首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cortical microtubules (MTs) in coleoptiles and mesocotyls ofAvena sativa and epicotyls of Pisum sativum were examined byimmunofluorescence. In elongating Avena coleoptiles whose elongationis less localized, the orientations of cortical MTs of parenchymaand adaxial epidermal cells, and abaxial epidermal cells aretransverse, and oblique or longitudinal, respectively, and doesnot differ between the upper, middle and lower parts. The transverseMTs in parenchyma and adaxial epidermal cells turns to obliqueor longitudinal ones after elongation stops. The obliquity ofMTs in abaxial epidermal cells also tends to become steeperas elongation comes to a stop. In Avena mesocotyls and Pisumepicotyls whose elongation is localized, the orientation ofcortical MTs of cortical cells in the elongating region is relativelytransverse. The epidermis has intermingling cells of transverseor oblique MTs. In the non-elongating region, MT orientationbecomes steeper both in the cortex and epidermis. The present results indicate that whatever the degree of localizationof the elongation, the obliquity of MTs in these organs is steeperin epidermal than in inner tissue cells and becomes steeperas elongation stops in both tissues. (Received October 26, 1987; Accepted April 19, 1988)  相似文献   

2.
Microfibrils (MFs) on the inner surface of the walls of Avenacoleoptile and mesocotyl cells and of Pisum epicotyl cells wereexamined by a replica method. In the elongating epidermis ofthese three organs, cells having MFs that were transverse, obliqueor longitudinal to the elongation axis were intermingled. Inthe elongating parenchymal tissues, all cells deposited MFstransversely. In non-elongating cells of Avena coleoptiles andPisum epicotyls, the orientation of MFs on the inner wall surfaceof both epidermal and parenchymal cells was more longitudinalthan in elongating cells. These observations on the orientationsof MFs are compatible with those our previously reported observationson the orientations of microtubules (MT) (Iwata and Hogetsu1988). Disruption of MTs of Avena coleoptiles by treatment withamiprophosmethyl caused changes in the orientation of depositionof MFs. These results support the idea that MFs are usuallyco-aligned with MTs in organ cells and that the orientationof MFs is controlled by MTs. The averaged direction of MFs, visualized under polarized light,showed a clear difference between the epidermal and inner-tissuecell walls in the elongating regions of the three organs. Inalmost all elongating and non-elongating epidermal cells, theaveraged direction of MFs was longitudinal, while it was transversein all inner-tissue cells. (Received December 16, 1988; Accepted April 28, 1989)  相似文献   

3.
Marta J. Laskowski 《Planta》1990,181(1):44-52
The orientation of microtubules in cells of redlight-grown pea plants (Pisum sativum L.) was examined by means of immunofluorescence. Microtubules (MTs) in rapidly elongating, subepidermal cells commonly form multiple, parallel strands that run transverse to the cell's axis of elongation. By contrast, MTs in nonelongating subepidermal cells form steeply pitched helical arrays; MTs in non-elongating epidermal cells are oriented parallel to the axis of elongation. This change in orientation occurs during the time interval in which growth rate is declining. The transition is abrupt rather than gradual and occurs in both epidermal and subepidermal cells at the same time. Plants irradiated for 2 h with a growth-inhibiting fluence of blue light did not undergo the same transition, indicating that factors other than changing elongation rates must be responsible for triggering the reorganization of MT arrays.  相似文献   

