首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matrix-free chick embryo tendon cells were incubated with [14C]proline for 60 minutes and protein synthesis was stopped by the addition of cycloheximide. Newly synthesized collagen precursors recovered in the incubation medium were mostly intact procollagen molecules which contain both amino-terminal and carboxy-terminal extensions. If the cells were further incubated for 2 hours in the presence of cycloheximide, most of the procollagen was converted to precursor molecules which were devoid of amino-terminal extensions. Removal of the carboxy-terminal extensions from procollagen was not observed. Similar experiments with intact tendons demonstrated that procollagen synthesized by the intact tissues invitro was readily converted to an intermediate form devoid of amino-terminal extensions and then to collagen. The results suggest that the removal of the amino-terminal and carboxy-terminal extensions from procollagen is catalyzed by two separate enzymic activities.  相似文献   

2.
We assessed the effect of streptozotocin-diabetes on in vivo collagen metabolism in skin, aorta and intestine by injecting [3H]proline into rats, 20 days after administering the diabetogen, streptozotocin. One day after [3H]proline injection, diabetic and control animals were killed, their tissues analyzed for both 3H-labeled and unlabeled hydroxyproline and results expressed per entire tissue. Thereby, the effect of diabetes on net collagen synthesis and tissue collagen mass, respectively, was evaluated.Diabetes resulted in a lower content of [3H]collagen in skin and aorta, suggesting decreased net collagen synthesis. This decrease in net synthesis was accompanied by a decrease of collagen mass in skin, whereas aortic collagen mass was unaffected. Consequently, an acceleration of collagen degradation in skin is postulated to have accompanied the expected depression of collagen synthesis; alterations of the physiochemical properties of skin from diabetic rats support this interpretation. For intestine, both net collagen synthesis and mass increased in diabetic rats, reflecting increased collagen synthesis—possibly associated with polyphagy.In conclusion, with regard to collagen metabolism, representative connective tissues respond differently to experimental diabetes, and we suggest that this insight will be useful in future studies aimed at understanding the pathophysiology of connective tissues affected by diabetes.  相似文献   

3.
Increased degradation of dermal collagen in diabetic rats.   总被引:2,自引:0,他引:2  
The effect of alloxan induced diabetes on the dermal collagen content of albino rats was studied in relation to few lysosomal enzymes. Diabetes decreased the dermal collagen content. The specific activities of the lysosomal enzymes studied in the diabetic rat skin were elevated. It has been established that lysosomal enzymes degrade the connective tissue components. Thus, it may be suggested that the increase in the lysosomal enzymes studied should have facilitated the decrease in dermal collagen content of diabetic rats by increasing the degradation of dermal collagen.  相似文献   

4.
12 patients with subarachnoid hemorraghe due to rupture of a cerebral aneurysm were examined clinically for symptoms and signs of a connective tissue disorder and biochemically for details of the biosynthesis of collagen. No uniform clinical pattern of any connective tissue disorder was seen in these patients, although selected signs were observed. Skin fibroblast cultures were then established. The rate of procollagen production in two cell lines was reduced by 40% and 50%, respectively, and the intracellular accumulation of hydroxyl[14C]proline (as a percentage of total hydroxy[14C]proline) was increased by 70% in each relative to eight control cell lines. No difference was found in the degree of intracellular degradation of procollagen. After pulse-labelling, however, the radioactive procollagen was secreted into the medium in 1 h in the control cells, but required at least 3 h in the two aneursym patient cell lines. The results, thus, suggest that delayed secretion of procollagen rather than increased intracellular degradation led to the reduction in the rate of procollagen synthesis in these two fibroblast lines from patients with cerebral artery aneurysm.  相似文献   

