首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Mannosylglycerate (MG) is an intracellular organic solute found in some red algae, and several thermophilic bacteria and hyperthermophilic archaea. Glucosylglycerate (GG) was identified at the reducing end of a polysaccharide from mycobacteria and in a free form in a very few mesophilic bacteria and halophilic archaea. MG has a genuine role in the osmoadaptation and possibly in thermal protection of many hyper/thermophilic bacteria and archaea, but its role in red algae, where it was identified long before hyperthermophiles were even known to exist, remains to be clarified. The GG-containing polysaccharide was initially detected in Mycobacterium phlei and found to regulate fatty acid synthesis. More recently, GG has been found to be a major compatible solute under salt stress and nitrogen starvation in a few microorganisms. This review summarizes the occurrence and physiology of MG accumulation, as well as the distribution of GG, as a free solute or associated with larger macromolecules. We also focus on the recently identified pathways for the synthesis of both molecules, which were elucidated by studying hyper/thermophilic MG-accumulating organisms. The blooming era of genomics has now allowed the detection of these genes in fungi and mosses, opening a research avenue that spans the three domains of life, into the role of these two sugar derivatives.  相似文献   

2.
A decade ago the compatible solutes mannosylglycerate (MG) and glucosylglycerate (GG) were considered to be rare in nature. Apart from two species of thermophilic bacteria, Thermus thermophilus and Rhodothermus marinus, and a restricted group of hyperthermophilic archaea, the Thermococcales, MG had only been identified in a few red algae. Glucosylglycerate was considered to be even rarer and had only been detected as an insignificant solute in two halophilic microorganisms, a cyanobacterium, as a component of a polysaccharide and of a glycolipid in two actinobacteria. Unlike the hyper/thermophilic MG-accumulating microorganisms, branching close to the root of the Tree of Life, those harbouring GG shared a mesophilic lifestyle. Exceptionally, the thermophilic bacterium Persephonella marina was reported to accumulate GG. However, and especially owing to the identification of the key-genes for MG and GG synthesis and to the escalating numbers of genomes available, a plethora of new organisms with the resources to synthesize these solutes has been recognized. The accumulation of GG as an 'emergency' compatible solute under combined salt stress and nitrogen-deficient conditions now seems to be a disseminated survival strategy from enterobacteria to marine cyanobacteria. In contrast, the thermophilic and extremely radiation-resistant bacterium Rubrobacter xylanophilus is the only actinobacterium known to accumulate MG, and under all growth conditions tested. This review addresses the environmental factors underlying the accumulation of MG, GG and derivatives in bacteria and archaea and their roles during stress adaptation or as precursors for more elaborated macromolecules. The diversity of pathways for MG and GG synthesis as well as those for some of their derivatives is also discussed. The importance of glycerate-derived organic solutes in the microbial world is only now being recognized. Their stress-dependent accumulation and the molecular aspects of their interactions with biomolecules have already fuelled several emerging applications in biotechnology and biomedicine.  相似文献   

3.
The accumulation of compatible solutes, either by uptake from the medium or by de novo synthesis, is a general response of microorganisms to osmotic stress. The diversity of compatible solutes is large but falls into a few major chemical categories, such as carbohydrates or their derivatives and amino acids or their derivatives. This review deals with compatible solutes found in thermophilic or hyperthermophilic bacteria and archaea that have not been commonly identified in microorganisms growing at low and moderate temperatures. The response to NaCl stress of Thermus thermophilus is an example of how a thermophilic bacterium responds to osmotic stress by compatible solute accumulation. Emphasis is made on the pathways leading to the synthesis of mannosylglycerate and glucosylglycerate that have been recently elucidated in several hyper/thermophilic microorganisms. The role of compatible solutes in the thermoprotection of these fascinating microorganisms is also discussed.  相似文献   

