首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Background

Differences in cytokine/chemokine profiles among patients with neuromyelitis optica (NMO), relapsing remitting multiple sclerosis (RRMS), and primary progressive MS (PPMS), and the relationships of these profiles with clinical and neuroimaging features are unclear. A greater understanding of these profiles may help in differential diagnosis.

Methods/Principal Findings

We measured 27 cytokines/chemokines and growth factors in CSF collected from 20 patients with NMO, 26 with RRMS, nine with PPMS, and 18 with other non-inflammatory neurological diseases (OND) by multiplexed fluorescent bead-based immunoassay. Interleukin (IL)-17A, IL-6, CXCL8 and CXCL10 levels were significantly higher in NMO patients than in OND and RRMS patients at relapse, while granulocyte-colony stimulating factor (G-CSF) and CCL4 levels were significantly higher in NMO patients than in OND patients. In NMO patients, IL-6 and CXCL8 levels were positively correlated with disability and CSF protein concentration while IL-6, CXCL8, G-CSF, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IFN-γ were positively correlated with CSF neutrophil counts at the time of sample collection. In RRMS patients, IL-6 levels were significantly higher than in OND patients at the relapse phase while CSF cell counts were negatively correlated with the levels of CCL2. Correlation coefficients of cytokines/chemokines in the relapse phase were significantly different in three combinations, IL-6 and GM-CSF, G-CSF and GM-CSF, and GM-CSF and IFN-γ, between RRMS and NMO/NMOSD patients. In PPMS patients, CCL4 and CXCL10 levels were significantly higher than in OND patients.

Conclusions

Our findings suggest distinct cytokine/chemokine alterations in CSF exist among NMO, RRMS and PPMS. In NMO, over-expression of a cluster of Th17- and Th1-related proinflammatory cytokines/chemokines is characteristic, while in PPMS, increased CCL4 and CXCL10 levels may reflect on-going low grade T cell and macrophage/microglia inflammation in the central nervous system. In RRMS, only a mild elevation of proinflammatory cytokines/chemokines was detectable at relapse.  相似文献   

2.
An analogue of the human granulocyte–macrophage colony‐stimulating factor (hGM‐CSF), hGM‐CSF(13–27)–Gly–(75–87) was synthesized by solid phase methodology. This analogue was designed to comprise helices A and C of the native growth factor, linked by a glycine bridge. Helices A and C form half of a four‐helix bundle motif in the crystal structure of the native factor and are involved in the interaction with α‐ and β‐chains of the heterodimeric receptor. A conformational analysis of the synthetic analogue by CD, two‐dimensional nmr spectroscopy, and molecular dynamics calculations is reported. The analogue is in a random structure in water and assumes a partially α‐helical conformation in a 1 : 1 trifluoroethanol/water mixture. The helix content in this medium is ∼ 70%. By 2D‐nmr spectroscopy, two helical segments were identified in the sequences corresponding to helices A and C. In addition to medium‐ and short‐range NOESY connectivities, a long‐range cross peak was found between the Cβ proton of Val16 and NH proton of His87 (using the numbering of the native protein). Experimentally derived interproton distances were used as restraints in molecular dynamics calculations, utilizing the x‐ray coordinates as the initial structure. The final structure is characterized by two helical segments in close spatial proximity, connected by a loop region. This structure is similar to that of the corresponding domain in the x‐ray structure of the native growth factor in which helices A and C are oriented in an antiparallel fashion. The N‐terminal residues Gly–Pro of helix C are involved in an irregular turn connecting the two helical segments. As a consequence, helix C is appreciably shifted and slightly rotated with respect to helix A compared to the x‐ray structure of the native growth factor. These small differences in the topology of the two helices could explain the lower biological activity of this analogue with respect to that of the native growth factor. © 1999 John Wiley & Sons, Inc. Biopoly 50: 545–554, 1999  相似文献   

