首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Hirose  M Sugiura 《The EMBO journal》1996,15(7):1687-1695
Translational regulation is an important step of gene expression in chloroplasts. To analyze biochemical mechanisms of translational regulation unique to higher plant chloroplasts, an in vitro translation system has been developed from tobacco chloroplasts. Conditions for chloroplast extraction and the in vitro translation reaction have been optimized with a tobacco psbA-lacZ fusion mRNA. The in vitro system supports accurate translation of a variety of chloroplasts mRNAs. Using a series of mutant psbA mRNAs, we showed that three elements within the 5'-untranslated region of the mRNA are required for translation. Two of them are complementary to the 3'-terminus of chloroplast 16S rRNA (termed RBS1 and RBS2) and the other is an AU-rich sequence (UAAAUAAA) located between RBS1 and RBS2 and is termed the AU box. mRNA competition experiments using the in vitro translation reaction and gel mobility shift assays revealed the existence of a trans-acting factor(s) for translation and its possible interaction with the AU box. We propose a model for the initiation of psbA translation whereby RBS1 and RBS2 bind cooperatively to the 3'-end of 16S rRNA resulting in looping out of the AU box, which facilitates the interaction of a trans-acting factor(s).  相似文献   

2.
The nucleotide and divalent cation requirements of the in vitro iron-molybdenum cofactor (FeMo-co) synthesis system have been compared with those of substrate reduction by nitrogenase. The FeMo-co synthesis system specifically requires ATP, whereas both 1,N6-etheno-ATP and 2'-deoxy-ATP function in place of ATP in substrate reduction (M. F. Weston, S. Kotake, and L. C. Davis, Arch. Biochem. Biophys. 225:809-817, 1983). Mn2+, Ca2+, and Fe2+ substitute for Mg2+ to various extents in in vitro FeMo-co synthesis, whereas Ca2+ is ineffective in substrate reduction by nitrogenase. The observed differences in the nucleotide and divalent cation specificities suggest a role(s) for the nucleotide and divalent cation in in vitro FeMo-co synthesis that is distinct from their role(s) in substrate reduction.  相似文献   

3.
Available reagents for the immunoassay (RIA) of luteinizing hormone (LH) in monkeys, including a cynomolgus (cynLH) tracer, an antiserum against human chorionic gonadotropin (hCG), and a rhesus standard (rhLH), were assessed using an in vitro bioassay and the RIA in connection with fractionation by high-resolution isoelectrofocusing. The data presented indicate that the RIA system represents a significant improvement over the ovine-antiovine system. Since, however, the sensitivity of the RIA is some 50 times less than that of the in vitro bioassay, and since the rhLH standard is heavily contaminated with FSH, it is felt that until the advent of a homologous RIA, the in vitro bioassay is the method of choice.  相似文献   

4.
Yeast derivatives including yeast cell wall components are promising alternatives to antibiotics with respect to the promotion of health and performance in livestock, based on their capacity to bind enteropathogenic bacteria and to beneficially modulate the immune system. However, these mode(s) of action both in vitro and in vivo are still not well understood. Furthermore, standardization and reproducibility of in vitro techniques (microbiology, cell culture assays) are critical features for the application of yeast derivatives as well as for the proof of effectiveness. Yeast cell wall products are suggested as anti-adhesive agents and are thus proposed to prevent attachment of certain intestinal bacteria by providing alternative adhesion sites to enterobacteria, which contain mannose-specific type I fimbriae such as Escherichia coli or Salmonella spp. and which is well documented. Various in vitro assay techniques have become of paramount importance for biotechnological research since they allow for determination and quantification of potential mode(s) of action. However, in vitro assays may be criticized by product end users as not accurately reflecting in vivo responses. Pro and cons of different assays and their bias will be discussed specifically regarding yeast cell wall components and adhesion of enteropathogenic bacteria. Immunomodulation is a therapeutic approach intervening in auto-regulating processes of the defense system. Yeast derivatives such as beta-glucans are proposed to interact with cells of the innate immune system by receptor recognition. Controversial data in literature and mode(s) of action are reviewed and discussed here.  相似文献   

