共查询到20条相似文献,搜索用时 0 毫秒
1.
M. R. Natarajan W.-M. Wu J. Nye H. Wang L. Bhatnagar M. K. Jain 《Applied microbiology and biotechnology》1996,46(5-6):673-677
An anaerobic methanogenic microbial consortium, developed in a granular form, exhibited extensive dechlorination of defined
polychlorinated biphenyl (PCB) congeners. A 2,3,4,5,6-pentachlorobiphenyl was dechlorinated to biphenyl via 2,3,4,6-tetrachlorobiphenyl,
2,4,6-trichlorobiphenyl, 2,4-dichlorobi-phenyl and 2-chlorobiphenyl (CB). Removal of chlorine atoms from all three positions
of the biphenyl ring, i.e., ortho, meta and para, was observed during this reductive dechlorination process. Biphenyl was identified as one of the end-products of the reductive
dechlorination by GC-MS. After 20 weeks, the concentrations of the dechlorination products 2,4,6-CB, 2,4-CB, 2-CB and biphenyl
were 8.1, 41.2, 3.0 and 47.8 μM respectively, from an initial 105 μM 2,3,4,5,6-CB. The extent and pattern of the dechlorination
were further confirmed by the dechlorination of lightly chlorinated congeners including 2-CB, 3-CB, 4-CB, 2,4-CB and 2,6-CB
individually. This study indicates that the dechlorination of 2,3,4,5,6-CB to biphenyl is due to ortho, meta and para dechlorination by this anaerobic microbial consortium.
Received: 30 April 1996 / Received revision: 26 July 1996 / Accepted: 5 August 1996 相似文献
2.
Directed evolution of a ring-cleaving dioxygenase for polychlorinated biphenyl degradation 总被引:3,自引:0,他引:3
Fortin PD MacPherson I Neau DB Bolin JT Eltis LD 《The Journal of biological chemistry》2005,280(51):42307-42314
DoxG, an extradiol dioxygenase involved in the aerobic catabolism of naphthalene, possesses a weak ability to cleave 3,4-dihydroxybiphenyls (3,4-DHB), critical polychlorinated biphenyl metabolites. A directed evolution strategy combining error-prone PCR, saturation mutagenesis, and DNA shuffling was used to improve the polychlorinated biphenyl-degrading potential of DoxG. Screening was facilitated through analysis of filtered, digital imaging of plated colonies. A simple scheme, which is readily adaptable to other activities, enabled the screening of >10(5) colonies/h. The best variant, designated DoxGSMA2, cleaved 3,4-DHB with an apparent specificity constant of 2.0 +/- 0.3 x 10(6) m(-1) s(-1), which is 770 times that of wild-type (WT) DoxG. The specificities of DoxGSMA2 for 1,2-DHN and 2,3-DHB were increased by 6.7-fold and reduced by 2-fold, respectively, compared with the WT enzyme. DoxGSMA2 contained three substituted residues with respect to the WT enzyme: L190M, S191W, and L242S. Structural data indicate that the side chains of residues 190 and 242 occur on opposite walls of the substrate binding pocket and may interact directly with the distal ring of 3,4-DHB or influence contacts between this substrate and other residues. Thus, the introduction of two bulkier residues on one side of the substrate binding pocket and a smaller residue on the other may reshape the binding pocket and alter the catalytically relevant interactions of 3,4-DHB with the enzyme and dioxygen. Kinetic analyses reveal that the substitutions are anti-cooperative. 相似文献
3.
Kyohei Baito Satomi Imai Makoto Matsushita Miku Otani Yu Sato Hiroyuki Kimura 《Microbial biotechnology》2015,8(5):837-845
In a deep aquifer associated with an accretionary prism, significant methane (CH4) is produced by a subterranean microbial community. Here, we developed bioreactors for producing CH4 and hydrogen (H2) using anaerobic groundwater collected from the deep aquifer. To generate CH4, the anaerobic groundwater amended with organic substrates was incubated in the bioreactor. At first, H2 was detected and accumulated in the gas phase of the bioreactor. After the H2 decreased, rapid CH4 production was observed. Phylogenetic analysis targeting 16S rRNA genes revealed that the H2-producing fermentative bacterium and hydrogenotrophic methanogen were predominant in the reactor. The results suggested that syntrophic biodegradation of organic substrates by the H2-producing fermentative bacterium and the hydrogenotrophic methanogen contributed to the CH4 production. For H2 production, the anaerobic groundwater, amended with organic substrates and an inhibitor of methanogens (2-bromoethanesulfonate), was incubated in a bioreactor. After incubation for 24 h, H2 was detected from the gas phase of the bioreactor and accumulated. Bacterial 16S rRNA gene analysis suggested the dominance of the H2-producing fermentative bacterium in the reactor. Our study demonstrated a simple and rapid CH4 and H2 production utilizing anaerobic groundwater containing an active subterranean microbial community. 相似文献
4.