5.
Weight-bearing tendons in many species, including humans, chickens and horses, are prone to failure, in many cases without a discernible cause. The normal function of the tendon depends on the proper assembly of fibrils of type I collagen, the main structural component of the tendon. We studied the effect of in vitro culture, temperature (37 degrees C vs. 43 degrees C) and wounding on the expression of mRNAs for several collagen regulators, transforming growth factor beta (TGF(beta)), heat shock protein 47 (Hsp47) and connective tissue growth factor (CTGF), in chicken embryonic gastrocnemius tendon explants. The expression of mRNAs for TGF(beta) and Hsp47, a chaperone of collagen assembly, remained strong during the first day of in vitro culture, but then it decreased, slightly more at higher temperature. Additional injury in selected tendons had no significant effect on the levels of TGF(beta) and Hsp47 mRNAs. Likewise, the level of immunostained type I procollagen also decreased with the length of culture. The expression of CTGF gradually increased from 0 at the time of tendon removal with the duration of culture to strong after three days of culture when the expression of TGF(beta) and Hsp47 was low. We conclude that in vitro culture over the period of several days rather than an increase in temperature or additional wounding decreases the expression of TGF(beta), Hsp47 and type I procollagen and increases the expression of CTGF.  相似文献   

6.
The acid solubility of Type I collagen from rat tail tendons decreases due to diabetes. This finding has been taken as evidence that collagen from diabetics may be more cross-linked than normal. We compared CNBr peptide maps prepared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis for [3H] NaBH4-reduced tail tendons from streptozotocin-diabetic rats with maps from age-matched control rats. At least through 30 weeks of diabetes, the distribution of mass of both cross-linked and uncross-linked CNBr peptides was identical in diabetic and control tendons. Therefore, the number of cross-linked peptides did not increase due to diabetes. We analyzed the 3H-cross-linking compounds present on the CNBr peptides and found that the 3H content of peptides cross-linked in control tendons through the bivalent, reduced cross-links hydroxylysinonorleucine and lysinonorleucine was diminished on corresponding peptides from diabetic tendons as a function of duration of diabetes. The cross-linked peptides, however, persisted. Therefore, we conclude that a larger fraction of these bivalent cross-links is found in an unknown, non-reducible form in tendons from diabetic compared with control rats. This resembles a phenomenon normally associated with maturation and/or aging where the non-reducible form of the cross-links is acid-stable. An increase in the fraction of the cross-links that is non-reducible and acid-stable would explain, at least in part, the decrease in acid solubility of the collagen. Non-enzymatic glycation (NEG) was not very specific, since most CNBr peptides bound some glucose. However, peptides from the alpha 2-chain seemed to be preferential targets for NEG. While NEG clearly increased due to diabetes, we found no evidence that increased NEG led to an increased number of cross-links in tail tendon collagen from streptozotocin diabetic rats.  相似文献   

7.
D S Neblock  R A Berg 《Biochemistry》1986,25(20):6208-6213
The synthesis and secretion of procollagen in embryonic chick tendon fibroblasts in suspension culture were inhibited with the carboxylic ionophore monensin. The synthesis of procollagen was inhibited by 50% in a 2-h exposure to 0.1 microM monensin and was inhibited by 70% in a 6-h exposure to 0.1 microM monensin. Secretion of procollagen was inhibited by greater than 90% in the 0.1 microM monensin-treated cultures and was totally inhibited by higher doses of the reagent. A cellular pool of collagenase-digestible peptides was demonstrated in the control cells, the level of which was elevated 3-4 times in the monensin-treated cultures. In order to determine whether the secretory and synthesis block caused by monensin inhibited intracellular degradation of newly synthesized collagen, the hydroxy[14C]proline in degraded collagen fragments present in control and monensin-treated cultures was determined and compared to the total hydroxy[14C]proline synthesized in each culture. The intracellular degradation of newly synthesized, pulse-labeled collagen was shown to proceed at rates comparable to those seen in the control cultures. The monensin-treated cells degraded pulse-labeled newly synthesized collagen nearly twice as long as the controls, resulting in an overall increase in the fraction of newly synthesized collagen that was degraded. These findings suggest that force generation in the activated cross-bridge cycle may occur as a result of an actin-attached cross-bridge transition between these two orientations.  相似文献   