5.
Protein import into mitochondria in a homologous yeast in vitro system   总被引:1,自引:0,他引:1  
To study the import of proteins into mitochondria we developed a homologous in vitro system in which mitochondria and cell-free translation extract are both derived from the yeast Saccharomyces cerevisiae. This system allows the synthesis of precursor proteins in the presence of isolated mitochondria and offers a means of analyzing yeast mutants defective in mitochondrial protein import. The in vitro import of an artificial precursor protein into yeast mitochondria in the presence of its substrate analog was analyzed subsequent to synthesis in either a yeast or rabbit reticulocyte cell-free translation reaction. Results suggest that a component(s) present in the yeast cytosolic extract may interact with the precursor protein.  相似文献   

6.
The iron-molybdenum cofactor (FeMo-co) of nitrogenase contains molybdenum, iron, sulfur, and homocitrate in a ratio of 1:7:9:1. In vitro synthesis of FeMo-co has been established, and the reaction requires an ATP-regenerating system, dithionite, molybdate, homocitrate, and at least NifB-co (the metabolic product of NifB), NifNE, and dinitrogenase reductase (NifH). The typical in vitro FeMo-co synthesis reaction involves mixing extracts from two different mutant strains of Azotobacter vinelandii defective in the biosynthesis of cofactor or an extract of a mutant strain complemented with the purified missing component. Surprisingly, the in vitro synthesis of FeMo-co with only purified components failed to generate significant FeMo-co, suggesting the requirement for one or more other components. Complementation of these assays with extracts of various mutant strains demonstrated that NifX has a role in synthesis of FeMo-co. In vitro synthesis of FeMo-co with purified components is stimulated approximately threefold by purified NifX. Complementation of these assays with extracts of A. vinelandii DJ42. 48 (DeltanifENX DeltavnfE) results in a 12- to 15-fold stimulation of in vitro FeMo-co synthesis activity. These data also demonstrate that apart from the NifX some other component(s) is required for the cofactor synthesis. The in vitro synthesis of FeMo-co with purified components has allowed the detection, purification, and identification of an additional component(s) required for the synthesis of cofactor.  相似文献   

7.
Differential stability of c-myc mRNAS in a cell-free system.   总被引:19,自引:7,他引:12       下载免费PDF全文
We have developed a simple cell-free system for studying the stability of different mRNAs in vitro. We demonstrate that the threefold greater stability in vivo of truncated c-myc mRNA (lacking exon 1) compared with that of full-length c-myc mRNA is maintained in our in vitro system. Chimeric mRNAs in which the first exon of c-myc was fused to immunoglobulin C alpha heavy chain or glyceraldehyde-3-phosphate dehydrogenase mRNAs were not rapidly degraded, demonstrating that c-myc exon 1 alone is not sufficient to tag mRNAs for rapid degradation. Competition experiments show that full-length c-myc mRNA is specifically recognized by a factor(s) responsible for its rapid degradation. This system will allow further characterization and purification of these factors.  相似文献   

8.
This paper proposes a novel in vitro exposure system operating at millimeter‐wave (mmWave) 28 GHz, one of the frequency bands under consideration for fifth generation (5G) communication. We employed the field uniformity concept along cross‐sectional observation planes at shorter distances from the radiation antenna for better efficiency and a small‐size system. A choke‐ring antenna was designed for this purpose in consideration of a wider beamwidth (BW) and a symmetric far‐field pattern across three principal planes. The permittivity of Dulbecco's modified Eagle's medium solution was measured to examine the specific absorption rate (SAR) of the skin cell layer inside a Petri dish model for a three‐dimensional (3D) cell culture in vitro experiment. The best deployment of Petri dishes, taking into account a geometrical field symmetry, was proposed. Local SAR values within the cell layer among the Petri dishes were determined with different polarization angles. It was determined that this polarization effect should be considered when the actual exposure and deployment were conducted. We finally proposed an in vitro exposure system based on the field uniformity including downward exposure from an antenna for 3D cell culture experiments. A small‐size chamber system was obtained, and the size was estimated using the planar near‐field chamber design rule. Bioelectromagnetics. 2019;40:445–457. © 2019 Bioelectromagnetics Society  相似文献   