Hoa T. Q. Kieu Harald Horn Elisabeth Müller 《Bioprocess and biosystems engineering》2014,37(3):451-460
The effect of heavy metals on community structure of a heavy metal tolerant sulfidogenic consortium was evaluated by using a combination of denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene and dissimilatory sulfite reductase (dsrB) gene fragments, 16S rRNA gene cloning analysis and fluorescence in situ hybridization (FISH). For this purpose, four anaerobic semi-continuous stirred tank reactors (referred as R1–R4) were run in parallel for 12 weeks at heavy metal loading rates of 1.5, 3, 4.5 and 7.5 mg l?1 d?1 each of Cu2+, Ni2+, Zn2+, and Cr6+, respectively. The abundance ratio of Desulfovibrio vulgaris detected by FISH to total cell counts was consistent with the obtained results of cloning and DGGE. This indicated that D. vulgaris was dominant in all analyzed samples and played a key role in heavy metal removal in R1, R2, and R3. In contrast, after 4 weeks of operation of R4, a distinct biomass loss was observed and no positive hybridized cells were detected by specific probes for the domain Bacteria, sulfate-reducing bacteria and D. vulgris. High removal efficiencies of heavy metals were achieved in R1, R2 and R3 after 12 weeks, whereas the precipitation of heavy metals in R4 was significantly decreased after 4 weeks and almost not observed after 6 weeks of operation. In addition, the anaerobic bacteria, such as Pertrimonas sulfuriphila, Clostridium sp., Citrobacter amalonaticus, and Klebsiella sp., identified from DGGE bands and clone library were hypothesized as heavy metal resistant bacteria at a loading rate of 1.5 mg l?1 d?1 of Cu2+, Ni2+, Zn2+, and Cr6+. 相似文献
5.
6.
Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reactors 总被引:13,自引:0,他引:13
Phosphorus (P)-accumulating microbial granules were developed at different substrate P/chemical oxygen demand (COD) ratios in the range of 1/100 to 10/100 by weight in sequencing batch reactors. The soluble COD and PO4-P profiles showed that the granules had typical P-accumulating characteristics, with concomitant uptake of soluble organic carbon and the release of phosphate in the anaerobic stage, followed by rapid phosphate uptake in the aerobic stage. The size of P-accumulating granules exhibited a decreasing trend with the increase in substrate P/COD ratio, while the structure of the granules became more compact and denser as the substrate P/COD ratio increased. The P uptake by granules fell within the range of 1.9% to 9.3% by weight, which is comparable with uptake obtained in conventional enhanced biological phosphorus removal (EBPR) processes. It was further found that low aerobic respirometric activity of granules in terms of specific oxygen utilization rate favors P uptake by granules. The results presented would be useful for the further development of a novel granule-based EBPR technology. 相似文献
7.
Effects of the antimicrobial tylosin on the microbial community structure of an anaerobic sequencing batch reactor 总被引:1,自引:0,他引:1
Toshio Shimada Xu Li Julie L. Zilles Eberhard Morgenroth Lutgarde Raskin 《Biotechnology and bioengineering》2011,108(2):296-305
The effects of the antimicrobial tylosin on a methanogenic microbial community were studied in a glucose‐fed laboratory‐scale anaerobic sequencing batch reactor (ASBR) exposed to stepwise increases of tylosin (0, 1.67, and 167 mg/L). The microbial community structure was determined using quantitative fluorescence in situ hybridization (FISH) and phylogenetic analyses of bacterial 16S ribosomal RNA (rRNA) gene clone libraries of biomass samples. During the periods without tylosin addition and with an influent tylosin concentration of 1.67 mg/L, 16S rRNA gene sequences related to Syntrophobacter were detected and the relative abundance of Methanosaeta species was high. During the highest tylosin dose of 167 mg/L, 16S rRNA gene sequences related to Syntrophobacter species were not detected and the relative abundance of Methanosaeta decreased considerably. Throughout the experimental period, Propionibacteriaceae and high GC Gram‐positive bacteria were present, based on 16S rRNA gene sequences and FISH analyses, respectively. The accumulation of propionate and subsequent reactor failure after long‐term exposure to tylosin are attributed to the direct inhibition of propionate‐oxidizing syntrophic bacteria closely related to Syntrophobacter and the indirect inhibition of Methanosaeta by high propionate concentrations and low pH. Biotechnol. Bioeng. 2011;108: 296–305. © 2010 Wiley Periodicals, Inc. 相似文献
8.
