
7.
8.
Olfactory neurons project their axons to spatially invariant glomeruli in the olfactory bulb, forming an ordered pattern of innervation comprising the olfactory sensory map. A mirror symmetry exists within this map, such that neurons expressing a given receptor typically project to one glomerulus on the medial face and one glomerulus on the lateral face of the bulb. The mechanisms underlying an olfactory neuron's choice to project medially versus laterally remain largely unknown, however. Here we demonstrate that insulin-like growth factor (IGF) signaling is required for sensory innervation of the lateral olfactory bulb. Mutations that eliminate IGF signaling cause axons destined for targets in the lateral bulb to shift to ectopic sites on the ventral-medial surface. Using primary cultures of olfactory and cerebellar neurons, we further show that IGF is a chemoattractant for axon growth cones. Together these observations reveal a role of IGF signaling in sensory map formation and axon guidance. 相似文献
9.
Spontaneous neural activity is required for the establishment and maintenance of the olfactory sensory map 总被引:3,自引:0,他引:3
We have developed a genetic approach to examine the role of spontaneous activity and synaptic release in the establishment and maintenance of an olfactory sensory map. Conditional expression of tetanus toxin light chain, a molecule that inhibits synaptic release, does not perturb targeting during development, but neurons that express this molecule in a competitive environment fail to maintain appropriate synaptic connections and disappear. Overexpression of the inward rectifying potassium channel, Kir2.1, diminishes the excitability of sensory neurons and more severely disrupts the formation of an olfactory map. These studies suggest that spontaneous neural activity is required for the establishment and maintenance of the precise connectivity inherent in an olfactory sensory map. 相似文献
10.
Minic J Persuy MA Godel E Aioun J Connerton I Salesse R Pajot-Augy E 《The FEBS journal》2005,272(2):524-537
The functional expression of olfactory receptors (ORs) is a primary requirement to examine the molecular mechanisms of odorant perception and coding. Functional expression of the rat I7 OR and its trafficking to the plasma membrane was achieved under optimized experimental conditions in the budding yeast Saccharomyces cerevisiae. The membrane expression of the receptor was shown by Western blotting and immunolocalization methods. Moreover, we took advantage of the functional similarities between signal transduction cascades of G protein-coupled receptor in mammalian cells and the pheromone response pathway in yeast to develop a novel biosensor for odorant screening using luciferase as a functional reporter. Yeasts were engineered to coexpress I7 OR and mammalian G(alpha) subunit, to compensate for the lack of endogenous Gpa1 subunit, so that stimulation of the receptor by its ligands activates a MAP kinase signaling pathway and induces luciferase synthesis. The sensitivity of the bioassay was significantly enhanced using mammalian G(olf) compared to the G(alpha15) subunit, resulting in dose-dependent responses of the system. The biosensor was probed with an array of odorants to demonstrate that the yeast-borne I7 OR retains its specificity and selectivity towards ligands. The results are confirmed by functional expression and bioluminescence response of human OR17-40 to its specific ligand, helional. Based on these findings, the bioassay using the luciferase reporter should be amenable to simple, rapid and inexpensive odorant screening of hundreds of ORs to provide insight into olfactory coding mechanisms. 相似文献
11.
We applied an automatic and unsupervised system to a nearly complete database of mammalian odor receptor genes. The generated motifs and gene classification were subjected to extensive and systematic downstream analysis to obtain biological insights. Two major results from this analysis were: (1) a map of sequence motifs that may correlate with function and (2) the corresponding receptor classes in which members of each class are likely to share specific functions. We have discovered motifs that have been implicated in structural integrity and posttranslational modification, as well as motifs very likely to be directly involved in ligand binding. We further propose a combinatorial molecular hypothesis, based on unique combinations of the observed motifs, that provides a foundation for understanding the generation of a large number of ligand binding sites. 相似文献
12.
The shallow water caridean shrimps Heptacarpus pictus and H. paludicola are polymorphic in colour pattern. Populations of these species collected over colour‐variable substrates showed the greatest degree of coloration in terms of the proportion of individuals displaying a distinct colour pattern. The frequencies of H. Pictus colour morphs varied significantly between most sampling periods. Apostatic selection by fish predators is suggested as one hypothesis which could explain these changes in morph frequency. Experiments with Heptacarpus pictus on rapid colour change showed that, although some pigment migration did occur in the chromatosomes studied, the macroscopic appearance of the colour patterns was not altered when shrimps were shifted from black to white backgrounds or vice versa. The results of background choice experiments with H. pictus suggest that these shrimp do not seek out colour backgrounds that would seem to be a matching background in a concealing coloration. This behaviour is consistent with the morphology of the colour patterns which appears to be a disruptive coloration rather than a concealing coloration that closely matches a particular substrate. 相似文献
13.