4.
A method for biochemically isolating microtubule-associated proteins (MAPs) from the detergent-extracted cytoskeletons of carrot suspension cells has been devised. The advantage of cytoskeletons is that filamentous proteins are enriched and separated from vacuolar contents. Depolymerization of cytoskeletal microtubules with calcium at 4°C releases MAPs which are then isolated by association with taxol stabilized neurotubules. Stripped from microtubules (MTs) by salt, then dialysed, the resulting fraction contains a limited number of high molecular weight proteins. Turbidimetric assays demonstrate that this MAP fraction stimulates polymerization of tubulin at concentrations at which it does not self-assemble. By adding it to rhodamine-conjugated tubulin, the fraction can be seen to form radiating arrays of long filaments, unlike MTs induced by taxol. In the electron microscope, these arrays are seen to be composed of mainly single microtubules. Blot-affinity purified antibodies confirm that two of the proteins decorate cellular microtubules and fulfil the criteria for MAPs. Antibodies to an antigenically related triplet of proteins about 60–68 kDa (MAP 65) stain interphase, preprophase band, spindle and phragmoplast microtubules. Antibodies to the 120 kDa MAP also stain all of the MT arrays but labelling of the cortical MTs is more punctate and, unlike anti-MAP 65, the nuclear periphery is also stained. Both the anti-65 kDa and the anti-120 kDa antibodies stain cortical MTs in detergent-extracted, substrate-attached plasma membrane disks ('footprints'). Since the 120 kDa protein is detected at two surfaces (nucleus and plasma membrane) known to support MT growth in plants, it is hypothesized that it may function there in the attachment or nucleation of MTs.  相似文献   

5.
Although regulation of the dynamics of plant microtubules (MTs) by microtubule-associated proteins (MAPs) has been suggested, the mechanism has not yet been elucidated. As one candidate, a MAP composed of a 65 kDa polypeptide (65 kDa MAP) has been isolated from tobacco cultured cells [Jiang and Sonobe (1993), J. Cell Sci 105: 8911. To investigate the physiological role of the 65 kDa MAP in situ, we analyzed the changes in content and colocalization of this MAP with cortical MTs in relation to elongation growth, using azuki bean epicotyls (Vigna angularis Ohwi et Ohashi). All apical, intermediate, and basal segments prepared from 6 d seedlings showed high growth activity. In 12 d seedlings, growth activity of intermediate and basal segments was low, although that of apical segments was high. The relationship between the growth activity and the orientation of cortical MTs in the epidermal cells was analyzed. Cells could be classified into four types with respect to orientation of cortical MTs: transverse (T), oblique (O), longitudinal (L) to the vertical axis of cells, and random (R). In rapidly growing segments, three types of cells, T, O, L, were observed at similar ratios. In such segments, significant amounts of the 65 kDa MAP were expressed, and it colocalized well with cortical MTs. In segments showing low growth activity, most of the cells showed oblique and longitudinal orientation of cortical MTs. In such segments, the content of the 65 kDa MAP was low. These results suggested involvement of this 65 kDa MAP in regulation of the elongation growth of this epicotyl.  相似文献   

6.
Although microtubules are known to play an important role in many cellular processes, they have been virtually neglected in fish. In this report, microtubule-associated proteins (MAPs) in fish (teleost) were characterized using antibodies (Abs) directed against the mammalian MAPs tau, MAP1A and B, and MAP 2. Two different populations of tau-like proteins (TLPs) were found in fish brain using the anti-tau Abs Tau-1, Tau-2, tau5', and tau3'. The TLPs that were recognized by Tau-1, Tau-2, and tau5' were (1) heat-stable; (2) the same molecular weight as mammalian TLPs: 59-62 kDa; (3) not enriched in microtubules prepared from catfish brain; and (4) localized to the cell body of neurons in fish brains. While the TLPs recognized by tau3' Abs were (1) heat-stable; (2) lower molecular weight than mammalian TLPs: 32-55 vs. 50-65 kDa; (3) enriched in microtubule fractions prepared from catfish brain, and (4) localized to the axons of neurons. These results are consistent with two different populations of TLPs being present in fish brains. While MAP2 was found to be approximately the same molecular weight, 250 kDa, in zebrafish and goldfish as in mammals and to be distributed to dendrites in the fish brain, both MAP1A and MAP1B were found to be about 25% the mass of their mammalian homologs. These results suggest that MAPS in fish have some characteristics similar to their mammalian counterparts, but also possess some unique properties that require further study to elucidate their function.  相似文献   

