首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic "sinks" that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands.  相似文献   

2.
It has long been known that amino acid substitutions in proteins of organisms living at moderate and high temperatures (mesophiles and thermophiles, respectively) are not all symmetrical; for example, more aligned sites have lysine in mesophiles and arginine in thermophiles than have the opposite pattern. This is generally taken to indicate that certain amino acids are favored over others by selection at different temperatures. Previous comparisons of protein sequences from mesophiles and thermophiles have used relatively small numbers of sequences from a diverse array of species, meaning that only the most common amino acid substitutions could be examined and any taxon-specific patterns would be obscured. Here, we compare a large number of proteins between mesophiles and thermophiles in the archaeal genus Methanococcus and the bacterial genus Bacillus. Each genus exhibits dramatically asymmetrical substitution patterns for many pairs of amino acids. There are several pairs of amino acids for which one amino acid is favored in thermophilic Bacillus and the other is favored in thermophilic Methanococcus; this appears to result from the higher G + C content of the DNA of thermophilic Bacillus, a complication not seen in Methanococcus.  相似文献   

3.
Wiezer A  Merkl R 《Genomics》2005,86(4):462-475
Microbial genomes harbor genomic islands (GIs), genes presumably acquired via horizontal gene transfer (HGT). We compared GIs of hyperthermophilic, thermophilic, mesophilic, and pathogenic/nonpathogenic species and of small and large genomes. The COG database was used to characterize gene-encoded functions. Putative donors were determined to quantify gene flux between superkingdoms. In hyperthermophiles, more than 10% of the genes were on average acquired across the superkingdom border. For thermophiles and particularly mesophiles, we identified a nearly unidirectional export from bacteria to archaea. Additionally, we analyzed GI composition for Escherichia, and pairs of Listeria, Rhizobiales, Methanosarcinaceae, and Thermus thermophilus/Deinococcus radiodurans. For Escherichia and Listeria, the composition of GIs in pathogenic and nonpathogenic species did not differ significantly with respect to encoded COG classes. The analysis of related genomes showed that the composition of GIs cannot be explained with trends of gene content known to depend on genome size.  相似文献   

4.
Kosmotoga olearia strain TBF 19.5.1 is a member of the Thermotogales that grows best at 65°C and very well even at 37°C. Information about this organism is important for understanding the evolution of mesophiles from thermophiles. Its genome sequence reveals extensive gene gains and a large content of mobile genetic elements. It also contains putative hydrogenase genes that have no homologs in the other member of the Thermotogales.  相似文献   

5.
Singer GA  Hickey DA 《Gene》2003,317(1-2):39-47
A number of recent studies have shown that thermophilic prokaryotes have distinguishable patterns of both synonymous codon usage and amino acid composition, indicating the action of natural selection related to thermophily. On the other hand, several other studies of whole genomes have illustrated that nucleotide bias can have dramatic effects on synonymous codon usage and also on the amino acid composition of the encoded proteins. This raises the possibility that the thermophile-specific patterns observed at both the codon and protein levels are merely reflections of a single underlying effect at the level of nucleotide composition. Moreover, such an effect at the nucleotide level might be due entirely to mutational bias. In this study, we have compared the genomes of thermophiles and mesophiles at three levels: nucleotide content, codon usage and amino acid composition. Our results indicate that the genomes of thermophiles are distinguishable from mesophiles at all three levels and that the codon and amino acid frequency differences cannot be explained simply by the patterns of nucleotide composition. At the nucleotide level, we see a consistent tendency for the frequency of adenine to increase at all codon positions within the thermophiles. Thermophiles are also distinguished by their pattern of synonymous codon usage for several amino acids, particularly arginine and isoleucine. At the protein level, the most dramatic effect is a two-fold decrease in the frequency of glutamine residues among thermophiles. These results indicate that adaptation to growth at high temperature requires a coordinated set of evolutionary changes affecting (i) mRNA thermostability, (ii) stability of codon-anticodon interactions and (iii) increased thermostability of the protein products. We conclude that elevated growth temperature imposes selective constraints at all three molecular levels: nucleotide content, codon usage and amino acid composition. In addition to these multiple selective effects, however, the genomes of both thermophiles and mesophiles are often subject to superimposed large changes in composition due to mutational bias.  相似文献   