4.
Rhodothermus marinus responds to fluctuations in the growth temperature and/or salinity by accumulating mannosylglycerate (MG). Two alternative pathways for the synthesis of MG have been identified in this bacterium: a single-step pathway and a two-step pathway. In this work, the genetic and biochemical characterization of the two-step pathway was carried out with the goal of understanding the function of the two pathways and their regulatory mechanisms. Mannosyl-3-phosphoglycerate synthase (MPGS) of the two-step pathway was purified from R. marinus. Sequence information led to the isolation of two contiguous genes, mpgs (encoding MPGS) and mpgp (encoding mannosyl-3-phosphoglycerate phosphatase). The recombinant MPGS had a low specific activity compared with other homologous MPGSs and contained approximately 30 additional residues at the C terminus. Truncation of this extension produced a protein with a 10-fold higher specific activity. Moreover, the activity of the complete MPGS was enhanced upon incubation with R. marinus cell extracts, and protease inhibitors abolished activation. Therefore, the C-terminal peptide of MPGS was identified as a regulatory site for short term control of MG synthesis in R. marinus. The control of gene expression by heat and osmotic stress was also studied; the level of mannosylglycerate synthase involved in the single-step pathway was selectively enhanced by heat stress, whereas MPGS was overproduced in response to osmotic stress. The concomitant changes in the level of MG were assessed as well. We conclude that the two alternative pathways for the synthesis of MG are differently regulated at the level of expression to play specific roles in the adaptation of R. marinus to two different types of aggression. This is the only example of pathway multiplicity being rationalized in terms of the need to respond efficiently to distinct environmental stresses.  相似文献   

5.
This study demonstrated electricity generation in a thermophilic microbial fuel cell (MFC) operated on synthesis gas (syngas) as the sole electron donor. At 50°C, a volumetric power output of 30-35 mWL(R)(-1) and a syngas conversion efficiency of 87-98% was achieved. The observed pathway of syngas conversion to electricity primarily consisted of a two-step process, where the carbon monoxide and hydrogen were first converted to acetate, which was then consumed by the anodophilic bacteria to produce electricity. A denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rDNA revealed the presence of Geobacter species, Acetobacter, methanogens and several uncultured bacteria and archaea in the anodic chamber.  相似文献   

6.
The history of euglenoids may have begun as early as ~2 bya. These early phagotrophs ate cyanobacteria, archaea, and eubacteria, and the subsequent appearance of red algae and chromalveolates provided euglenoids with additional food sources. Following the appearance of green algae, euglenoids acquired a chloroplast via a secondary endosymbiotic event with a green algal ancestor. This endosymbiosis also involved a massive transfer of nuclear‐encoded genes from the symbiont nucleus to the host. Expecting these genes to have a green algal origin, this research has shown, through the use of DNA‐sequences and the analysis of phylogenetic relationships, that many housekeeping genes have a red algal/chromalveolate ancestry. This suggested that many other endosymbiotic/horizontal gene transfers, which brought genes from chromalveolates to euglenoids, may have been taking place long before the acquisition of the chloroplast. The investigation of the origin of the enzymes involved in the tetrapyrrole synthesis pathway provided insights into horizontal gene transfer in euglenoids and demonstrated that the euglenoid nuclear genome is a mosaic comprised of genes from the ancestral lineage plus genes transferred endosymbiotically/horizontally from green, red, and chromalveolates lineages.  相似文献   

7.
Glycine betaine is known to be the preferred osmoprotectant in many bacteria, and glycine betaine accumulation has also been correlated with increased cold tolerance. Trehalose is often a minor osmoprotectant in bacteria and it is a major determinant for desiccation tolerance in many so-called anhydrobiotic organisms such as baker's yeast(Saccharomyces cerevisiae). Escherichia coli has two pathways for synthesis of these protective molecules; i.e., a two-step conversion of UDP-glucose and glucose-6-phosphate to trehalose and a two-step oxidation of externally-supplied choline to glycine betaine. The genes governing the choline-to-glycine betaine pathway have been studied inE. coli and several other bacteria and higher plants. The genes governing UDP-glucose-dependent trehalose synthesis have been studied inE. coli andS. cerevisiae. Because of their well-documented function in stress protection, glycine betaine and trehalose have been identified as targets for metabolic engineering of stress tolerance. Examples of this experimental approach include the expression of theE. coli betA andArthrobacter globiformis codA genes for glycine betaine synthesis in plants and distantly related bacteria, and the expression of theE. coli otsA and yeastTPS1 genes for trehalose synthesis in plants. The published data show that glycine betaine synthesis protects transgenic plants and phototrophic bacteria against stress caused by salt and cold. Trehalose synthesis has been reported to confer increased drought tolerance in transgenic plants, but it causes negative side effects which is of concern. Thus, the much-used model organismE. coli has now become a gene resource for metabolic engineering of stress tolerance.  相似文献   