7.
Shapiro A  Mullins JT 《Mycologia》2002,94(2):267-272
We have approached the problem of hyphal tip growth by comparing the cell wall composition of elongating and non-elongating regions of the hyphae of Achlya bisexualis. To ensure that we could distinguish between elongating and non-elongating hyphae, light microscopic observations were used to determine the rates of elongation under growing and non-growing conditions. When elongation was measured in 10 min intervals it was found to consist of fluctuating periods of fast and slow growth rates, in the form of cycles. Even under our growing conditions, however, a very small number of hyphae in a colony are not elongating. SEM analysis revealed that elongating hyphae have tapered apices, whereas non-elongating hyphae have a rounded apex. The major matrix wall components, 1,3-β-glucans, were localized with an indirect immunogold technique specific for these polymers. This method resulted in their localization to all regions of both elongating and non-elongating hyphae, including the apex.  相似文献   

8.
Hydroxyproline-containing proteins increase markedly in the cell walls of the Alaska pea epicotyl during the transition of rapidly elongating tissue into non-elongating, mature tissue. The increase in these proteins may be a factor in the cessation of cell elongation.  相似文献   

9.
J Marc  CL Granger  J Brincat  DD Fisher  Th Kao  AG McCubbin    RJ Cyr 《The Plant cell》1998,10(11):1927-1940
Microtubules influence morphogenesis by forming distinct geometrical arrays in the cell cortex, which in turn affect the deposition of cellulose microfibrils. Although many chemical and physical factors affect microtubule orientation, it is unclear how cortical microtubules in elongating cells maintain their ordered transverse arrays and how they reorganize into new geometries. To visualize these reorientations in living cells, we constructed a microtubule reporter gene by fusing the microtubule binding domain of the mammalian microtubule-associated protein 4 (MAP4) gene with the green fluorescent protein (GFP) gene, and transient expression of the recombinant protein in epidermal cells of fava bean was induced. The reporter protein decorates microtubules in vivo and binds to microtubules in vitro. Confocal microscopy and time-course analysis of labeled cortical arrays along the outer epidermal wall revealed the lengthening, shortening, and movement of microtubules; localized microtubule reorientations; and global microtubule reorganizations. The global microtubule orientation in some cells fluctuates about the transverse axis and may be a result of a cyclic self-correcting mechanism to maintain a net transverse orientation during cellular elongation.  相似文献   

10.
In neurons, the regulation of microtubules plays an important role for neurite outgrowth, axonal elongation, and growth cone steering. SCG10 family proteins are the only known neuronal proteins that have a strong destabilizing effect, are highly enriched in growth cones and are thought to play an important role during axonal elongation. MAP1B, a microtubule-stabilizing protein, is found in growth cones as well, therefore it was important to test their effect on microtubules in the presence of both proteins. We used recombinant proteins in microtubule assembly assays and in transfected COS-7 cells to analyze their combined effects in vitro and in living cells, respectively. Individually, both proteins showed their expected activities in microtubule stabilization and destruction respectively. In MAP1B/SCG10 double-transfected cells, MAP1B could not protect microtubules from SCG10-induced disassembly in most cells, in particular not in cells that contained high levels of SCG10. This suggests that SCG10 is more potent to destabilize microtubules than MAP1B to rescue them. In microtubule assembly assays, MAP1B promoted microtubule formation at a ratio of 1 MAP1B per 70 tubulin dimers while a ratio of 1 SCG10 per two tubulin dimers was needed to destroy microtubules. In addition to its known binding to tubulin dimers, SCG10 binds also to purified microtubules in growth cones of dorsal root ganglion neurons in culture. In conclusion, neuronal microtubules are regulated by antagonistic effects of MAP1B and SCG10 and a fine tuning of the balance of these proteins may be critical for the regulation of microtubule dynamics in growth cones.  相似文献   