3.
Bone-resorbing osteoclasts are formed from hemopoietic cells of the monocyte–macrophage lineage under the control of bone-forming osteoblasts. We have cloned an osteoblast-derived factor essential for osteoclastogenesis, the receptor activator of NF-κB ligand (RANKL). Synovial fibroblasts and activated T lymphocytes from patients with rheumatoid arthritis also express RANKL, which appears to trigger bone destruction in rheumatoid arthritis as well. Recent studies have shown that T lymphocytes produce cytokines other than RANKL such as IL-17, granulocyte–macrophage colony-stimulating factor and IFN-γ, which have powerful regulatory effects on osteoclastogenesis. The possible roles of RANKL and other cytokines produced by T lymphocytes in bone destruction are described.  相似文献   

4.
Receptors for insulin, low-density lipoprotein, and colony stimulating factor 1 are associated with diabetes, atherosclerosis, and cancer in man. Complementary DNA clones for Insr, Ldlr, and Csfmr were used to chromosomally assign the three genes in mouse. In contrast to their close linkage on the short arm of human Chromosome 19, Insr and Ldlr are asyntenic, residing on mouse Chromosomes 8 and 9, respectively. The genes for CSF1R, CSF1, CSF2, IL-3, and IL-5 form a cluster on the long arm of human Chromosome 5. In mouse, Csfm, Csfgm, and IL-3 are syntenic on Chromosome 11. The Csfmr gene was assigned to mouse Chromosome 18 and is thus unlinked to other members of this gene cluster. These gene assignments provide additional topographical information on conservation of linkage groups in man and mouse and provide a genetic framework for evaluating the possible roles for the three receptor genes in genetic diseases in mouse.  相似文献   

5.
A better understanding of cytokine biology over the last two decades has allowed the successful development of cytokine inhibitors against tumour necrosis factor and interleukin (IL)-1 and IL-6. The introduction of these therapies should be considered a breakthrough in the management of several rheumatic diseases. However, many patients will exhibit no or only partial response to these therapies, thus emphasising the importance of exploring other therapeutic strategies. In this article, we review the most recent information on novel cytokines that are often members of previously described cytokine families such as the IL-1 superfamily (IL-18 and IL-33), the IL-12 superfamily (IL-27 and IL-35), the IL-2 superfamily (IL-15 and IL-21), and IL-17. Several data derived from experimental models and clinical samples indicate that some of these cytokines contribute to the pathophysiology of arthritis and other inflammatory diseases. Targeting of some of these cytokines has already been tested in clinical trials with interesting results.  相似文献   

6.
Macrophage CSF (M-CSF, CSF-1) and IL-4 are two cytokines known to have effects on mature monocytic phagocytes in vitro. In this report we show that M-CSF and IL-4 activate resident mouse peritoneal macrophages to ingest particles via their C3b and C3bi receptors, which are not capable of mediating ingestion in resting cells. IgG-mediated ingestion was also increased by IL-4 and M-CSF. IL-1, IL-2, TNF-alpha, and IFN-gamma were not able to stimulate C receptor-mediated ingestion. Stimulation by IL-4 and M-CSF is dependent upon high cell density and greater than 24-h exposure to the cytokine. Interestingly, antibody to IFN-alpha/beta and mAb to IFN-beta inhibited the enhanced ingestion caused by both M-CSF and IL-4. However, neither IFN-alpha nor IFN-beta alone stimulated C receptor-mediated ingestion. M-CSF did not affect the ligand-independent distribution of CR3 on the macrophage surface. We conclude that two apparently unrelated cytokines, M-CSF and IL-4, both enhance macrophage phagocytosis of C and IgG-coated targets via a common pathway in which autocrine stimulation with IFN-alpha/beta is necessary but not sufficient.  相似文献   