Two sequencing batch reactors (SBR) were constructed and filled with different inocula of activated sludge (AS) and mature fine tailings (MFT) to treat oil sands process-affected water (OSPW). The COD was reduced by 82% in the AS-SBR and 43% in the MFT-SBR during phase I using 10% OSPW and 90% synthetic wastewater as reactor feed. However, COD removal reached 12% and 20% in the AS-SBR and the MFT-SBR, respectively, when 100% raw OSPW was fed into the reactors. Maximum removal of acid-extractable organics (AEO) was 8.7% and 16.6% in the AS-SBR and the MFT-SBR, respectively with a hydraulic retention time of one day. Pyrosequencing analysis revealed that Proteobacteria was the dominant phylum and beta- and gamma-Proteobacteria were dominant classes in both reactors. Evidence of a microbial community change was observed when influent raw OSPW was switched from 50 to 100%. More significant changes in the AS-SBR community were detected. 相似文献
9.
Identification and modification of biphenyl dioxygenase sequences that determine the specificity of polychlorinated biphenyl degradation. 总被引:7,自引:3,他引:7 下载免费PDF全文
The polychlorinated biphenyl (PCB) congener specificities and partial BphA sequences of biphenyl dioxygenase were determined for a set of PCB-degrading bacteria. The strains examined were categorized into two groups based on their ability to degrade 17 PCB congeners. Strains that degraded a broad range of PCBs but had relatively weak activity against di-para-substituted PCBs were designated as having an LB400-type specificity. Strains designated as having a KF707-type specificity degraded a much narrower range of PCBs but had strong activity against certain di-para-substituted congeners. BphA protein sequence comparisons between these two types of strains identified four regions (designated I, II, III, and IV) in which specific sequences were consistently associated with either broad or narrow PCB substrate specificity. The dramatic differences in substrate specificity between LB400 and KF707 appear to result primarily from a combination of mutations in regions III and IV. Altering these regions in the LB400 BphA subunit to correspond to those in the KF707 sequence produced a narrow substrate specificity very similar to that of KF707. Some individual mutations within region III alone were found to improve PCB degradative activity, especially for di-para-substituted congeners. However, the greatest improvements in activity resulted from multiple amino acid modifications in region III, suggesting that the effects of these mutations are cooperative. These results demonstrate the ability to significantly improve PCB oxidative activity through sequence modifications of biphenyl dioxygenase. 相似文献
10.
Denecke M Eilmus S Röder N Roesch C Bothe H 《Applied microbiology and biotechnology》2012,93(4):1725-1734
The diversity of the microbial community was identified in two lab-scale, ideally mixed sequencing batch reactors which were
run for 115 days. One of the reactors was intermittently aerated (2 h aerobically/2 h anaerobically) whereas the other was
consistently aerated. The amount of biomass as dry matter, the degradation of organic carbon determined by chemical oxygen
demand and nitrogen-degradation activity were followed over the operation of the two reactors and did not show significant
differences between the two approaches at the end of the experiment. At this point, the composition of the microbial community
was determined by a terminal restriction fragment length polymorphism approach using multiple restriction enzymes by which
organisms were retrieved to the lowest taxonomic level. The microbial composition was then significantly different. The species
richness was at least five-fold higher in the intermittently aerated reactor than in the permanently kept aerobic approach
which is in line with the observation that ecosystem disturbances result in higher diversity. 相似文献
11.
Angelika Hanreich Ulrike Schimpf Martha Zakrzewski Andreas Schlüter Dirk Benndorf Robert Heyer Erdmann Rapp Alfred Pühler Udo Reichl Michael Klocke 《Systematic and applied microbiology》2013
Microbial communities in biogas batch fermentations, using straw and hay as co-substrates, were analyzed at the gene and protein level by metagenomic and metaproteomic approaches. The analysis of metagenomic data revealed that the Clostridiales and Bacteroidales orders were prevalent in the community. However, the number of sequences assigned to the Clostridiales order decreased during fermentation, whereas the number of sequences assigned to the Bacteroidales order increased. In addition, changes at the functional level were monitored and the metaproteomic analyses detected transporter proteins and flagellins, which were expressed mainly by members of the Bacteroidetes and Firmicutes phyla. A high number of sugar transporters, expressed by members of the Bacteroidetes, proved their potential to take up various glycans efficiently. Metagenome data also showed that methanogenic organisms represented less than 4% of the community, while 20–30% of the identified proteins were of archeal origin. These data suggested that methanogens were disproportionally active. 相似文献
12.