11.
Τhe bidirectional relationship between cortical microtubule orientation and cell wall structure has been extensively studied in elongating cells. Nevertheless, the possible interplay between microtubules and cell wall elements in meristematic cells still remains elusive. Herein, the impact of cellulose synthesis inhibition and suppressed cell elongation on cortical microtubule orientation was assessed throughout the developmental zones of Arabidopsis thaliana root apex by whole-mount tubulin immunolabeling and confocal microscopy. Apart from the wild-type, thanatos and pom2-4 mutants of Cellulose SynthaseA3 and Cellulose Synthase Interacting1, respectively, were studied. Pharmacological and mechanical approaches inhibiting cell expansion were also applied. Cortical microtubules of untreated wild-type roots were predominantly transverse in the meristematic, transition and elongation root zones. Cellulose-deficient mutants, chemical inhibition of cell expansion, or growth in soil resulted in microtubule reorientation in the elongation zone, wherein cell length was significantly decreased. Combinatorial genetic and chemical suppression of cell expansion extended microtubule reorientation to the transition zone. According to the results, transverse cortical microtubule orientation is established in the meristematic root zone, persisting upon inhibition of cell expansion. Microtubule reorientation in the elongation zone could be attributed to conditional suppression of cell elongation. The differential responsiveness of microtubule orientation to genetic and environmental cues is most likely associated with distinct biophysical traits of the cells among each developmental root zone.  相似文献   

12.
Changes in the activities of some glycosidases were studiedin carrot suspension cultures with and without 2,4-D. Remarkablecell elongation occurs in a medium without 2,4-D, while fewcells elongate in a medium containing it. Glycosidases werefractionated into soluble, ionically wall-bound, tightly wall-boundand extracellular enzymes. The optimum pHs of all the ionicallybound glycosidases were in an acidic range, 4.4–5.0. The activities of the ionically and tightly bound ß-xylosidasesand ß-galactosidases were higher in elongating thanin non-elongating cells. Furthermore, the activities of theseenzymes increased with cell elongation during culture, suggestingthat they may play important roles in cell elongation. Higheractivities of soluble and cell wall-bound ß-glucosidaseand -mannosidase were found in non-elongating rather than inelongating cells. The activities of all soluble glycosidasesexcept ß-xylosidase were also higher in non-elongatingcells. Only ß-xylosidase and ß-galactosidaseactivities were detectable in the medium of the elongation culture. 1 Present address: Department of Agricultural Chemistry, ObihiroUniversity of Agriculture and Veterinary Medicine, Obihiro,Hokkaido 080, Japan.  相似文献   

13.
The cortical microtubule array provides spatial information to the cellulose-synthesizing machinery within the plasma membrane of elongating cells. Until now data indicated that information is transferred from organized cortical microtubules to the cellulose-synthesizing complex, which results in the deposition of ordered cellulosic walls. How cortical microtubules become aligned is unclear. The literature indicates that biophysical forces, transmitted by the organized cellulose component of the cell wall, provide a spatial cue to orient cortical microtubules. This hypothesis was tested on tobacco (Nicotiana tabacum L.) protoplasts and suspension-cultured cells treated with the cellulose synthesis inhibitor isoxaben. Isoxaben (0.25–2.5 μm) inhibited the synthesis of cellulose microfibrils (detected by staining with 1 μg mL−1 fluorescent dye and polarized birefringence), the cells failed to elongate, and the cortical microtubules failed to become organized. The affects of isoxaben were reversible, and after its removal microtubules reorganized and cells elongated. Isoxaben did not depolymerize microtubules in vivo or inhibit the polymerization of tubulin in vitro. These data are consistent with the hypothesis that cellulose microfibrils, and hence cell elongation, are involved in providing spatial cues for cortical microtubule organization. These results compel us to extend the microtubule/microfibril paradigm to include the bidirectional flow of information.  相似文献   

14.
Summary It is still uncertain whether cell cultures attain the functional maturity of corresponding in vivo cells. The degree of differentiation of cultured collecting-duct (CD) epithelium cells was therefore examined using immunohistochemical procedures. Three monoclonal antibodies (mabs CD 1, CD 2, and CD 3) were raised against proteins (PCD) isolated from the renal papilla. At Western-blot analysis, each of these antibodies reacted with a specific protein that was distinguishable according to its molecular weight [PCD1, 190 kilodaltons (kDa); PCD2, 210 kDa; PCD3, 50 kDa]. Using immunofluorescence, these proteins were found to be localized exclusively in the renal CD system. Other renal structures, such as the proximal or distal tubular portions, the glomeruli and the interstitial network, were not reactive. The mabs, CD 2 and CD 3, labeled both the cortical and medullary CD in a uniform way, whereas mab CD 1 produced heterogeneous immunolabeling along the length of the cortical, medullary, and papillary CD. As revealed by immunohistochemistry, the mabs revealed differences with respect to the expression of the specific renal proteins in cultured CD cells. In polar-differentiated epithelium cultured for 5 days on a specific renal support, mab CD 1 was unreactive, whereas mabs CD 2 and CD 3 were positive. This demonstrated the biochemical immaturity of this cultured epithelium with respect to CD 1 reactivity. In morphologically dedifferentiated CD monolayer cells grown on the bottom of a culture dish, only a weak reaction for mab CD 3 was observed. The loss of epithelial polarization in CD monolayer cells obviously coincides with the absence of the renal proteins PCD1 and PCD2. Thus, our mabs proved to be valuable tools for the investigation of the differentiation and dedifferentiation of renal CD cells in culture.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday  相似文献   