8.
Summary We have screened type I procollagen synthesized in vitro by skin fibroblasts from several patients with the severe non-lethal form of osteogenesis imperfecta. Cells from one patient synthesized and secreted both normal and a larger amount of abnormal type I procollagen. The abnormal alpha chains are larger in size due to post-translational overmodifications involving the whole triple helical domain. Abnormal collagen heterotrimers had a melting temperature 2.5°–3°C lower than normal ones or from controls. Chemical analysis of collagen in the medium showed a greater degree of both lysyl hydroxylation and hydroxylysyl glycosylation, the major increase in molecular mass of overmodified alpha chains being due to the higher hydroxylysine-bound hexose content. The proband's cells modify proteoglycan metabolism and mineral proband's cells modify proteoglycan metabolism and mineral crystals form in the dermis, possibly a response to abnormal collagen-proteoglycan interactions. These findings can be explained by a small defect in the product of one allele for pro-1(I) chains: three-quarters of the synthesized type I procollagen molecules are composed of trimers containing one or two chains defective near the C-terminus of the triple helix or in the C-propeptide. The data obtained for this patient confirmed that the severity of clinical manifestations in osteogenesis imperfecta strongly depends on the location and nature of the mutations, and that the phenotype could be a consequence of a collagen defect(s) and its influence on collagen-collagen interactions and collagen interactions with other connective tissue components.  相似文献   

9.
Tendons are vital collagen-dense specialized connective tissues transducing the force from skeletal muscle to the bone, thus enabling movement of the human body. Tendon cells adjust matrix turnover in response to physiological tissue loading and pathological overloading (tendinopathy). Nevertheless, the regulation of tendon matrix quality control is still poorly understood and the pathogenesis of tendinopathy is presently unsolved. Autophagy, the major mechanism of degradation and recycling of cellular components, plays a fundamental role in the homeostasis of several tissues. Here, we investigate the contribution of autophagy to human tendons’ physiology, and we provide in vivo evidence that it is an active process in human tendon tissue. We show that selective autophagy of the endoplasmic reticulum (ER-phagy), regulates the secretion of type I procollagen (PC1), the major component of tendon extracellular matrix. Pharmacological activation of autophagy by inhibition of mTOR pathway alters the ultrastructural morphology of three-dimensional tissue-engineered tendons, shifting collagen fibrils size distribution. Moreover, autophagy induction negatively affects the biomechanical properties of the tissue-engineered tendons, causing a reduction in mechanical strength under tensile force. Overall, our results provide the first evidence that autophagy regulates tendon homeostasis by controlling PC1 quality control, thus potentially playing a role in the development of injured tendons.Subject terms: Physiology, Cell biology  相似文献   

10.
11.
A combination of dodecylsulphate/polyacrylamide gel electrophoresis and fluorography has been used to quantify the synthesis of type I and type III collagens by periodontal ligament in situ and periodontal-ligament fibroblasts in vitro. The separation of 14C-labelled collagen alpha chains was achieved by introducing an interrupted reduction step, and the total radioactivity in the alpha-chain bands related to the fluorographic response by a series of standard curves. From these curves an accurate assessment of the relative amounts of type I and III collagen synthesized could be made. The same system also allowed the synthesis and processing of the respective procollagens to be analyzed. For the study in vivo, 200-g male rats were injected with 2 mCi [14C]glycine and killed 0.5-6 h later. Periodontal ligament was dissected from the mandibular molars and the newly-synthesized collagens extracted with 0.45 M sodium chloride. In the study in vitro, confluent monkey periodontal-ligament fibroblasts were cultured in the presence of [14C]proline and [14C]glycine. Analysis of labelled collagens showed a rapid conversion of type I procollagen to collagen but type III collagen was recovered as a procollagen intermediate both in vitro and in vivo. Analysis of duplicate samples after pepsin digestion showed type III collagen synthesis to comprise 15% of the total collagen synthesized in vivo and 20% in early subcultures in vitro. However, the proportion of type III synthesized by the fibroblasts decreased on subculturing. The data demonstrate that fibroblasts in vitro retain the basic characteristics of collagen synthesis and procollagen processing found in vivo, but the overall phenotypic expression of the cells is not stable in culture.  相似文献   