6.
We address the question of the thermal stability of proteins in thermophiles through comprehensive genome comparison, focussing on the occurrence of salt bridges. We compared a set of 12 genomes (from four thermophilic archaeons, one eukaryote, six mesophilic eubacteria, and one thermophilic eubacteria). Our results showed that thermophiles have a greater content of charged residues than mesophiles, both at the overall genomic level and in alpha helices. Furthermore, we found that in thermophiles the charged residues in helices tend to be preferentially arranged with a 1–4 helical spacing and oriented so that intra-helical charge pairs agree with the helix dipole. Collectively, these results imply that intra-helical salt bridges are more prevalent in thermophiles than mesophiles and thus suggest that they are an important factor stabilizing thermophilic proteins. We also found that the proteins in thermophiles appear to be somewhat shorter than those in mesophiles. However, this later observation may have more to do with evolutionary relationships than with physically stabilizing factors. In all our statistics we were careful to controls for various biases. These could have, for instance, arisen due to repetitive or duplicated sequences. In particular, we repeated our calculation using a variety of random and directed sampling schemes. One of these involved making a "stratified sample," a representative cross-section of the genomes derived from a set of 52 orthologous proteins present roughly once in each genome. For another sample, we focused on the subset of the 52 orthologs that had a known 3D structure. This allowed us to determine the frequency of tertiary as well as main-chain salt bridges. Our statistical controls supported our overall conclusion about the prevalence of salt bridges in thermophiles in comparison to mesophiles. Electronic Publication  相似文献   

7.
To explore the diversity of mobile genetic elements (MGE) associated with archaea of the phylum Thaumarchaeota, we exploited the property of most MGE to integrate into the genomes of their hosts. Integrated MGE (iMGE) were identified in 20 thaumarchaeal genomes amounting to 2 Mbp of mobile thaumarchaeal DNA. These iMGE group into five major classes: (i) proviruses, (ii) casposons, (iii) insertion sequence-like transposons, (iv) integrative-conjugative elements and (v) cryptic integrated elements. The majority of the iMGE belong to the latter category and might represent novel families of viruses or plasmids. The identified proviruses are related to tailed viruses of the order Caudovirales and to tailless icosahedral viruses with the double jelly-roll capsid proteins. The thaumarchaeal iMGE are all connected within a gene sharing network, highlighting pervasive gene exchange between MGE occupying the same ecological niche. The thaumarchaeal mobilome carries multiple auxiliary metabolic genes, including multicopper oxidases and ammonia monooxygenase subunit C (AmoC), and stress response genes, such as those for universal stress response proteins (UspA). Thus, iMGE might make important contributions to the fitness and adaptation of their hosts. We identified several iMGE carrying type I-B CRISPR-Cas systems and spacers matching other thaumarchaeal iMGE, suggesting antagonistic interactions between coexisting MGE and symbiotic relationships with the ir archaeal hosts.  相似文献   

8.
Lin YS 《Proteins》2008,73(1):53-62
Factors that are related to thermostability of proteins have been extensively studied in recent years, especially by comparing thermophiles and mesophiles. However, most of them are global characters. It is still not clear how to identify specific residues or fragments which may be more relevant to protein thermostability. Moreover, some of the differences among the thermophiles and mesophiles may be due to phylogenetic differences instead of thermal adaptation. To resolve these problems, I adopted a strategy to identify residue substitutions evolved convergently in thermophiles or mesophiles. These residues may therefore be responsible for thermal adaptation. Four classes of genomes were utilized in this study, including thermophilic archaea, mesophilic archaea, thermophilic bacteria, and mesophilic bacteria. For most clusters of orthologous groups (COGs) with sequences from all of these four classes of genomes, I can identify specific residues or fragments that may potentially be responsible for thermal adaptation. Functional or structural constraints (represented as sequence conservation) were suggested to have higher impact on thermal adaptation than secondary structure or solvent accessibility does. I further compared thermophilic archaea and mesophilic bacteria, and found that the most diverged fragments may not necessarily correspond to the thermostability-determining ones. The usual approach to compare thermophiles and mesophiles without considering phylogenetic relationships may roughly identify sequence features contributing to thermostability; however, to specifically identify residue substitutions responsible for thermal adaptation, one should take sequence evolution into consideration.  相似文献   