Dryer L 《BioEssays : news and reviews in molecular, cellular and developmental biology》2000,22(9):803-810
Odorant receptors (ORs) located in the nasal epithelium, at the ciliated surface of olfactory sensory neurons, represent the initial step of a transduction cascade that leads to odor detection. ORs form the largest and most diverse family of G-protein-coupled receptors (GPCRs). They are encoded by a multigene family that has been partially characterized in cyclostomes, teleosts, amphibia, birds and mammals, as well as in Drosophila melanogaster and the nematode Caenorhabditis elegans. As new sequence data emerge, it is increasingly clear that OR primary structure can vary dramatically across phyla. Some chemoreceptors are encoded by genes with little sequence similarity to the prototypical ORs originally isolated in mammals. A large number of sequences are now available allowing a detailed study of the evolutionary implications of OR diversity across species. This review discusses the evolutionary implications of the divergent primary structures of chemoreceptors with identical functions. 相似文献
14.
Odorant detection in insects involves heterodimers between an odorant receptor (OR) and a conserved seven-transmembrane protein called Or83b, but the exact mechanism of OR signal transduction is unclear. Two recent studies in Nature (Sato et al., 2008; Wicher et al., 2008) now reveal that these OR-Or83b heterodimers form odorant-gated ion channels, revealing a surprising new mode of olfactory transduction. 相似文献
15.
Genomic analysis was performed for the murine odorant receptor (OR) genes. The MOR28 cluster on chromosome 14 was extensively studied. It contains six OR genes, MOR28, 10, 83, 29A, 29B and 30. The human homolog of this cluster is located on the human chromosome 14, and contains five OR genes, HOR28/10, 83, 29A, 29B and 30. Sequence comparison of these OR gene paralogs and orthologs suggests that the coding homologies are accounted for not only by recent gene duplication, but also by gene conversion among the coding sequences within the cluster. A possible role of gene conversion in the olfactory system is discussed in the context of the olfactory map. 相似文献
16.
17.
18.
Here, we reveal that the regulation of Drosophila odorant receptor (OR) expression during the pupal stage is permissive and imprecise. We found that directly after hatching an OR feedback mechanism both directs and refines OR expression. We demonstrate that, as in mice, dLsd1 and Su(var)3-9 balance heterochromatin formation to direct OR expression. We show that the expressed OR induces dLsd1 and Su(var)3-9 expression, linking OR level and possibly function to OR expression. OR expression refinement shows a restricted duration, suggesting that a gene regulatory critical period brings olfactory sensory neuron differentiation to an end. Consistent with a change in differentiation, stress during the critical period represses dLsd1 and Su(var)3-9 expression and makes the early permissive OR expression permanent. This induced permissive gene regulatory state makes OR expression resilient to stress later in life. Hence, during a critical period OR feedback, similar to in mouse OR selection, defines adult OR expression in Drosophila.This study reveals that the regulation of odorant receptor expression during the Drosophila pupal stage is permissive and imprecise; olfactory sensory neuron activity directly after hatching both directs and refines odorant receptor expression. Hence, during a critical period, activity feedback defines adult odorant expression in Drosophila, as happens in mouse. 相似文献
19.
Humans are able to detect and discriminate myriads of odorants using only several hundred olfactory receptors (ORs) classified in two major phylogenetic classes representing ORs from aquatic (class I) and terrestrial animals (class II). Olfactory perception results in a combinatorial code, in which one OR recognizes multiple odorants and different odorants are recognized by different combinations of ORs. Moreover, recent data suggest that odorants could also behave as antagonists for other ORs, thus making the combinatorial coding more complex. Here we describe the odorant repertoires of two human ORs belonging to class I and class II, respectively. For this purpose, we set up an assay based on calcium imaging in which 100 odorants were screened using air-phase odorant stimulation at physiological doses. We showed that the human class I OR52D1 is functional, exhibiting a narrow repertoire related to that of its orthologous murine OR, demonstrating than this human class I OR is not an evolutionary relic. The class II OR1G1 was revealed to be broadly tuned towards odorants of 9-10 carbon chain length, with diverse functional groups. The existence of antagonist odorants for the class II OR was also demonstrated. They are structurally related to the agonists, with shorter carbon chain length. 相似文献
20.
Olfactory ensheathing cells (OECs) are Schwann cell-like glial cells of the olfactory system that promote neural repair under experimental conditions. It is a matter of debate in how far OECs resemble Schwann cells and whether they possess specific properties. Although OECs have been characterized mainly with respect to their regenerative effects after transplantation, both their cellular identity and the regulating factors involved have remained vague. The aim of this article is to define OEC and Schwann-cell identity in molecular terms, and to discuss crucial factors that are involved in determination in vitro and in vivo. Distinct OEC features such as the down-regulation of the low affinity neurotrophin receptor p75(NTR) by neuronal contact are apparent in vivo under physiological conditions, whereas OECs acquire a Schwann cell-like phenotype and up-regulate p75(NTR) expression in vitro and following transplantation into the lesioned spinal cord. This might indicate that establishment of the OEC phenotype depends on specific axonal stimuli. In this review we hypothesize that OECs and Schwann cells possess malleable cellular phenotypes that acquire distinct features only upon specific interaction with their natural neuronal partner.This concept is consistent with previous findings in vitro and in vivo, and might be relevant for studies that use OECs and Schwann cells for nervous system repair. 相似文献