8.
The basic structure and stereochemistry of the characteristic glycerol dibiphytanyl glycerol tetraether (GDGT) membrane lipid of cosmopolitan pelagic crenarchaeota has been identified by high field two-dimensional (2D)-NMR techniques. It contains one cyclohexane and four cyclopentane rings formed by internal cyclisation of the biphytanyl chains. Its structure is similar to that of GDGTs biosynthesized by (hyper)thermophilic crenarchaeota apart from the cyclohexane ring. These findings are consistent with the close phylogenetic relationship of (hyper)thermophilic and pelagic crenarchaeota based 16S rRNA. The latter group inherited the biosynthetic capabilities for a membrane composed of cyclopentane ring-containing GDGTs from the (hyper)thermophilic crenarchaeota. However, to cope with the much lower temperature of the ocean, a small but key step in their evolution was the adjustment of the membrane fluidity by making a kink in one of the bicyclic biphytanyl chains by the formation of a cyclohexane ring. This prevents the dense packing characteristic for the cyclopentane ring-containing GDGTs membrane lipids used by hyperthermophilic crenarchaeota to adjust their membrane fluidity to high temperatures.  相似文献   

9.
So-called sulfur-turf microbial mats, which are macroscopic white filaments or bundles consisting of large sausage-shaped bacteria and elemental sulfur particles, occur in sulfide-containing hot springs in Japan. However, no thermophiles from sulfur-turf mats have yet been isolated as cultivable strains. This study was undertaken to determine the phylogenetic positions of the sausage-shaped bacteria in sulfur-turf mats by direct cloning and sequencing of 16S rRNA genes amplified from the bulk DNAs of the mats. Common clones with 16S rDNA sequences with similarity levels of 94.8 to 99% were isolated from sulfur-turf mat samples from two geographically remote hot springs. Phylogenetic analysis showed that the phylotypes of the common clones formed a major cluster with members of the Aquifex-Hydrogenobacter complex, which represents the most deeply branching lineage of the domain bacteria. Furthermore, the bacteria of the sulfur-turf mat phylotypes formed a clade distinguishable from that of other members of the Aquifex-Hydrogenobacter complex at the order or subclass level. In situ hybridization with clone-specific probes for 16S rRNA revealed that the common phylotype of sulfur-turf mat bacteria is that of the predominant sausage-shaped bacteria.Microbial mats develop in a wide variety of aquatic environments, including geothermal hot springs and hydrothermal vents. There are several types of thermophilic microbial mats, e.g., those of cyanobacteria, anoxygenic phototrophic bacteria, and chemotrophic sulfur bacteria, which differ according to the physical and chemical conditions they favor and other environmental factors (10, 38). These microbial mats in thermal habitats have been studied extensively as a peculiar microbial community of the ecosystem, in relation to the phylogeny and evolution of thermophilic prokaryotes, or as a source of new functional enzymes.So-called sulfur-turf microbial mats are macroscopic bundles of white filaments consisting of colorless sulfur bacteria and elemental sulfur particles that form in shallow streams of sulfide-containing high-temperature hot springs. Since first reported by Miyoshi in 1897 (33), this kind of microbial mat has been recorded for several geographically remote hot springs in Japan, although there have been only scattered reports of sulfur-turf microbial mats or chemotrophic sulfur streamers in geothermal springs in other countries (9, 13, 14). The sulfur-turf mats generally develop within a temperature range of 45 to 73°C, within a pH range of 6 to 9, and at discrete sulfide-oxygen interfaces in geothermal springs. These characteristics suggest that the major constituents of the sulfur-turf prokaryotic community are (hyper)thermophilic, neutrophilic, microaerophilic, and chemolithotrophic bacteria. Early studies of these sulfur-turf mats distinguished microscopically three morphotypes of bacteria, two of which were tentatively named Thiovibrio miyoshi and Thiothrix miyoshi (15). Moreover, in situ ecophysiological and microscopic studies have shown that one of these bacteria, the large sausage-shaped “Thiovibrio miyoshi,” predominates in sulfur-turf mats and oxidizes environmental sulfide to elemental sulfur and then to sulfate via thiosulfate (2731). So far, however, it has not been possible to isolate and cultivate any thermophilic prokaryotes from the sulfur-turf mats predominated by these sausage-shaped bacteria with artificial media, and no attempt has been made to clarify their taxonomic and phylogenetic positions.Determination of 16S rRNA genes is a useful research strategy for identifying uncultivated prokaryotes and is now commonly performed in ecological studies. This technique, involving PCR amplification of 16S rRNA genes or synthesis of cDNAs from bulk 16S rRNAs of natural mixed microbial populations, has been used successfully for the phylogenetic characterization of prokaryotes in hydrothermal environments (6, 7, 34, 40, 41, 47, 48). In the present study, this approach was applied to characterize the sausage-shaped bacteria in sulfur-turf mats without isolating and cultivating them. Here we report that sulfur-turf mats contain novel thermophilic bacteria belonging to the earliest-branching lineage of the domain bacteria.  相似文献   