7.
Crystal and NMR structures of helical cytokines--interleukin-4 (IL-4), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-2 (IL-2)--have been compared. Root mean square deviations in the C alpha coordinates for the conserved regions of the helices were 1-2 A between different cytokines, about twice the differences observed for independently determined crystal and solution structures of IL-4. Considerable similarity in amino acid sequence in the areas expected to interact with the receptors was detected, and the available mutagenesis data for these cytokines were correlated with structure conservation. Models of cytokine-receptor interactions were postulated for IL-4 based on its structure as well as on the published structure of human growth hormone interacting with its receptors (de Vos, A.M., Ultsch, M., & Kossiakoff, A.A., 1992, Science 255, 306-312). Patches of positively charged residues on the surfaces of helices C and D of IL-4 may be responsible for the interactions with the negatively charged residues found in the complementary parts of the IL-4 receptors.  相似文献   

8.
Macrophages are a major component of the leukocyte population of human pregnant endometrium. Although several crucial functions have been ascribed to these cells, the mechanisms underlying macrophage trafficking in the placental bed are poorly understood. The aim of this study was to evaluate the in vivo expression of two potentially antagonistic macrophage-targeting chemokines, colony stimulating factor 1 (CSF1, also known as M-CSF) and macrophage migration inhibitory factor (MIF), in term decidua, and to examine the effects of the inflammatory cytokines tumor necrosis factor (TNF, also known as TNF alpha) and interleukin 1beta (IL1B) on CSF1 and MIF expression in cultured decidual cells. The expression of CSF1 and MIF in term decidua was evaluated by immunohistochemistry. Cultured decidual cells were primed with estradiol (E2) or with E2+medroxyprogesterone acetate (MPA), and then incubated with corresponding steroid(s) with or without TNF or IL1B. The levels of CSF1 and MIF protein and mRNA were assessed by ELISA and quantitative RT-PCR, respectively. Immunostaining for CSF1 and MIF was observed in term decidua. The levels of secreted CSF1 and MIF were similarly unchanged whether the decidual cells were incubated with E2 or with E2+MPA. The CSF1 levels significantly increased in cultures exposed to E2 or E2+MPA plus TNF or IL1B. In contrast, the MIF levels in TNF- and IL1B-treated cells were not changed significantly from the control cultures. The ELISA data were confirmed by quantitative RT-PCR analysis. These results indicate that CSF1 and MIF are involved in regulating macrophage trafficking at the fetal-maternal interface, and suggest a mechanism by which inflammatory cytokines influence pregnancy by regulating decidual macrophage infiltration.  相似文献   

9.
Somogyi K  Sipos B  Pénzes Z  Andó I 《FEBS letters》2010,584(21):4375-4378
The Nimrod gene superfamily is an important component of the innate immune response. The majority of its member genes are located in close proximity within the Drosophila melanogaster genome and they lie in a larger conserved cluster (“Nimrod cluster”), made up of non-related groups (families, superfamilies) of genes. This cluster has been a part of the Arthropod genomes for about 300-350 million years. The available data suggest that the Nimrod cluster is a functional module of the insect innate immune response.  相似文献   

10.
The hemopoietic CSF, granulocyte-macrophage CSF (GM-CSF) and granulocyte CSF (G-CSF), are cytokines that mediate the clonal proliferation and differentiation of progenitor cells into mature macrophages and/or granulocytes. We have employed an all-human cell culture system, specific ELISA for GM-CSF and G-CSF, and Northern analysis to investigate whether chondrocytes are a potential source of CSF in rheumatoid disease. We report that human rIL-1 stimulated in a dose-dependent manner the production of GM-CSF and G-CSF by human articular cartilage and chondrocyte monolayers in organ and cell culture, respectively. Increased levels of the CSF Ag were detected after 2 to 8 h stimulation with IL-1, and the optimum dose of IL-1 was 10 to 100 U/ml (0.06 to 0.6 nM IL-1 alpha; 0.02 to 0.2 nM IL-1 beta); neither CSF was detectable in nonstimulated cultures nor in IL-1-stimulated cultures treated with actinomycin D or cycloheximide, indicating the requirement for de novo RNA and protein synthesis. The IL-1-mediated increase in GM-CSF could also be inhibited by the corticosteroid, dexamethasone, but not by the cyclo-oxygenase inhibitor, indomethacin. Although having little effect when tested alone, TNF-alpha and lymphotoxin (TNF-beta) could synergize with IL-1 for the production of GM-CSF. Basic fibroblast growth factor, platelet-derived growth factor, and IFN-alpha and IFN-gamma each had no effect on GM-CSF levels. Results obtained by Northern analysis of chondrocyte total RNA reflected those found for the CSF Ag, namely that CSF mRNA levels were elevated in response to IL-1, but not TNF, and that there was synergy between these two cytokines. We propose that chondrocyte CSF production in response to IL-1, and the concurrent destruction of cartilage by IL-1, could provide a mechanism for the chronic nature of rheumatoid disease.  相似文献   