9.
The genetic diversity represented by >2,500 different Salmonella serovars provides a yet largely uncharacterized reservoir of mobile elements that can contribute to the frequent emergence of new pathogenic strains of this important zoonotic pathogen. Currently, our understanding of Salmonella mobile elements is skewed by the fact that most studies have focused on highly virulent or common serovars. To gain a more global picture of mobile elements in Salmonella, we used prediction algorithms to screen for mobile elements in 16 sequenced Salmonella genomes representing serovars for which no prior genome scale mobile element data were available. From these results, selected mobile elements underwent further analyses in the form of validation studies, comparative analyses, and PCR-based population screens. Through this analysis we identified a novel plasmid that has two cointegrated replicons (IncI1-IncFIB); this plasmid type was found in four genomes representing different Salmonella serovars and contained a virulence gene array that had not been previously identified. A Salmonella Montevideo isolate contained an IncHI and an IncN2 plasmid, which both encoded antimicrobial resistance genes. We also identified two novel genomic islands (SGI2 and SGI3), and 42 prophages with mosaic architecture, seven of them harboring known virulence genes. Finally, we identified a novel integrative conjugative element (ICE) encoding a type IVb pilus operon in three non-typhoidal Salmonella serovars. Our analyses not only identified a considerable number of mobile elements that have not been previously reported in Salmonella, but also found evidence that these elements facilitate transfer of genes that were previously thought to be limited in their distribution among Salmonella serovars. The abundance of mobile elements encoding pathogenic properties may facilitate the emergence of strains with novel combinations of pathogenic traits.  相似文献   

10.
We present herein the first complete genome sequence of a thermophilic Bacillus-related species, Geobacillus kaustophilus HTA426, which is composed of a 3.54 Mb chromosome and a 47.9 kb plasmid, along with a comparative analysis with five other mesophilic bacillar genomes. Upon orthologous grouping of the six bacillar sequenced genomes, it was found that 1257 common orthologous groups composed of 1308 genes (37%) are shared by all the bacilli, whereas 839 genes (24%) in the G.kaustophilus genome were found to be unique to that species. We were able to find the first prokaryotic sperm protamine P1 homolog, polyamine synthase, polyamine ABC transporter and RNA methylase in the 839 unique genes; these may contribute to thermophily by stabilizing the nucleic acids. Contrasting results were obtained from the principal component analysis (PCA) of the amino acid composition and synonymous codon usage for highlighting the thermophilic signature of the G.kaustophilus genome. Only in the PCA of the amino acid composition were the Bacillus-related species located near, but were distinguishable from, the borderline distinguishing thermophiles from mesophiles on the second principal axis. Further analysis revealed some asymmetric amino acid substitutions between the thermophiles and the mesophiles, which are possibly associated with the thermoadaptation of the organism.  相似文献   

11.
Snyder LA  Davies JK  Ryan CS  Saunders NJ 《Plasmid》2005,54(3):191-218
The availability of complete genome sequences from multiple pathogenic Neisseria strains and species has enabled a comprehensive survey of the genomic and genetic differences occurring within these species. In this review, we describe the chromosomal rearrangements that have occurred, and the genomic islands and prophages that have been identified in the various genomes. We also describe instances where specific genes are present or absent, other instances where specific genes have been inactivated, and situations where there is variation in the version of a gene that is present. We also provide an overview of mosaic genes present in these genomes, and describe the variation systems that allow the expression of particular genes to be switched ON or OFF. We have also described the presence and location of mobile non-coding elements in the various genomes. Finally, we have reviewed the incidence and properties of various extra-chromosomal elements found within these species. The overall impression is one of genomic variability and instability, resulting in increased functional flexibility within these species.  相似文献   

12.
Marine Group I (MGI) Thaumarchaeota are one of the most abundant and cosmopolitan chemoautotrophs within the global dark ocean. To date, no representatives of this archaeal group retrieved from the dark ocean have been successfully cultured. We used single cell genomics to investigate the genomic and metabolic diversity of thaumarchaea within the mesopelagic of the subtropical North Pacific and South Atlantic Ocean. Phylogenetic and metagenomic recruitment analysis revealed that MGI single amplified genomes (SAGs) are genetically and biogeographically distinct from existing thaumarchaea cultures obtained from surface waters. Confirming prior studies, we found genes encoding proteins for aerobic ammonia oxidation and the hydrolysis of urea, which may be used for energy production, as well as genes involved in 3-hydroxypropionate/4-hydroxybutyrate and oxidative tricarboxylic acid pathways. A large proportion of protein sequences identified in MGI SAGs were absent in the marine cultures Cenarchaeum symbiosum and Nitrosopumilus maritimus, thus expanding the predicted protein space for this archaeal group. Identifiable genes located on genomic islands with low metagenome recruitment capacity were enriched in cellular defense functions, likely in response to viral infections or grazing. We show that MGI Thaumarchaeota in the dark ocean may have more flexibility in potential energy sources and adaptations to biotic interactions than the existing, surface-ocean cultures.  相似文献   