10.
Marine hyperthermophiles accumulate small organic compounds, known as compatible solutes, in response to supraoptimal temperatures or salinities. Pyrococcus furiosus is a hyperthermophilic archaeon that grows optimally at temperatures near 100°C. This organism accumulates mannosylglycerate (MG) and di-myo-inositol phosphate (DIP) in response to osmotic and heat stress, respectively. It has been assumed that MG and DIP are involved in cell protection; however, firm evidence for the roles of these solutes in stress adaptation is still missing, largely due to the lack of genetic tools to produce suitable mutants of hyperthermophiles. Recently, such tools were developed for P. furiosus, making this organism an ideal target for that purpose. In this work, genes coding for the synthases in the biosynthetic pathways of MG and DIP were deleted by double-crossover homologous recombination. The growth profiles and solute patterns of the two mutants and the parent strain were investigated under optimal growth conditions and also at supraoptimal temperatures and NaCl concentrations. DIP was a suitable replacement for MG during heat stress, but substitution of MG for DIP and aspartate led to less efficient growth under conditions of osmotic stress. The results suggest that the cascade of molecular events leading to MG synthesis is tuned for osmotic adjustment, while the machinery for induction of DIP synthesis responds to either stress agent. MG protects cells against heat as effectively as DIP, despite the finding that the amount of DIP consistently increases in response to heat stress in the nine (hyper)thermophiles examined thus far.  相似文献   

11.
The sensitivity of the cell-free protein synthesis systems from Acidanus brierleyi, Acidianus infernus, and Metallosphaera sedula, members of the archaeal order Sulfolobales, to 40 antibiotics with different specificities has been studied. The sensitivity patterns were compared to those of Sulfolobus solfataricus and other archaeal, bacterial, and eukaryotic systems. The comparative analysis shows that ribosomes from the sulfolobales are the most refractory to inhibitors of protein synthesis described so far. The sensitivity results have been used to ascertain in phylogenetic relationships among the members of the order Sulfolobales. The evolutionary significance of these results are analyzed in the context of the phylogenetic position of this group of extreme thermophilic microorganisms. Correspondence to: R. Amils  相似文献   