11.
Summary We have previously shown that the interaction of thymocytes with thymic accessory cells (macrophages and/or interdigitating cells) is one of the factors required for thymocyte activation. Precursors of both thymic accessory cell and thymocytes are included in the CD4- CD8- Mac-1- Ia- subpopulation, and their respective maturation and/or activation may be modulated by granulocyte-macrophage colony-stimulating factor, interleukin 1 and interleukin 2. When CD4- CD8- thymic cells are activated with granulocyte-macrophage colony-stimulating factor plus interleukin 2, both macrophages and interdigitating-like cells are present, as shown by electron microscopy. When activated with interleukin 1 plus interleukin 2, the interdigitating-like cells is the only accessory cell present. In both culture conditions, large clusters are formed between interdigitating cells and lymphoid cells. These results have led us to propose two-step signals for thymocyte proliferation: first, the maturation of macrophages under granulocyte-macrophage colony-stimulating factor control and the production of interleukin 1, and secondly, the maturation of interdigitating cells under interleukin 1 control, their clustering with thymocytes which are then activated.Abbreviations CFU-S colony-forming units in the spleen - CSF colony-stimulating factor - DC dendritic cells - DN double negative cells (CD4- CD8-) - EC epithelial cells - GM-CFC granulocyte/macrophage colony-forming cells - GM-CSF granulocytemacrophage CSF - IDC interdigitating cell - IL-1 interleukin 1 - IL-2 interleukin 2 - MØ macrophage - P-TR phagocytic cell of the thymic reticulum  相似文献   

12.
Stimulation of murine hemopoietic colony formation by human IL-6   总被引:23,自引:0,他引:23  
A novel hemopoietic CSF has been identified in the medium conditioned by lectin-stimulated human T cells. The cDNA clone encoding this factor, isolated by functional expression cloning in monkey cos-1 cells, proved to be identical with the cDNA encoding the cytokine B cell stimulatory factor-2/IFN-beta 2, a factor now known as IL-6. In the murine system, IL-6 indirectly supports the formation of several different types of hemopoietic colonies, including those derived from early blast cells, and directly supports the proliferation of granulocyte/macrophage progenitors. These results expand the range of known target cells of IL-6 to include hemopoietic progenitors in addition to B cells, T cells, and fibroblasts and provide further evidence that this cytokine plays an important role within a network of interacting cytokines that regulates many different biologic responses.  相似文献   

13.
14.
Interleukin-34 (IL-34) is a newly discovered cytokine as an additional ligand for colony stimulating factor-1 receptor (CSF1R), and its functions are expected to overlap with colony stimulating factor-1/macrophage-colony stimulating factor. We have previously shown that the IL-34 is primarily produced by neurons in the central nervous system (CNS) and induces proliferation and neuroprotective properties of microglia which express CSF1R. However, the functions of IL-34 in the CNS are still elucidative. Here we show that CNS capillary endothelial cells also express CSF1R. IL-34 protected blood–brain barrier integrity by restored expression levels of tight junction proteins, which were downregulated by pro-inflammatory cytokines. The novel function of IL-34 on the blood–brain barrier may give us a clue for new therapeutic strategies in neuroinflammatory and neurodegenerative diseases such as multiple sclerosis and Alzheimer''s disease.  相似文献   