12.
The increase in acid-insoluble collagen (AIC) from tail tendons of streptozotocin-diabetic rats was measured and compared with that for control rats. AIC increased from 10% initially to 75% after 12 weeks of diabetes. It then increased slowly to 85% after 45 weeks. AIC for control rats was constant for the first 12 weeks and then increased slowly to 40% after 45 weeks. These data are consistent with an increase in the number of acid-stable cross-links in the collagen due to diabetes. The quantity of collagen solubilized by pepsin at 4 degrees C was unaltered due to diabetes, strong evidence that formation of diabetes-induced cross-links between helical regions of collagen molecules cannot explain the increase in AIC observed. Non-enzymatic glycation (NEG) increased linearly over 45 weeks, but the rate of NEG was much slower than the rate of increase in AIC observed for diabetics. The level of NEG for diabetics was about three times that for controls at a given time, but there was still less than 1 mol of glucose detected/mol of collagen at near maximum acid insolubility. Fluorescence associated with tail tendons was measured to test the hypothesis that fluorescent cross-links form as a consequence of NEG and result in decreased collagen solubility. Fluorescence (lambda ex 370; lambda em 430) increased slowly with age but was similar for control and diabetic tendons of the same age. Fluorescence was not increased in AIC compared with acid-soluble collagen derived from a given tendon sample. NEG of collagen reached near-diabetic levels in non-diabetic rats whose growth was inhibited by restricted feeding, but there was no associated increase in AIC. These data suggest that NEG and the subsequent formation of fluorescent cross-links do not contribute significantly to the rapid increase in AIC in the streptozotocin-rat model of diabetes.  相似文献   

13.
Summary Isolated single fascicles from tail tendons of young rats were freed of epitenon cells and cultured in vitro for up to 7 days. The tissue remained viable, as judged by the structural integrity of cell organelles and the ability to synthesize DNA and glycosaminoglycans (GAG). The rate of DNA synthesis peaked after 2 days in culture and decreased slowly thereafter. Concomitantly, an increase in cell number was noted at the periphery of the fascicle. GAG production also increased during culture, sulphated GAG being increased proportionately more than hyaluronic acid. Dermatan sulphate was the predominant sulphated GAG in freshly isolated fascicles, but in cultured tissue, the newly synthesized sulphated GAG was more sensitive to degradation by chondroitinase AC and had an increased electrophoretic mobility. Fine structural changes were observed in cultured tissues such as the retraction of cell processes. rounding up of cell bodies and the appearance of gaps between collagen fibrils. Cultured tenocytes also frequently contained apparently phagocytized collagen fibrils which were not seen in freshly isolated fascicles, and this appearance was suggestive of collagen degradation occurring in vitro, although no change in the total hydroxyproline content was noted. The data show that when individual fascicles are cultured in vitro they undergo a process of matrix remodelling which has features in common with events occurring in vivo when tendons have been surgically manipulated.  相似文献   

14.
The interaction of DNA with type I to VI collagens and laminin was studied in vitro in systems in which the connective tissue components were immobilized, as well as when in solution. In studies on immobilized components, significant binding of DNA was observed only for type V collagen, and the binding of radiolabeled DNA to this component could be effectively inhibited in a concentration-dependent manner by the addition of unlabeled DNA. Similar results were observed in solution assays in which it was observed that DNA binding to type V collagen was dependent on the native triple-helical conformation of the collagen. The preferential binding of DNA to native type V collagen may be due to the relative basicity of type V collagen chains, as well as the unique spatial arrangement of amino acid side chains in the native molecules. The data are of potential clinical relevance in that binding of DNA to type V collagen may represent at least one component of the mechanism whereby DNA and its immune complexes are deposited in connective tissues in certain pathologic conditions.  相似文献   