Shcherbakova VA Chuvil'skaia NA Golovchenko NP Suzina NE Lysenko AM Laurinavichus KS Akimenko VK 《Mikrobiologiia》2003,72(6):752-758
Three strains of Clostridium sp., 14 (VKM B-2201), 42 (VKM B-2202), and 21 (VKM B-2279), two methanogens, Methanobacterium formicicum MH (VKM B-2198) and Methanosarcina mazei MM (VKM B-2199), and one sulfate-reducing bacterium, Desulfovibrio sp. SR1 (VKM B-2200), were isolated in pure cultures from an anaerobic microbial community capable of degrading p-toluene sulfonate. Strain 14 was able to degrade p-toluene sulfonate in the presence of yeast extract and bactotryptone and, like strain 42, to utilize p-toluene sulfonate as the sole sulfur source with the production of toluene. p-Toluene sulfonate stimulated the growth of Ms. mazei MM on acetate. The sulfate-reducing strain Desulfovibrio sp. SR1 utilized p-toluene sulfonate as an electron acceptor. The putative scheme of p-toluene sulfonate degradation by the anaerobic microbial community is discussed. 相似文献
13.
High strength slaughterhouse wastewater was treated in four 42 l anaerobic sequencing batch reactors (ASBRs) operated at 30 degrees C, 25 degrees C and 20 degrees C. The wastewater contained between 30% and 53% of its chemical oxygen demand (COD) as suspended solids (SS). The ASBRs could easily support volumetric organic loading rates (OLRs) of 4.93, 2.94 and 2.75 kg/m3/d (biomass OLRs of 0.44, 0.42 and 0.14 g/g volatile SS (VSS)/d) at 30 degrees C, 25 degrees C, and 20 degrees C, respectively. At all operating temperatures, the total COD (TCOD) and soluble COD (SCOD) were reduced by over 92%, while average SS removal varied between 80% and 96%. Over the experimental period, 90.8%, 88.7% and 84.2% of the COD removed was transformed into methane at 30 degrees C, 25 degrees C and 20 degrees C, respectively. The decrease in the conversion of the COD removed into methane as operating temperature was lowered, may be partly explained by a lower degradation of influent SS as temperature was reduced. The reactors showed a high average methanogenic activity of 0.37, 0.34 and 0.12 g CH4-COD/gVSS/d (22.4, 12.7 and 11.8 l/d) at 30 degrees C, 25 degrees C and 20 degrees C, respectively. The average methane content in the biogas increased from 74.7% to 78.2% as temperature was lowered from 30 degrees C to 20 degrees C. 相似文献
14.
Vikas Sonakya Neena Raizada Martina Hausner Peter A Wildere 《International microbiology》2007,10(4):245-251
Microbial populations associated with methanogenic fixed- or floating-bed bioreactors used for anaerobic digestion of lignocellulosic waste were investigated. Fluorescent in situ hybridization (FISH) was used to characterize microorganisms in samples obtained from different heights in the reactors, which were operated in a semi-continuous manner (feeding and mixing once every 2 days). The FISH results showed that Methanosaeta concilii cells were most numerous at the bottom of both reactors. M. concilii cells were more abundant in the fixed-bed reactor (FXBR), which performed better than the floating-bed reactor (FLBR). Species of the Methanosarcina genera (mainly M. barkeri and M. mazei) were also observed in the FLBR but rarely in the FXBR. Methane production in each of the reactors ranged from 0.29 to 0.33 m3 CH(4)/kg COD(rem) (chemical oxygen demand removed). The removal of volatile fatty acids (VFA; 70-75 h) in the FXBR was more efficient than in the FLBR. 相似文献
15.
多环芳烃厌氧生物降解研究进展 总被引:1,自引:1,他引:1
多环芳烃(PAHs)是环境中广泛分布的一类持久性有机污染物,对生态环境和公众健康具有极大危害。微生物降解是环境中去除多环芳烃污染的有效途径,近年来PAHs厌氧生物降解研究逐渐取代好氧降解成为人们关注的重点。本文从PAHs厌氧生物降解的研究背景出发,从不同厌氧还原反应体系、厌氧降解微生物、PAHs厌氧生物转化途径等方面阐述了PAHs厌氧生物降解的研究概况,归纳了对PAHs厌氧生物降解有积极作用的影响因素,提出了PAHs厌氧降解研究目前存在的问题,并对该领域未来研究方向作了简述和展望。希望为多环芳烃厌氧生物降解与环境修复研究与实践提供参考。 相似文献
16.