15.
Keratinocytes have been demonstrated to produce a number of cytokines, including growth factors such as the CSF IL-3. Circulating blood monocytes and some elicited macrophages retain a significant proliferative potential in response to colony-stimulating activity. Because a macrophage response is prominent in a variety of cutaneous immune reactions, we have studied the ability of conditioned media (CM) from a transformed murine keratinocyte cell line (PAM 212) and from normal murine keratinocytes to induce growth of peritoneal macrophages. CM from both normal and transformed keratinocyte cultures induces [3H]thymidine incorporation by thioglycollate-elicited, but not resident, peritoneal macrophages. IEF of PAM 212 CM reveals peaks of activity at pI 4.8 and less than or equal to 4.2. Analysis of CM by reversed-phase HPLC demonstrates active fractions that elute at 46 to 48% and 53 to 55% acetonitrile. The Mr of the 46 to 48% acetonitrile factor is 25 to 30 kDa by gel filtration HPLC. Polyclonal anti-granulocyte/macrophage (GM) CSF antibody blocks the induction of macrophage [3H]thymidine incorporation by factors with pI 4.8 and eluting at 46 to 48% acetonitrile but does not reduce the activity of crude CM or the factor eluting at 53 to 55% acetonitrile. Based on both physiochemical criteria and antibody neutralization, keratinocytes produce GM-CSF. Keratinocyte-derived factors, including GM-CSF, may play an important role in regulating cutaneous macrophage responses.  相似文献   

16.
Understanding the host immune response during cryptococcal meningitis (CM) is of critical importance for the development of immunomodulatory therapies. We profiled the cerebrospinal fluid (CSF) immune-response in ninety patients with HIV-associated CM, and examined associations between immune phenotype and clinical outcome. CSF cytokine, chemokine, and macrophage activation marker concentrations were assayed at disease presentation, and associations between these parameters and microbiological and clinical outcomes were examined using principal component analysis (PCA). PCA demonstrated a co-correlated CSF cytokine and chemokine response consisting primarily of Th1, Th2, and Th17-type cytokines. The presence of this CSF cytokine response was associated with evidence of increased macrophage activation, more rapid clearance of Cryptococci from CSF, and survival at 2 weeks. The key components of this protective immune-response were interleukin (IL)-6 and interferon-γ, IL-4, IL-10 and IL-17 levels also made a modest positive contribution to the PC1 score. A second component of co-correlated chemokines was identified by PCA, consisting primarily of monocyte chemotactic protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α). High CSF chemokine concentrations were associated with low peripheral CD4 cell counts and CSF lymphocyte counts and were predictive of immune reconstitution inflammatory syndrome (IRIS). In conclusion CSF cytokine and chemokine profiles predict risk of early mortality and IRIS in HIV-associated CM. We speculate that the presence of even minimal Cryptococcus-specific Th1-type CD4+ T-cell responses lead to increased recruitment of circulating lymphocytes and monocytes into the central nervous system (CNS), more effective activation of CNS macrophages and microglial cells, and faster organism clearance; while high CNS chemokine levels may predispose to over recruitment or inappropriate recruitment of immune cells to the CNS and IRIS following peripheral immune reconstitution with ART. These results provide a rational basis for future studies of immune modulation in CM, and demonstrate the potential of baseline immune profiling to identify CM patients most at risk of mortality and subsequent IRIS.  相似文献   

