首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quantitative analysis of genes that code for Dehalococcoides 16S rRNA and chloroethene-reductive dehalogenases TceA, VcrA, and BvcA was done on groundwater sampled from 150 monitoring wells spread over 11 chlorinated ethene polluted European locations. Redundancy analysis was used to relate molecular data to geochemical conditions. Dehalococcoides 16S rRNA- and vinyl chloride (VC)-reductase genes were present at all tested locations in concentrations up to 106 gene copies per ml of groundwater. However, differences between and also within locations were observed. Variation in Dehalococcoides 16S rRNA gene copy numbers were most strongly correlated to dissolved organic carbon concentration in groundwater and to conditions appropriate for biodegradation of chlorinated ethenes (U.S. Environmental Protection Agency score). In contrast, vcrA gene copy numbers correlated most significantly to VC and chlorinated ethene concentrations. Interestingly, bvcA and especially tceA were more correlated with oxidizing conditions. In groundwater microcosms, dechlorination of 1 mM VC was correlated to an increase of vcrA and/or bvcA gene copies by 2 to 4 orders of magnitude. Interestingly, in 34% of the monitoring wells and in 40% of the active microcosms, the amount of individual VC-reductase gene copies exceeded that of Dehalococcoides 16S rRNA gene copies. It is concluded that the geographical distribution of the genes was not homogeneous, depending on the geochemical conditions, whereby tceA and bvcA correlated to more oxidized conditions than Dehalococcoides 16S rRNA and vcrA. Because the variation in VC-reductase gene numbers was not directly correlated to variation in Dehalococcoides spp., VC-reductase genes are better monitoring parameters for VC dechlorination capacity than Dehalococcoides spp.Chlorinated ethenes, such as tetrachloroethene (PCE) and trichloroethene (TCE), are persistent groundwater pollutants (15, 22). Because these compounds are toxic and mobile in groundwater systems, they form a serious risk for human health and the environment. PCE and TCE can be dechlorinated by microorganisms under anaerobic conditions by reductive dehalogenation to dichloroethene (DCE), vinyl chloride (VC), and ethene (20). Bioremediation strategies for chloroethene-contaminated sites are often based on (stimulation of) reductive dechlorination of the chlorinated ethenes to ethene (7, 12, 14). In practice, reductive dechlorination of PCE and TCE can be incomplete, resulting in accumulation of DCE or VC. Since VC is much more mobile, toxic, and carcinogenic than PCE and TCE (9), monitoring and stimulation of VC dechlorination are essential steps in bioremediation strategies.Only members of Dehalococcoides spp. are known to be able to reductively dechlorinate VC. Therefore, 16S rRNA genes of these species are often used as molecular target to indicate and monitor DCE and VC dechlorination capacity at contaminated sites. However, previous studies showed different dechlorination capacities for individual Dehalococcoides species, and only a few strains are known to metabolically dechlorinate VC (6, 8, 10, 17, 21). As a consequence, 16S rRNA gene-based detection can lead to overestimation of VC dechlorination capacity. In contrast, although metabolic reductive dechlorination of VC has mostly been linked to Dehalococcoides spp., it cannot be excluded that other microbial species that perform this dechlorination exist. Genes coding for DCE and VC reductases may be exchangeable between different microbial species via horizontal gene transfer. This is plausible since it has been shown that the metabolic genes for VC dechlorination, vcrA and bvcA, have a different evolutionary history than most other Dehalococcoides genes (16). Consequently, Dehalococcoides 16S rRNA gene-based detection can also lead to underestimation of VC dechlorination capacity.To more precisely determine VC dechlorination capacity, genes directly involved in reductive dechlorination of VC should be used as a molecular target, in addition to Dehalococcoides 16S rRNA genes. A quantitative method was described to detect genes coding for VC-reductases VcrA and BvcA identified in Dehalococcoides sp. strains VS and GT and in Dehalococcoides sp. strain BAV1, respectively (10, 17, 21). Different studies showed direct correlation of vcrA and bvcA gene copy numbers with reductive dechlorination of VC in batch cultures, soil columns, and contaminated sites (2, 11, 19).Quantification of genes that encode VC-reductases can be a useful method to monitor reductive dechlorination of VC in chloroethene-contaminated groundwater during enhanced natural attenuation activities (4, 19). However, little is known about the presence, dispersion, and importance of specific dehalogenase genes in chlorinated ethene polluted groundwater and their correlation to biogeochemical conditions and reductive dechlorination.The objective of the present study was therefore to identify the relative importance of TCE-reductase gene tceA and VC-reductase genes vcrA and bvcA in chloroethene-polluted groundwater and to identify geochemical parameters that contribute to variation in copy numbers of these genes. To this end, groundwater of 150 monitoring wells from 11 European polluted sites was analyzed. Furthermore, microcosms with groundwater from 6 locations were started to test whether VC dechlorination is directly correlated to an increase of vcrA or bvcA genes.  相似文献   