H.O. Méndez‐Acosta E. Hernandez‐Martinez J.A. Jáuregui‐Jáuregui J. Alvarez‐Ramirez H. Puebla 《Biotechnology and bioengineering》2013,110(8):2131-2139
Efficient monitoring and control schemes are mandatory in the current operation of biological wastewater treatment plants because they must accomplish more demanding environmental policies. This fact is of particular interest in anaerobic digestion processes where the availability of accurate, inexpensive, and suitable sensors for the on‐line monitoring of key process variables remains an open problem nowadays. In particular, this problem is more challenging when dealing with batch processes where the monitoring strategy has to be performed in finite time, which limits the application of current advanced monitoring schemes as those based in the proposal of nonlinear observers (i.e., software sensors). In this article, a fractal time series analysis of pH fluctuations in an anaerobic sequential batch reactor (AnSBR) used for the treatment of tequila vinasses is presented. Results indicated that conventional on‐line pH measurements can be correlated with off‐line determined key process variables, such as COD, VFA and biogas production via some fractality indexes. Biotechnol. Bioeng. 2013; 110: 2131–2139. © 2013 Wiley Periodicals, Inc. 相似文献
17.
Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. 总被引:16,自引:0,他引:16
J N Rooney-Varga R T Anderson J L Fraga D Ringelberg D R Lovley 《Applied and environmental microbiology》1999,65(7):3056-3063
Microbial community composition associated with benzene oxidation under in situ Fe(III)-reducing conditions in a petroleum-contaminated aquifer located in Bemidji, Minn., was investigated. Community structure associated with benzene degradation was compared to sediment communities that did not anaerobically oxidize benzene which were obtained from two adjacent Fe(III)-reducing sites and from methanogenic and uncontaminated zones. Denaturing gradient gel electrophoresis of 16S rDNA sequences amplified with bacterial or Geobacteraceae-specific primers indicated significant differences in the composition of the microbial communities at the different sites. Most notable was a selective enrichment of microorganisms in the Geobacter cluster seen in the benzene-degrading sediments. This finding was in accordance with phospholipid fatty acid analysis and most-probable-number-PCR enumeration, which indicated that members of the family Geobacteraceae were more numerous in these sediments. A benzene-oxidizing Fe(III)-reducing enrichment culture was established from benzene-degrading sediments and contained an organism closely related to the uncultivated Geobacter spp. This genus contains the only known organisms that can oxidize aromatic compounds with the reduction of Fe(III). Sequences closely related to the Fe(III) reducer Geothrix fermentans and the aerobe Variovorax paradoxus were also amplified from the benzene-degrading enrichment and were present in the benzene-degrading sediments. However, neither G. fermentans nor V. paradoxus is known to oxidize aromatic compounds with the reduction of Fe(III), and there was no apparent enrichment of these organisms in the benzene-degrading sediments. These results suggest that Geobacter spp. play an important role in the anaerobic oxidation of benzene in the Bemidji aquifer and that molecular community analysis may be a powerful tool for predicting a site's capacity for anaerobic benzene degradation. 相似文献
18.
19.
In this study, two laboratory-scale anaerobic batch reactors started up with different inoculum sludges and fed with the same
synthetic wastewater were monitored in terms of performance and microbial community shift by denaturant gradient gel electrophoresis
fingerprinting and subsequent cloning, sequencing analysis in order to reveal importance of initial quality of inoculum sludge
for operation of anaerobic reactors. For this purpose, two different seed sludge were evaluated. In Reactor1 seeded with a
sludge having less diverse microbial community (19 operational taxonomic unit (OTU’s) for Bacterial and 8 OTU’s for Archaeal
community, respectively) and a methanogenic activity of 150 ml CH4 g TVS−1 day−1, a chemical oxygen demand (COD) removal efficiency of 78.8 ± 4.17% was obtained at a substrate to microorganism (S/X) ratio
of 0.38. On the other hand, Reactor2, seeded with a sludge having a much more diverse microbial community (24 OTU’s for Bacterial
and 9 OTU’s for Archaeal communities, respectively) and a methanogenic activity, 450 ml CH4 g TVS−1 day−1, operated in the same conditions showed a better start-up performance; a COD removal efficiency of over 98% at a S/X ratio
of 0.53. Sequence analysis of Seed2 revealed the presence of diverse fermentative and syntrophic bacteria, whereas excised
bands of Seed1 related to fermentative and sulfate/metal-reducing bacteria. This study revealed that a higher degree of bacterial
diversity, especially the presence of syntrophic bacteria besides the abundance of key species such as methanogenic Archaea
may play an important role in the performance of anaerobic reactors during the start-up period. 相似文献