15.
Subunit structure of wheat germ agglutinin   总被引:6,自引:0,他引:6  
Cells isolated by enzymic digestion of embryonic tendon were incubated under N2 so that they synthesized and accumulated the unhydroxylated form of procollagen which is known as protocollagen and which is largely comprised of pro-α chains linked by interchain disulfide bonds. The cells were then exposed to O2 so that the intracellular protocollagen was hydroxylated and secreted as procollagen. When the hydroxylation was allowed to proceed at 31° or 34°, the procollagen secreted into the medium was triple-helical but its hydroxyproline content was less than two-thirds and its hydroxylysine content was less than half the control. Even when the hydroxylation was allowed to occur at 37°, the procollagen secreted by the cells was under-hydroxylated by about 15% in terms of its hydroxyproline content and about 45% in terms of its hydroxylysine content. The results may have consequences for collagen synthesis by tendons and similar tissues in vivo, since temporary anoxia in such tissues may well lead to the synthesis of a less stable procollagen or to fibers of decreased tensile strength.  相似文献   

16.
Interleukin-1 (IL-1) is synthesized by and released from macrophages in response to a variety of stimuli and appears to play an essential role in virtually all inflammatory conditions. In tissues of mesenchymal origin (e.g., cartilage, muscle, bone, and soft connective tissue) IL-1 induces changes characteristic of both destructive as well as reparative phenomena. Previous studies with natural IL-1 of varying degrees of purity have suggested that it is capable of modulating a number of biological activities of fibroblasts. We have compared the effects of purified human recombinant (hr) IL-1 alpha and beta on several fibroblast functions. The parameters studied include cell proliferation, chemotaxis, and production of collagen, collagenase, tissue inhibitor of metalloproteinase (TIMP), and prostaglandin (PG) E2. We observed that hrIL-1s stimulate the synthesis and accumulation of type I procollagen chains. Intracellular degradation of collagen is not altered by the hrIL-1s. Both IL-1s were observed to increase the steady-state levels of pro alpha 1(I) and pro alpha 2(I) mRNAs, indicating that they exert control of type I procollagen gene expression at the pretranslational level. We found that both hrIL-1 alpha and beta stimulate synthesis of TIMP, collagenase, PGE2, and growth of fibroblasts in vitro but are not chemotactic for fibroblasts. Although hrIl-1 alpha and beta both are able to stimulate production of PGE2 by fibroblasts, inhibition of prostaglandin synthesis by indomethacin has no measurable effect on the ability of the IL-1s to stimulate cell growth or production of collagen and collagenase. Each of the IL-1s stimulated proliferation and collagen production by fibroblasts to a similar degree, however hrIL-1 beta was found to be less potent than hrIL-1 alpha in stimulating PGE2 production. These observations support the notion that IL-1 alpha and beta may both modulate the degradation of collagen at sites of tissue injury by virtue of their ability to stimulate collagenase and PGE2 production by fibroblasts. Furthermore, IL-1 alpha and beta might also direct reparative functions of fibroblasts by stimulating their proliferation and synthesis of collagen and TIMP.  相似文献   

17.
Building collagen molecules,fibrils, and suprafibrillar structures   总被引:8,自引:0,他引:8  
Fibril-forming collagens are synthesized in precursor form, procollagens, with N- and C-terminal propeptide extensions. The C-propeptides direct chain association during intracellular assembly of the procollagen molecule from its three constituent polypeptide chains. Following or during secretion into the extracellular matrix, propeptides are cleaved by specific procollagen proteinases, thereby triggering fibril formation. The recent determination of the low-resolution structure of the C-propeptide trimer gives insights into the mechanism of procollagen chain association. In the extracellular matrix, the procollagen C-propeptides ensure procollagen solubility, while persistence of the N-propeptides controls fibril shape. Mechanisms for the control of fibril diameter are reviewed in terms of the radial packing model for collagen fibril structure. Finally, procollagen molecules have recently been shown to undergo liquid crystalline ordering in solution, prior to fibril assembly. This may provide an explanation for the liquid crystal-like suprafibrillar architectures of different connective tissues.  相似文献   