13.
Mobile elements Meanwhile, we know that mobile elements are present in all forms of life. The genomes of mammals consist of up to 50% of mobile elements, those of plants up to 90%. In bacteria mobile elements establish themselves as autonomously replicating replicons (plasmids and plasmid‐prophages) or are constituents of replicons such as IS elements, transposons, conjugative transposons, integrative and conjugative elements (ICEs), genomic islands and integrons. Why distinct bacterial species still exist? Most probably, still unknown mechanisms ensure that some genes never become mobile.  相似文献   

14.
Thermophilic organisms must be capable of accurate translation at temperatures in which the individual components of the translation machinery and also specific amino acids are particularly sensitive. Thermus thermophilus is a good model organism for studies of thermophilic translation because many of the components in this process have undergone structural and biochemical characterization. We have focused on the pathways of aminoacyl-tRNA synthesis for glutamine, asparagine, proline, and cysteine. We show that the T. thermophilus prolyl-tRNA synthetase (ProRS) exhibits cysteinyl-tRNA synthetase (CysRS) activity although the organism also encodes a canonical CysRS. The ProRS requires tRNA for cysteine activation, as is known for the characterized archaeal prolyl-cysteinyl-tRNA synthetase (ProCysRS) enzymes. The heterotrimeric T. thermophilus aspartyl-tRNA(Asn) amidotransferase can form Gln-tRNA in addition to Asn-tRNA: however, a 13-amino-acid C-terminal truncation of the holoenzyme A subunit is deficient in both activities when assayed with homologous substrates. A survey of codon usage in completed prokaryotic genomes identified a higher Glu:Gln ratio in proteins of thermophiles compared to mesophiles.  相似文献   

15.
Microbial genes that are “novel” (no detectable homologs in other species) have become of increasing interest as environmental sampling suggests that there are many more such novel genes in yet-to-be-cultured microorganisms. By analyzing known microbial genomic islands and prophages, we developed criteria for systematic identification of putative genomic islands (clusters of genes of probable horizontal origin in a prokaryotic genome) in 63 prokaryotic genomes, and then characterized the distribution of novel genes and other features. All but a few of the genomes examined contained significantly higher proportions of novel genes in their predicted genomic islands compared with the rest of their genome (Paired t test = 4.43E-14 to 1.27E-18, depending on method). Moreover, the reverse observation (i.e., higher proportions of novel genes outside of islands) never reached statistical significance in any organism examined. We show that this higher proportion of novel genes in predicted genomic islands is not due to less accurate gene prediction in genomic island regions, but likely reflects a genuine increase in novel genes in these regions for both bacteria and archaea. This represents the first comprehensive analysis of novel genes in prokaryotic genomic islands and provides clues regarding the origin of novel genes. Our collective results imply that there are different gene pools associated with recently horizontally transmitted genomic regions versus regions that are primarily vertically inherited. Moreover, there are more novel genes within the gene pool associated with genomic islands. Since genomic islands are frequently associated with a particular microbial adaptation, such as antibiotic resistance, pathogen virulence, or metal resistance, this suggests that microbes may have access to a larger “arsenal” of novel genes for adaptation than previously thought.  相似文献   

16.
Cellular organisms in different domains of life employ structurally unrelated, non-homologous DNA primases for synthesis of a primer for DNA replication. Archaea and eukaryotes encode enzymes of the archaeo-eukaryotic primase (AEP) superfamily, whereas bacteria uniformly use primases of the DnaG family. However, AEP genes are widespread in bacterial genomes raising questions regarding their provenance and function. Here, using an archaeal primase–polymerase PolpTN2 encoded by pTN2 plasmid as a seed for sequence similarity searches, we recovered over 800 AEP homologs from bacteria belonging to 12 highly diverse phyla. These sequences formed a supergroup, PrimPol-PV1, and could be classified into five novel AEP families which are characterized by a conserved motif containing an arginine residue likely to be involved in nucleotide binding. Functional assays confirm the essentiality of this motif for catalytic activity of the PolpTN2 primase–polymerase. Further analyses showed that bacterial AEPs display a range of domain organizations and uncovered several candidates for novel families of helicases. Furthermore, sequence and structure comparisons suggest that PriCT-1 and PriCT-2 domains frequently fused to the AEP domains are related to each other as well as to the non-catalytic, large subunit of archaeal and eukaryotic primases, and to the recently discovered PriX subunit of archaeal primases. Finally, genomic neighborhood analysis indicates that the identified AEPs encoded in bacterial genomes are nearly exclusively associated with highly diverse integrated mobile genetic elements, including integrative conjugative plasmids and prophages.  相似文献   