2.
This study investigated the biotransformation pathways of 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) in the presence of chloroethenes (i.e. tetrachloroethene, PCE; trichloroethene, TCE) in anaerobic microcosms constructed with subsurface soil and groundwater from a contaminated site. When amended with yeast extract, lactate, butyrate, or H2 and acetate, 1,1,2,2-TeCA was initially dechlorinated via both hydrogenolysis to 1,1,2-trichloroethane (1,1,2-TCA) (major pathway) and dichloroelimination to dichloroethenes (DCEs) (minor pathway), with both reactions occurring under sulfidogenic conditions. In the presence of only H2, the hydrogenolysis of 1,1,2,2-TeCA to 1,1,2-TCA apparently required the presence of acetate to occur. Once formed, 1,1,2-TCA was degraded predominantly via dichloroelimination to vinyl chloride (VC). Ultimately, chloroethanes were converted to chloroethenes (mainly VC and DCEs) which persisted in the microcosms for very long periods along with PCE and TCE originally present in the groundwater. Hydrogenolysis of chloroethenes occurred only after highly reducing methanogenic conditions were established. However, substantial conversion to ethene (ETH) was observed only in microcosms amended with yeast extract (200 mg/l), suggesting that groundwater lacked some nutritional factors which were likely provided to dechlorinating microorganisms by this complex organic substrate. Bioaugmentation with an H2-utilizing PCE-dechlorinating Dehalococcoides spp. -containing culture resulted in the conversion of 1,1,2,2-TeCA, PCE and TCE to ETH and VC. No chloroethanes accumulated during degradation suggesting that 1,1,2,2-TeCA was degraded through initial dichloroelimination into DCEs and then typical hydrogenolysis into ETH and VC.  相似文献   

3.
Groundwater at an industrial site is contaminated with α hexachlorocyclohexane (HCH) and γ -HCH (i.e., lindane) (0.3 to 0.5 ppm). Other contaminants in the 1 to 15 ppm range include 1,2,4-trichlorobenezene (TCB), 1,2-dichlorobenzene (DCB), 1,3-DCB, 1,4-DCB, chlorobenzene (CB), benzene, trichloroethene (TCE), and cis-1,2-dichloroethene (cDCE). The aquifer consists of a shallow layer of soil over fractured dolomite, where most of the contaminant mass resides. The objective of this study was to compare (1) anaerobic reductive dechlorination of the polychlorinated contaminants, followed by aerobic biodegradation of the daughter products (mainly DCBs, CB, and benzene); and (2) aerobic biodegradation of α - and γ -HCH, TCB, DCBs, CB, and benzene, followed by anaerobic reduction of TCE and cDCE to ethene. Conventional wisdom suggests that sequential anaerobic and aerobic conditions are desirable for bioremediating sites contaminated by mixtures of polychlorinated organics. The results of this microcosm study suggest that a sequential aerobic and anaerobic approach may be more successful, although implementing this in the field presents some major challenges. In the dolomite microcosms incubated under aerobic conditions first (59 days), α - and γ -HCH were biodegraded close to the maximum contaminant level for lindane; all of the aromatic compounds were consumed; and there was partial removal of TCE and cDCE (presumptively via cometabolism). The subsequent switch to anaerobic conditions (day 101) yielded reductive dechlorination of the remaining TCE; a significant level of ethene was produced, although some cDCE and VC persisted. In contrast, sequential anaerobic (393 days) and aerobic treatment (498 days) for the dolomite microcosms was ineffective in completely removing the aromatic compounds, α -HCH, cDCE, and VC. For the soil microcosms, both treatment sequences were effective, most likely reflecting a greater abundance of the necessary microbes and electron donor in this part of the site.  相似文献   