17.
We have examined the signal transduction pathways of a number of cytokines that interact with receptors that are members of the hematopoietin receptor superfamily. A 97-kDa protein was phosphorylated on tyrosine in response to stimulation of appropriate target cells with interleukin (IL)-2, IL-3, granulocyte-macrophage colony-stimulating factor (CSF), granulocyte-CSF, or erythropoietin. These data suggest that a 97-kDa phosphotyrosylprotein represents a point of convergence for signal transduction by a number of growth factor receptors that do not have homology with any known protein tyrosine kinase. To address the possibility that p97 may represent a tyrosine kinase involved in multiple signal transduction pathways, we tested the capacity of this protein to bind a tyrosine kinase substrate or ATP. Indeed, a 97-kDa phosphotyrosylprotein purified from IL-2-stimulated lymphoid cells as well as granulocyte-macrophage-CSF-stimulated myeloid cells bound to a polymer of glutamic acid and tyrosine which is a tyrosine kinase substrate. Further, a 97-kDa phosphotyrosylprotein present in both lineages also bound 8-azido-ATP. These data indicate that a 97-kDa phosphotyrosylprotein with properties consistent with those of a protein tyrosine kinase is involved in the signal transduction pathways of certain members of the newly identified hematopoietin receptor superfamily and may represent an early point of convergence in the stimulus-response coupling of multiple cytokine receptors.  相似文献   

18.
19.
Trypanosoma brucei gambiense infection is an important public health challenge in sub-Saharan Africa. This parasitic disease is difficult to diagnose due to insidious clinical signs and transient parasitaemias. The clinical course is marked by two stages of increasing disease severity. An early systemic parasitic invasion is followed by the development of a progressive meningo-encephalitis. During this latter stage, a broad spectrum of neurological signs appears, which finally lead to a demyelinating and fatal stage if untreated. Treatment is toxic and difficult to administer when the CNS is invaded. Therefore, accurate diagnostic methods for stage determination are needed. The classically used criteria are not sufficiently specific and mechanisms of parasite invasion through the blood-brain barrier remain poorly understood. As cytokines/chemokines are involved in the early recruitment of leukocytes into the CNS, this study has focused on their potential value to define the onset of CNS involvement. Levels of monocyte chemoattractant protein-1/CCL-2, macrophage inflammatory protein-1α/CCL-3, IL-8/CXCL-8, regulated upon activation T cell expressed and secreted (RANTES)/CCL-5 and IL-1β were measured in paired sera and CSF from 57 patients and four controls. Patients were classified into three groups (stage 1, intermediate and stage 2) according to current field criteria for stage determination (CSF cell count, presence of trypanosomes in CSF and neurological signs). In sera, cytokine/chemokine levels were poorly related to disease stage. Only CXCL-8 was higher in stage 1 patients when compared with stage 2 and CCL-5 was higher in controls when compared with patients. In contrast, in CSF the expression of the selected cytokines, except CCL-5, was associated with the presence of neurological signs, demonstrating their diagnostic value. We observed a relationship between the presence of trypanosomes or trypanosome-related compounds in CSF and levels of IL-1β, CXCL-8, CCL-2 and CCL-3. These cytokines and chemokines may be triggered by the parasite and hence are potential markers of CNS invasion.  相似文献   

20.
M Tomida  U Yoshida  C Mogi  M Maruyama  H Goda  Y Hatta  K Inoue 《Cytokine》2001,14(4):202-207
The rat pituitary cell line, MtT/SM, has the characteristics of somatomammotrophs. The cells secrete both prolactin (PRL) and growth hormone (GH). We examined the effects of cytokines such as leukaemia inhibitory factor (LIF), interleukin 6 (IL-6), oncostatin M and interleukin 11 on the secretion of these hormones by the cells. These cytokines stimulate proliferation of the cells and inhibit the secretion of PRL by 70-80% and that of GH by 50%. They induce tyrosine phosphorylation of STAT3 in the cells. The cells containing PRL or GH decreased at 48 h after treatment of the cells with LIF or IL-6. These results suggest that the LIF/IL-6 family of cytokines inhibits the functions of mammotrophs and somatotrophs in the pituitary gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号