18.
Human fibroblasts when induced to make nonhelical , defective collagen have mechanisms for degrading up to 30% of their newly synthesized collagen intracellularly prior to secretion. To determine if at least a portion of the degradation of defective collagen occurs by lysosomes, extracts of cultured HFL-1 fibroblasts were examined for proteinases capable of degrading denatured type I [3H]procollagen. The majority of the proteolytic activity against denatured [3H]-procollagen had a pH optimum of 3.5-4; it was stimulated by dithiothreitol and inhibited 95% by leupeptin, 10% by pepstatin, and 98% by leupeptin and pepstatin together. Extracts of purified lysosomes from the fibroblasts were active in degrading denatured [3H]procollagen and were completely inhibited by leupeptin and pepstatin. To demonstrate directly that human lung fibroblasts can translocate a portion of their defective collagen to lysosomes, cultured cells were incubated with cis-4-hydroxyproline and labeled with [14C]proline to cause the cells to make nonhelical [14C]procollagen. About 3% of the total intracellular hydroxy[14C]proline was found in lysosomes. If, however, the cells were also treated with NH4Cl, an inhibitor of lysosomal function, 18% of the intracellular hydroxy[14C]proline was found in lysosomes. These results demonstrate that cultured human lung fibroblasts induced to make defective collagen are capable of shunting a portion of such collagen to their lysosomes for intracellular degradation.  相似文献   

19.
Rabbit forelimb tendons incubated for 15 or 21 days at 35 degrees C in the presence of 8 or 24 mg of glucose/ml were shown to change their chemical, biochemical and mechanical characteristics. The tendons treated with glucose contained up to three times as much hexosyl-lysine and hexosylhydroxylysine as did control tendons as judged by assay of NaB3H4-reduced samples. Measurement of the force generated on thermal contraction showed significant increases in glycosylated tendons compared with controls, indicating the formation of new covalent stabilizing bonds. This conclusion was supported by the decreased solubility of intact tendons and re-formed fibres glycosylated in vitro, and by the evidence from peptide maps of CNBr-digested glucose-incubated tendons. The latter, when compared with peptide maps of control tendons, revealed the presence of additional high-Mr peptide material. These peptides appear to be cross-linked by a new type of covalent bond stable to mild thermal and chemical treatment. This system in vitro provides a readily controlled model for the study of the chemistry of changes brought about in collagen by non-enzymic glycosylation in diabetes.  相似文献   

20.
In vitro procollagen production rates can be determined by culturing cells in the presence of [3H]proline and measuring the subsequent formation of [3H]hydroxyproline. Values of actual procollagen production can be calculated if the total radioactivity and the specific activity of the newly synthesized procollagen is known. A simple microanalytical method for measuring procollagen specific activity in order to determine procollagen production by lung fibroblasts in vitro is reported. Confluent fibroblasts (IMR-90) were cultured in fresh medium containing [3H]proline, and [3H]hydroxyproline production and prolyl hydroxylation were measured. Hydroxyproline specific activity of nondialyzable procollagen in culture medium as well as extracellular and intracellular free proline specific activity were determined by an ultramicromethod in which the radiolabeled amino acids were reacted with [14C]dansyl chloride of known specific activity [Airhart et al. (1979) Anal. Biochem. 96, 45-55]. Procollagen production rates were readily determined by this method using 5 to 20 microCi [3H]proline and approximately 10(6) cells. It was found that 3H-procollagen production rate into culture medium was constant after a lag of 1.6 h, while procollagen production rate (0.23 pmol/microgram DNA . h) was constant from time zero to 9 h. The specific activities of extracellular and intracellular free proline were not constant during the labeling period, nor were they equal to procollagen specific activity. These data indicate that free proline pool specific activities are not a valid measure of procollagen specific activity. The experimental approach described obviates the need to define or characterize the proline precursor pool from which procollagen is synthesized, and may be readily applied to determine fibroblast procollagen production rates in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号