4.
This paper investigates effects of combining thermal and biological remediation, based on laboratory studies of trichloroethene (TCE) degradation. Aquifer material was collected 6 months after terminating a full-scale Electrical Resistance Heating (ERH), when the site had cooled from approximately 100°C to 40°C. The aquifer material was used to construct bioaugmented microcosms amended with the mixed anaerobic dechlorinating culture, KB-1TM, and an electron donor (5 mM lactate). Microcosms were bioaugmented during cooling at 40, 30, 20, and 10°C, as temperatures continually decreased during laboratory incubation. Redox conditions were generally methanogenic, and electron donors were present to support dechlorination. For microcosms bioaugmented at 10°C and 20°C, dechlorination stalled at cis-dichloroethene (cDCE) and vinyl chloride (VC) 150 days after bioaugmentation. However, within 300 days of incubation ethene was produced in the majority of these microcosms. In contrast, dechlorination was rapid and complete in microcosms bioaugmented at 30°C. Microcosms bioaugmented at 40°C also showed rapid dechlorination, but stalled at cDCE with partial VC and ethene production, even after 150 days of incubation when the temperature had decreased to 10°C. These results suggest that sequential bioremediation of TCE is possible in field-scale thermal treatments after donor addition and bioaugmentation and that the optimal bioaugmentation temperature is approximately 30°C. When biological and thermal remediations are to be applied at the same location, three bioremediation approaches could be considered: (a) treating TCE in perimeter areas outside the source zone at temperatures of approximately 30°C; (b) polishing TCE concentrations in the original source zone during cooling from approximately 30°C to ambient groundwater temperatures; and (c) using bioremediation in downgradient areas taking advantages of the higher temperature and potential release of organic matter.  相似文献   

5.
Mixed anaerobic microbial subcultures enriched from a multilayered aquifer at a former chlorinated solvent disposal facility in West Louisiana were examined to determine the organism(s) involved in the dechlorination of the toxic compounds 1,2-dichloroethane (1,2-DCA) and 1,1,2-trichloroethane (1,1,2-TCA) to ethene. Sequences phylogenetically related to Dehalobacter and Dehalococcoides, two genera of anaerobic bacteria that are known to respire with chlorinated ethenes, were detected through cloning of bacterial 16S rRNA genes. Denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments after starvation and subsequent reamendment of culture with 1,2-DCA showed that the Dehalobacter sp. grew during the dichloroelimination of 1,2-DCA to ethene, implicating this organism in degradation of 1,2-DCA in these cultures. Species-specific real-time quantitative PCR was further used to monitor proliferation of Dehalobacter and Dehalococcoides during the degradation of chlorinated ethanes and showed that in fact both microorganisms grew simultaneously during the degradation of 1,2-DCA. Conversely, Dehalobacter grew during the dichloroelimination of 1,1,2-TCA to vinyl chloride (VC) but not during the subsequent reductive dechlorination of VC to ethene, whereas Dehalococcoides grew only during the reductive dechlorination of VC but not during the dichloroelimination of 1,1,2-TCA. This demonstrated that in mixed cultures containing multiple dechlorinating microorganisms, these organisms can have either competitive or complementary dechlorination activities, depending on the chloro-organic substrate.  相似文献   

6.
Aerobic bacteria that grow on vinyl chloride (VC) have been isolated previously, but their diversity and distribution are largely unknown. It is also unclear whether such bacteria contribute to the natural attenuation of VC at chlorinated-ethene-contaminated sites. We detected aerobic VC biodegradation in 23 of 37 microcosms and enrichments inoculated with samples from various sites. Twelve different bacteria (11 Mycobacterium strains and 1 Nocardioides strain) capable of growth on VC as the sole carbon source were isolated, and 5 representative strains were examined further. All the isolates grew on ethene in addition to VC and contained VC-inducible ethene monooxygenase activity. The Mycobacterium strains (JS60, JS61, JS616, and JS617) all had similar growth yields (5.4 to 6.6 g of protein/mol), maximum specific growth rates (0.17 to 0.23 day(-1)), and maximum specific substrate utilization rates (9 to 16 nmol/min/mg of protein) with VC. The Nocardioides strain (JS614) had a higher growth yield (10.3 g of protein/mol), growth rate (0.71 day(-1)), and substrate utilization rate (43 nmol/min/mg of protein) with VC but was much more sensitive to VC starvation. Half-velocity constant (K(s)) values for VC were between 0.5 and 3.2 micro M, while K(s) values for oxygen ranged from 0.03 to 0.3 mg/liter. Our results indicate that aerobic VC-degrading microorganisms (predominantly Mycobacterium strains) are widely distributed at sites contaminated with chlorinated solvents and are likely to be responsible for the natural attenuation of VC.  相似文献   

7.
Succinate is a core biochemical building block; optimizing succinate production from biomass by microbial fermentation is a focus of basic and applied biotechnology research. Lowering pH in anaerobic succinate fermentation culture is a cost-effective and environmentally friendly approach to reducing the use of sub-raw materials such as alkali, which are needed for neutralization. To evaluate the potential of bacteria-based succinate fermentation under weak acidic (pH <6.2) and anaerobic conditions, we characterized the anaerobic metabolism of Enterobacter aerogenes AJ110637, which rapidly assimilates glucose at pH 5.0. Based on the profile of anaerobic products, we constructed single-gene knockout mutants to eliminate the main anaerobic metabolic pathways involved in NADH re-oxidation. These single-gene knockout studies showed that the ethanol synthesis pathway serves as the dominant NADH re-oxidation pathway in this organism. To generate a metabolically engineered strain for succinate production, we eliminated ethanol formation and introduced a heterogeneous carboxylation enzyme, yielding E. aerogenes strain ΔadhE/PCK. The strain produced succinate from glucose with a 60.5 % yield (grams of succinate produced per gram of glucose consumed) at pH <6.2 and anaerobic conditions. Thus, we showed the potential of bacteria-based succinate fermentation under weak acidic conditions.  相似文献   