12.
A simple microscopic method to three-dimensionally differentiate between various members in photo-autotrophic biofilm systems is described. By dual-channel single-photon (confocal) and two-photon laser scanning microscopy, the signals in the red and far red channels as well as their combination can be simultaneously recorded. The method takes advantage of the autofluorescent signal of cyanobacteria-recorded in the red and far red channel and the autofluorescent signal of the green algae-recorded in the far red channel only. The differentiation is based on the specific pigment composition of cyanobacteria and green algae in combination with the appropriate filter settings for detection of the autofluorescent emission signals. The method allows the non-destructive, three-dimensional examination of fully hydrated interfacial microbial communities at high resolution as well as the clear separation between autofluorescent signals of cyanobacteria and green algae. Furthermore, there is a third option to record additional signals simultaneously such as nucleic acid stained bacteria, bacteria labeled with phylogenetic probes or glycoconjugates stained by using lectins. With state of the art laser scanning microscopes, even a fourth channel is available for recording yet another parameter, e.g. in the reflection (single-photon only) or fluorescence (single- and two-photon) mode. Thus the approach represents a convenient tool to study multiple parameters of complex photo-autotrophic biofilm systems.  相似文献   

13.
The 16S rRNA gene sequences of Mycoplasma cavipharyngis and Mycoplasma fastidiosum have been determined. Phylogenetic analysis showed that these species formed a new cluster within the so-called pneumoniae group of the mollicutes (class Mollicutes). This cluster will be referred to as the M. fastidiosum cluster. Interestingly, the M. fastidiosum cluster formed a sister lineage to the haemotrophic bacteria. Eperythrozoon spp. and Haemobartonella spp. The two latter genera, formerly classified as rickettsias, formed a stable phylogenetic entity in the tree as judged from branch lengths, bootstrap values and sequence signatures. Thus, the members of the M. fastidiosum cluster are the closest known relatives to the haemotrophic bacteria. Our data strongly support that the haemotrophic bacteria should be reclassified to reflect their actual phylogenetic affiliation.  相似文献   

14.
15.
Microbial conversion of organic waste or harvested plant material into biogas has become an attractive technology for energy production. Biogas is produced in reactors under anaerobic conditions by a consortium of microorganisms which commonly include bacteria of the genus Clostridium. Since the genus Clostridium also harbors some highly pathogenic members in its phylogenetic cluster I, there has been some concern that an unintended growth of such pathogens might occur during the fermentation process. Therefore this study aimed to follow how process parameters affect the diversity of Bacteria in general, and the diversity of Clostridium cluster I members in particular. The development of both communities was followed in model biogas reactors from start-up during stable methanogenic conditions. The biogas reactors were run with either cattle or pig manures as substrates, and both were operated at mesophilic and thermophilic conditions. The structural diversity was analyzed independent of cultivation using a PCR-based detection of 16S rRNA genes and genetic profiling by single-strand conformation polymorphism (SSCP). Genetic profiles indicated that both bacterial and clostridial communities evolved in parallel, and the community structures were highly influenced by both substrate and temperature. Sequence analysis of 16S rRNA genes recovered from prominent bands from SSCP profiles representing Clostridia detected no pathogenic species. Thus, this study gave no indication that pathogenic clostridia would be enriched as dominant community members in biogas reactors fed with manure.  相似文献   

16.
Phospholipase D (PLD) participates in the formation of phosphatidic acid, a precursor in glycerolipid biosynthesis and a second messenger. PLDs are part of a superfamily of proteins that hydrolyze phosphodiesters and share a catalytic motif, HxKxxxxD, and hence a mechanism of action. Although HKD‐PLDs have been thoroughly characterized in plants, animals and bacteria, very little is known about these enzymes in algae. To fill this gap in knowledge, we performed a biocomputational analysis by means of HMMER iterative profiling, using most eukaryotic algae genomes available. Phylogenetic analysis revealed that algae exhibit very few eukaryotic‐type PLDs but possess, instead, many bacteria‐like PLDs. Among algae eukaryotic‐type PLDs, we identified C2‐PLDs and PXPH‐like PLDs. In addition, the dinoflagellate Alexandrium tamarense features several proteins phylogenetically related to oomycete PLDs. Our phylogenetic analysis also showed that algae bacteria‐like PLDs (proteins with putative PLD activity) fall into five clades, three of which are novel lineages in eukaryotes, composed almost entirely of algae. Specifically, Clade II is almost exclusive to diatoms, whereas Clade I and IV are mainly represented by proteins from prasinophytes. The other two clades are composed of mitochondrial PLDs (Clade V or Mito‐PLDs), previously found in mammals, and a subfamily of potentially secreted proteins (Clade III or SP‐PLDs), which includes a homolog formerly characterized in rice. In addition, our phylogenetic analysis shows that algae have non‐PLD members within the bacteria‐like HKD superfamily with putative cardiolipin synthase and phosphatidylserine/phosphatidylglycerophosphate synthase activities. Altogether, our results show that eukaryotic algae possess a moderate number of PLDs that belong to very diverse phylogenetic groups.  相似文献   