9.
Using a partially purified replication complex from tobacco chloroplasts, replication origins have been localized to minimal sequences of 82 (pKN8, positions 137 683-137 764) and 243 bp (pKN3, positions 130 513-130 755) for ori A and ori B respectively. Analysis of in vitro replication products by two-dimensional agarose gel electrophoresis showed simple Y patterns for single ori sequence-containing clones, indicative of rolling circle replication. Double Y patterns were observed when a chloroplast DNA template containing both ori s (pKN9) was tested. Dpn I analysis and control assays with Escherichia coli DNA polymerase provide a clear method to distinguish between true replication and DNA repair synthesis. These controls also support the reliability of this in vitro chloroplast DNA replication system. EM analysis of in vitro replicated products showed rolling circle replication intermediates for single ori clones (ori A or ori B), whereas D loops were observed for a clone (pKN9) containing both ori s. The minimal ori regions contain sequences which are capable of forming stem-loop structures with relatively high free energy and other sequences which interact with specific protein(s) from the chloroplast replication fraction. Apparently the minimal ori sequences reported here contain all the necessary elements for support of chloroplast DNA replication in vitro.  相似文献   

10.
From the 1950s to the 1970s, a number of in vitro systems that measured inhibition of glucose metabolism were used to predict the responsiveness of patients' tumors to chemotherapy. In vitro-in vivo correlations were excellent, with true positive predictions ranging from 68% to 96% and true negative predictions of 95% to 100%. The radiometric system is a new in vitro technique that measures the conversion of 14C-glucose to 14CO2. The system already has been utilized to screen prospective new antineoplastic agents for cytotoxicity. The present study was undertaken to determine if the radiometric system might be used to predict correctly the responsiveness of an individual patient's tumor to single-agent or combination-agent chemotherapy. Fifty-six tumor specimens were divided and tested for drug sensitivity in the radiometric system and a conventional human tumor clonning system. Overall, there was a significant correlation between in vitro and in vivo results for the conventional cloning system (P = 0.03). However, there was no significant relationship between in vitro and in vivo results for the radiometric system. The radiometric system consistently failed to predict the tumor's clinical sensitivity to single agents. A radiometric system is not useful in predicting the responsiveness of a patient's tumor to single agent chemotherapy and is not a replacement for the more biologically attractive human tumor cloning system.  相似文献   

11.
Inhibitors of human interferon action that might be relevant to tumour resistance or escape mechanisms were investigated in a macrophage system. The effects of IFN on macrophage Fc gamma receptor expression were inhibited by three preparations: (1) a low-molecular-weight component of normal autologous serum; (2) a low-molecular-weight component of carcinoma supernatant; and (3) physiological concentrations of retinol and retinoic acid. Since human carcinoma tissue contains abnormally high levels of retinoic acid-binding protein, the possibility that a tumour-associated retinoid contributes to tumour-induced inhibition in vitro was investigated. Inhibition of IFN action in vitro by retinoic acid (vitamin A acid) was found to be reversed by beta-carotene (pro-vitamin A). When tested in the tumour system beta-carotene also reversed inhibition by the human-carcinoma-derived signal. These data are consistent with the view that at least one of the tumour-derived signals inhibitory towards IFN is a tumour-associated retinoid, although firm evidence for this must await further physicochemical characterization of the inhibitory signal(s). The present data clearly show, nevertheless, that human tumour-induced inhibition of IFN in vitro can be reversed by the pro-vitamin beta-carotene.  相似文献   