17.
Two archaeal proteins, RadA and RadB, share similarity with the RecA/Rad51 family of recombinases, with RadA being the functional homologue. We have studied and compared the RadA and RadB proteins of mesophilic and thermophilic Archaea. In growing cells, RadA levels are similar in mesophilic Methanococcus species and the hyperthermophile Methanococcus jannaschii. Treatment of cells with mutagenic agents (methylmethane sulfonate or UV light) increased the expression of RadA (as evidenced by higher levels of both mRNA and protein) in all organisms tested, but the increase was greater in the mesophiles than in the thermophiles M. jannaschii and Sulfolobus solfataricus. Recombinantly expressed RadA proteins from the mesophile M. voltae and the thermophile M. jannaschii were similar in their ATPase- and DNA-binding activities. All the data are consistent with proposals that RadA plays the same role as eukaryotic Rad51. Surprisingly, the data also suggested that the thermophiles do not need more RadA protein or activity than the mesophiles. On the other hand, RadB is not coregulated with RadA, and its role remains unclear. Neither RadA nor RadB from a mesophile or from a thermophile rescued the UV-sensitive phenotype of an Escherichia coli recA- host.  相似文献   

18.
The recent availability of several archaeal genome sequences has provided a basis for detailed analyses of the frequency, location and phylogeny of archaeal mobile elements. All the known elements fall into two main types, autonomous insertion sequence (IS) elements and the non-autonomous miniature inverted repeat element (MITE)-like elements. Both classes are considered to be mobilized via transposases that are encoded by the IS elements, although mobility has only been demonstrated experimentally for a few elements. The number, and diversity, of the elements differs greatly between the genomes. At one extreme Sulfolobus solfataricus P2 and Halobacterium NRC-1 are very rich in elements while Methanobacterium thermoautotrophicum contains none. The former also show examples of complex clusters of interwoven elements. An analysis of the genomic distribution in S. solfataricus suggests that the putative oriC and terC regions act as barriers for the mobility of both IS and MITE-like elements. Moreover, the very high level of truncated IS elements in the genomes of S. solfataricus, Sulfolobus tokodaii and Thermoplasma volcanium suggests that there may be a cellular mechanism for selectively inactivating IS elements at a point when they become too numerous and disadvantageous for the cell. Phylogenetically, archaeal IS elements are confined to 11 of the 17 known families of bacterial and eukaryal IS elements where some generate distinct subgroups. Finally, DNA viruses, plasmids and DNA fragments can also be inserted into, and excised from, archaeal genomes by means of an integrase-mediated mechanism that has special archaeal characteristics.  相似文献   

19.
The fatty acid distribution of three mesophilic and three thermophilic strains of the genus Bacillus was determined by gas chromatography of the fatty acid methyl esters. Fatty acid i-15:0 was the most abundant in both the mesophiles (51%) and the thermophiles (41%). The second most abundant fatty acid was a-15:0 in the mesophiles (22%), and i-17:0 in the thermophiles (27%). The fatty acid pair i-15:0, i-17:0 was the most predominant pair in both the mesophiles (61%) and the thermophiles (66%). The fatty acid pair a-15:0, a-17:0 was the second most predominant pair and was much higher in the mesophiles (30%) than in the thermophiles (15%). The average fatty acid chain length was 15.5 for the mesophiles and 16.0 for the thermophiles. The significance of these results for the lipid theory of thermophily is discussed.  相似文献   

20.
Proper cell function relies on correct protein localization. As a first step in the delivery of extracytoplasmic proteins to their ultimate destinations, the hydrophobic barrier presented by lipid-based membranes must be overcome. In contrast to the well-defined bacterial and eukaryotic protein translocation systems, little is known about how proteins cross the membranes of archaea, the third and most recently described domain of life. In bacteria and eukaryotes, protein translocation occurs at proteinaceous sites comprised of evolutionarily conserved core components acting in concert with other, domain-specific elements. Examination of available archaeal genomes as well as cloning of individual genes from other archaeal strains reveals the presence of homologues to selected elements of the bacterial or eukaryotic translocation machines. Archaeal genomic searches, however, also reveal an apparent absence of other, important components of these two systems. Archaeal translocation may therefore represent a hybrid of the bacterial and eukaryotic models yet may also rely on components or themes particular to this domain of life. Indeed, considering the unique chemical composition of the archaeal membrane as well as the extreme conditions in which archaea thrive, the involvement of archaeal-specific translocation elements could be expected. Thus, understanding archaeal protein translocation could reveal the universal nature of certain features of protein translocation which, in some cases, may not be readily obvious from current comparisons of bacterial and eukaryotic systems. Alternatively, elucidation of archaeal translocation could uncover facets of the translocation process either not yet identified in bacteria or eukaryotes, or which are unique to archaea. In the following, the current status of our understanding of protein translocation in archaea is reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号