17.
“Red snow” refers to red-colored snow, caused by bloom of cold-adapted phototrophs, so-called snow algae. The red snow found in Langhovde, Antarctica, was investigated from several viewpoints. Various sizes of rounded red cells were observed in the red snow samples under microscopy. Pigment analysis demonstrated accumulation of astaxanthin in the red snow. Community structure of microorganisms was analyzed by culture-independent methods. In the analyses of small subunit rRNA genes, several species of green algae, fungus, and various phylotypes of bacteria were detected. The detected bacteria were closely related to psychrophilic or psychrotolerant heterotrophic strains, or sequences detected from low-temperature environments. As predominant lineage of bacteria, members of the genus Hymenobacter were consistently detected from samples obtained in two different years. Nitrogen isotopic compositions analysis indicated that the red snow was significantly 15N-enriched. Based on an estimation of trophic level, it was suggested that primary nitrogen sources of the red snow were supplied from fecal pellet of seabirds including a marine top predator of Antarctica.  相似文献   

18.
We studied the evolution of thermophily in prokaryotes using the phylogenetic relationships between 279 bacteria and archaea and their thermophilic amino acid composition signature. Our findings suggest several examples in which the capacity of thermophilic adaptation has been gained or lost over relatively short evolutionary periods throughout the evolution of prokaryotes.  相似文献   

19.
赤潮藻毒素生物合成研究进展   总被引:12,自引:0,他引:12  
合成毒素是赤潮藻类的一个常见特征,已知能够产生毒素的微藻有70多种。作为次级代谢产物,藻毒素的产生可能是一种压制或清除其它藻类竞争者的一种反应,在群落演替、种间竞争中发挥重要作用。目前,人们对藻毒素生物合成机理依然知之甚少,相关基因的研究仍无明显突破。利用环境因子诱导毒素生成变化进而分离差异表达基因或者比较不同产毒藻株间基因表达的差异,从中克隆藻毒素生物合成基因似乎是一种极具潜力的研究方向。  相似文献   

20.
S-layer glycoproteins are cell surface glycoconjugates that have been identified in archaea and in bacteria. Usually, S-layer glycoproteins assemble into regular, crystalline arrays covering the entire bacterium. Our research focuses on thermophilic Bacillaceae, which are considered a suitable model system for studying bacterial glycosylation. During the past decade, investigations of S-layer glycoproteins dealt with the elucidation of the highly variable glycan structures by a combination of chemical degradation methods and nuclear magnetic resonance spectroscopy. It was only recently that the molecular characterization of the genes governing the formation of the S-layer glycoprotein glycan chains has been initiated. The S-layer glycosylation (slg) gene clusters of four of the 11 known S-layer glycan structures from members of the Bacillaceae have now been studied. The clusters are approximately 16 to approximately 25 kb in size and transcribed as polycistronic units. They include nucleotide sugar pathway genes that are arranged as operons, sugar transferase genes, glycan processing genes, and transporter genes. So far, the biochemical functions only of the genes required for nucleotide sugar biosynthesis have been demonstrated experimentally. The presence of insertion sequences and the decrease of the G + C content at the slg locus suggest that the investigated organisms have acquired their specific S-layer glycosylation potential by lateral gene transfer. In addition, S-layer protein glycosylation requires the participation of housekeeping genes that map outside the cluster. The gene encoding the respective S-layer target protein is transcribed monocistronically and independently of the slg cluster genes. Its chromosomal location is not necessarily in close vicinity to the slg gene cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号