12.
An in vitro splicing system utilizing isolated nuclei of SV40 infected cells has been developed. Nuclei were isolated from CV-1 cells at a late stage of SV40 infection after a pulse-labeling with 3H-uridine. In nuclei prepared under mild isotonic conditions, 19S viral coded RNA synthesized in vivo was converted in vitro into 16S mRNA. In contrast, the nuclei prepared with RSB, a hypotonic medium, showed a very low splicing activity only. Addition of a "nuclear extract" to these nuclei restored the activity almost to the original level. These results indicate that 1) 19S RNA is indeed a precursor to 16S mRNA 2) the splicing of 19S RNA into 16S RNA takes place in the nucleus, and 3) at least a part of the enzyme system required for splicing could be extracted from the nucleus. This in vitro system may be useful for the assay of the splicing enzyme(s).  相似文献   

13.
We describe a novel Triton-disrupted mammalian cell system wherein the pathways for activation of mitogen-activated protein (MAP) kinases (MAPKs) are capable of direct biochemical manipulation in vitro. MAPKs p42mapk and p44mapk are activated in signal transduction cascade(s) initiated by occupancy of plasma membrane receptors for peptide growth factors, hormones, and neurotransmitters. One likely activation pathway for MAPKs consists of sequential activations of c-ras, c-raf-1, and a protein-tyrosine/threonine kinase, MAP kinase kinase. Triton-disrupted cells retained capacity for activation of the pathway by both peptide growth factors and by addition of GTP-loaded p21 rasVal12. Incubation of disrupted cells with an antibody that neutralized the function of c-ras (Y13-259) abolished receptor-mediated stimulation of MAPK as did acute addition of 200 microM azatyrosine. Activation of the pathway was reconstituted in a cell-free system using high-speed supernatants generated from Triton-disrupted cells together with purified plasma membranes from parental cells and as a heterogeneous system using purified plasma membranes from v-ras-transformed cells. These systems will allow biochemical dissection in vitro of the interaction(s) between c-ras and the MAPK pathway in mammalian cells.  相似文献   

14.
15.
16.
Endochondral skeletal development involves the condensation of mesenchymal cells, their differentiation into chondrocytes, followed by chondrocyte maturation, hypertrophy, and matrix mineralization, and replacement by osteoblasts. The Wnt family of secreted proteins have been shown to play important roles in vertebrate limb formation. To examine the role(s) of Wnt members and their transmembrane-spanning receptor(s), Frizzled (fz), we retrovirally misexpressed Wnt-5a, Wnt-7a, chicken frizzled-1 (Chfz-1), and frizzled-7 (Chfz-7) in long-term (21 day) high density, micromass cultures of stage 23/24 chick embryonic limb mesenchyme. This culture system recapitulates in vitro the entire differentiation (days 1-10), growth (days 5-12), and maturation and hypertrophy (from day 12 on) program of cartilage development. Wnt-7a misexpression severely inhibited chondrogenesis from day 7 onward. Wnt-5a misexpression resulted in a poor hypertrophic phenotype by day 14. Chfz-7 misexpression caused a slight delay of chondrocyte maturation based on histology, whereas Chfz-1 misexpression did not affect the chondrogenic phenotype. Misexpression of all Wnt members decreased collagen type X expression and alkaline phosphatase activity at day 21. Our findings implicate functional role(s) for Wnt signaling throughout embryonic cartilage development, and show the utility of the long-term in vitro limb mesenchyme culture system for such studies.  相似文献   