15.
Summary Cytoplasmic streaming in the freshwater, coencytic green alga,Dichotomosiphon tuberosus, is regulated by light. Conspicuous changes are observed in the number of microtubules cross-linked together in bundles when the cytoplasmic streaming is modulated by light. In an attempt to identify the cross-linker, we stainedD. tuberosus cells with antibodies specific for several different microtubules-associated proteins (MAPs) from vertebrates. Antibodies raised against bovine adrenal 190 kDa MAP stained the algal cells, and the pattern of staining was quite similar to that obtained with tubulin-specific antibodies. Examination by immunoelectron microscopy revealed that the antibodies specific for the 190 kDa microtubule-associated protein (MAP) were located along the microtubules. Western blotting demonstrated that the antibodies crossreacted with a peptide fromD. tuberosus with a molecular weight of about 90 kDa. This peptide was heat-stable, a property shared by the bovine 190 kDa MAP. Moreover, this 90 kDa peptide, crossreacted with antibodies raised against a synthetic peptide, identical to the tubulin-binding domain found in the 190 kDa MAP and in a tau protein. Partially purified 90 kDa protein fromD. tuberosus has the ability to bundle microtubules when mixed with a tubulin fraction fromD. tuberosus, in the presence of taxol. These results suggest that the 90 kDa protein fromD. tuberosus is a MAP that bundles microtubules.Abbreviations APMSF (p-amidinophenyl) methanesulfonyl fluoride - BSA bovine serum albumin - CBB Coomassie Brilliant Blue R - DEAE diethylaminoethyl - DMSO dimethyl sulfoxide - DOC deoxycholic acid - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - EGTA ethyleneglycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid - FITC fluorescein isothiocyanate - MAP microtubule-associated protein - MES 2[N-morpholino] ethanesulfonic acid - PBS phosphate-buffered saline - PIPES piperazine-N,N-bis[2-ethane-sulfonic acid] - TLCK N-p-tosyl-lysine chloromethyl ketone  相似文献   

16.
We have previously described the biochemical isolation of 65 kDa and 120 kDa microtubule-associated proteins from carrot cytoskeletons. The 65 kDa MAPs have subsequently been shown to be structural MAPs that reconstitute 30 nm cross-bridges of the kind that maintain cortical microtubules in parallel groups. By exploiting its avid binding to microtubules, we have now devised a method for isolating MAP120 from protoplast extracts, and shown that it has properties of a kinesin-related protein. MAP120 segregates with the cold stable pool of microtubules in carrot cytoskeletons, whilst the 65 kDa MAPs are also associated with the cold-sensitive microtubules. On gradient gels, MAP120 resolves as two kinesin-like bands. We report the isolation of a carrot cDNA, DcKRP120-2, corresponding to a novel kinesin of the BimC class known to move to the plus ends of microtubules. Antibodies raised against specific expressed sequences recognize the upper band, while the lower band is recognized by antibodies to the tobacco kinesin-related protein, TKRP125. We have also isolated a partial genomic carrot DNA, DcKRP120-1, homologous to the motor region of tobacco TKRP125. Immunofluorescence of the two proteins produces different staining patterns. Anti-TKRP125 labels the cortical microtubules and the pre-prophase band, but anti-DcKRP120-2 does so only weakly. Both clearly stain the spindle and the phragmoplast, but in a proportion of cells anti-DcKRP120-2 strongly decorates the phragmoplast mid-line where the plus ends of the microtubules overlap. We discuss the potential roles of these proteins during the microtubule cycle.  相似文献   