17.
We recently published electron paramagnetic resonance (EPR) spin trapping results that demonstrated the enzymatic reduction of sulfur mustard sulfonium ions to carbon-based free radicals using an in vitro system containing sulfur mustard, cytochrome P450 reductase, NADPH, and the spin trap α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) in buffer (A.A. Brimfield et al., 2009, Toxicol. Appl. Pharmacol. 234:128-134). Carbon-based radicals have been shown to reduce molecular oxygen to form superoxide and, subsequently, peroxyl and hydroxyl radicals. In some cases, such as with the herbicide paraquat, a cyclic redox system results, leading to magnified oxygen free radical concentration and sustained tissue damage. Low mustard carbon radical concentrations recorded by EPR in our in vitro system, despite a robust (4.0mM) sulfur mustard starting concentration, led us to believe a similar oxygen reduction and redox cycling process might be involved with sulfur mustard. A comparison of the rate of mustard radical-POBN adduct formation in our in vitro system by EPR at atmospheric and reduced oxygen levels indicated a sixfold increase in 4-POBN adduct formation (0.5 to 3.0 μM) at the reduced oxygen concentration. That result suggested competition between oxygen and POBN for the available carbon-based mustard radicals. In parallel experiments we found that the oxygen radical-specific spin trap 5-tert-butoxycarbonyl-5-methylpyrroline-N-oxide (BMPO) detected peroxyl and hydroxyl radicals directly when it was used in place of POBN in the in vitro system. Presumably these radicals originated from O(2) reduced by carbon-based mustard radicals. We also showed that reactive oxygen species (ROS)-BMPO EPR signals were reduced or eliminated when mustard carbon radical production was impeded by systematically removing system components, indicating that carbon radicals were a necessary precursor to ROS production. ROS EPR signals were completely eliminated when superoxide dismutase and catalase were included in the complete in vitro enzymatic system, providing additional proof of oxygen radical participation. The redox cycling hypothesis was supported by density functional theory calculations and frontier molecular orbital analysis.  相似文献   

18.
Success rates of superovulation in response to gonadotropic hormone treatment and in vitro fertilization (ie, mitotic cleavage following insemination) of mouse eggs from outbred CD-1, hybrid CB6Fl, or hybrid B6CBAF1, mice were compared using either a mouse inseminationmedium, modified Krebs-Ringer-bicarbonate (m-KRB), or a human insemination medium, Ham's F10 nutrient mixture. Inseminations were performed in either organ culture dishes or screw-top, flat-side tissue culture tubes. Mean superovulation rates (± SD) were 24.2 (5.1) for CD-1, 33.0 (5.8) for CB6F1, and 16.3 (6.6) for B6CBAF1 mice. For in vitro cleavage the best combination of mouse strain, insemination medium, and culture container was achieved using CB6F1, mice, m-KRB medium, and culture tubes. However, Ham's medium used with either hybrid mouse strain was shown to be employable for fertilization of mouse eggs in vitro as a quality control assay and/or experimental model system for testing the human in vitro fertilization procedure.  相似文献   

19.
Adipose-derived stromal vascular fraction (SVF) is a heterogeneous cell source that contains endothelial cells, pericytes, smooth muscle cells, stem cells, and other accessory immune and stromal cells. The SVF cell population has been shown to support vasculogenesis in vitro as well vascular maturation in vivo. Matrigel, an extracellular matrix (ECM) mixture has been utilized in vitro to evaluate tube formation of purified endothelial cell systems. We have developed an in vitro system that utilizes freshly isolated SVF and ECM molecules both in pure form (fibrin, laminin, collagen) as well as premixed form (Matrigel) to evaluate endothelial tip cell formation, endothelial stalk elongation, and early stages of branching and inosculation. Freshly isolated SVF rat demonstrate cell aggregation and clustering (presumptive vasculogenesis) on Matrigel ECM within the first 36 h of seeding followed by tip cell formation, stalk cell formation, branching, and inosculation (presumptive angiogenesis) during the subsequent 4 days of culture. Purified ECM molecules (laminin, fibrin, and collagen) promote cell proliferation but do not recapitulate events seen on Matrigel. We have created an in vitro system that provides a functional assay to study the mechanisms of vasculogenesis and angiogenesis in freshly isolated SVF to characterize SVF’s blood vessel forming potential prior to clinical implantation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号