17.
微管骨架在轮藻节间细胞伸长生长中的作用   总被引:1,自引:0,他引:1  
利用免疫荧光定位及激光共聚焦扫描显微镜,结合细胞生长曲线的定量测定,对不同生长阶段的轮藻节间细胞微管骨架进行了观察研究,结果如下:轮藻顶端生长活跃的新生细胞中,与细胞长轴垂直的周质微管(cortical microtubules)占绝对优势,随着生长速率的减慢,周质微管由垂直于细胞长轴逐渐转为平行排列;基部生长基本停止的节间细胞中,胞内微管则以平行细胞长轴为主;不同生长阶段节间细胞的微管骨架,对微管特异解聚剂黄草消(oryzalin)处理的敏感性表现不相同。顶端生长活跃的节间细胞经oryzalin处理40min后,绝大多数周质微管发生解聚;而基部生长基本停止的老细胞中,即使延长处理时间,仍残留一些尚未完全解聚的微管片段;10μmol/L微管解聚剂oryzalin处理轮藻顶端新生细胞,在高精度的细胞伸长生长测定装置监测下,发现oryzalin对细胞的伸长生长速率有明显的抑制作用,去掉药剂后,伸长生长又有一定的恢复。并且发现,经oryzalin处理后,微管的解聚(40min左右)与顶端节间细胞伸长生长的停止(100min左右)两者间存在着时间上的差异,即微管解聚在先,细胞伸长停止在后。以上结果均说明微管骨架在轮藻节间细胞生长中具有重要作用。  相似文献   

18.
M. Sakiyama  H. Shibaoka 《Protoplasma》1990,157(1-3):165-171
Summary The effects of abscisic acid (ABA) on the orientation and cold stability of cortical microtubules (MTs) in epidermal cells of epicotyls of the dwarf pea,Pisum sativum L. cv. Little Marvel, were examined by immunofluorescence microscopy. The effect of ABA on the elongation of epicotyls and on the orientation of cortical MTs was opposite to that of gibberellin A3 (GA3). Treatment with ABA, which reduced the promotion of epicotyl elongation by GA3, eliminated the GA3-induced predominance of transverse MTs and resulted in a predominance of longitudinal MTs. The effect of ABA on the cold stability of cortical MTs was also opposite to that of GA3. ABA increased the cold stability of MTs, while GA3 decreased it. The predominance of longitudinal MTs brought about by ABA may have some relationship to ABA-induced inhibition of the elongation of the epicotyl. ABA may alter membrane proteins to stabilize cortical MTs and induce cold hardiness of plants.Abbreviations ABA abscisic acid - DMSO dimethylsulfoxide - FITC fluorescein isothiocyanate - GA3 gibberellin A3 - MT microtubule - PBS phosphate-buffered saline Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

19.
20.
利用改进的冰冻切片法结合间接免疫荧光标记技术对甘蔗茎尖细胞有丝分裂过程中微管骨架的变化进行了研究。结果表明, 在甘蔗茎尖细胞有丝分裂过程中存在4种循序变化的典型微管列阵,即周质微管、早前期微管带、纺锤体微管及成膜体微管。同时, 还观察到在各种典型微管列阵相互转变过程中存在各种微管列阵的过渡状态。甘蔗茎尖正在伸长的幼叶部位细胞的周质微管主要为与细胞伸长轴相垂直的横向周质微管; 茎尖幼叶部位伸长缓慢细胞的微管主要为纵向及斜向排列的周质微管,在甘蔗茎尖幼叶基部初生增粗分生组织处, 横向、斜向、纵向及随机排列的周质微管列阵均有分布。在少数分裂前期的细胞中, 发现细胞具有2条早前期微管带, 其具体功能还不清楚。表明甘蔗茎尖细胞微管列阵的变化与许多双子叶植物及部分单子叶植物具有共同的变化规律, 进一步证明微管骨架的周期性变化在植物中具有普遍性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号