8.
An anaerobic, Fe(III)-reducing enrichment culture, which originatedfrom a sediment sample collected at a landfill in Nanji-do, Seoul, Korea, was capable ofdegrading cis-1,2-dichloroethylene (cis-DCE) and vinylchloride (VC). Although it exhibited the ability under Fe(III)-reducing conditions, the chlorinated ethenes degradationwas not linked to the Fe(III) reduction. During cis-DCE degradation, no VC, ethene, or ethanewas detected through the experimental period. Also, this culture did not accumulate ethene andethane during the VC degradation. It was unlikely that cis-DCE was reductivelydechlorinated to VC and then the VC formed was dechlorinated fast enough. Because the kinetic datashowed that the rate of cis-DCE degradation was 3.5 times higher than that of VC. Whereasglucose supported the culture growth and the degradation, formate, acetate, butyrate, propionate,lactate, pyruvate, and yeast extract did not. The results appeared consistent with the involvement ofoxidative degradation mechanism rather than reductive dechlorination mechanism. The traits of the culturedescribed here are unusual in the anaerobic degradation of chlorinated ethenes and may be usefulfor searching an effective organism and mechanism regarding anaerobic cis-DCE and VC degradation.  相似文献   

9.
Mixed anaerobic microbial subcultures enriched from a multilayered aquifer at a former chlorinated solvent disposal facility in West Louisiana were examined to determine the organism(s) involved in the dechlorination of the toxic compounds 1,2-dichloroethane (1,2-DCA) and 1,1,2-trichloroethane (1,1,2-TCA) to ethene. Sequences phylogenetically related to Dehalobacter and Dehalococcoides, two genera of anaerobic bacteria that are known to respire with chlorinated ethenes, were detected through cloning of bacterial 16S rRNA genes. Denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments after starvation and subsequent reamendment of culture with 1,2-DCA showed that the Dehalobacter sp. grew during the dichloroelimination of 1,2-DCA to ethene, implicating this organism in degradation of 1,2-DCA in these cultures. Species-specific real-time quantitative PCR was further used to monitor proliferation of Dehalobacter and Dehalococcoides during the degradation of chlorinated ethanes and showed that in fact both microorganisms grew simultaneously during the degradation of 1,2-DCA. Conversely, Dehalobacter grew during the dichloroelimination of 1,1,2-TCA to vinyl chloride (VC) but not during the subsequent reductive dechlorination of VC to ethene, whereas Dehalococcoides grew only during the reductive dechlorination of VC but not during the dichloroelimination of 1,1,2-TCA. This demonstrated that in mixed cultures containing multiple dechlorinating microorganisms, these organisms can have either competitive or complementary dechlorination activities, depending on the chloro-organic substrate.  相似文献   

10.
Methyl tert-butyl ether (MTBE) is a widespread groundwater contaminant that does not respond well to conventional treatment technologies. Growing evidence indicates that microbial communities indigenous to groundwater can degrade MTBE under aerobic and anaerobic conditions. Although pure cultures of microorganisms able to degrade or cometabolize MTBE have been reported, to date the specific organisms responsible for MTBE degradation in various field studies have not be identified. We report that DNA sequences almost identical (99% homology) to those of strain PM1, originally isolated from a biofilter in southern California, are naturally occurring in an MTBE-polluted aquifer in Vandenberg Air Force Base (VAFB), Lompoc, California. Cell densities of native PM1 (measured by TaqMan quantitative PCR) in VAFB groundwater samples ranged from below the detection limit (in anaerobic sites) to 103 to 104 cells/ml (in oxygen-amended sites). In groundwater from anaerobic or aerobic sites incubated in microcosms spiked with 10 μg of MTBE/liter, densities of native PM1 increased to approximately 105 cells/ml. Native PM1 densities also increased during incubation of VAFB sediments during MTBE degradation. In controlled field plots amended with oxygen, artificially increasing the MTBE concentration was followed by an increase in the in situ native PM1 cell density. This is the first reported relationship between in situ MTBE biodegradation and densities of MTBE-degrading bacteria by quantitative molecular methods.  相似文献   

11.
An anaerobic culture reductively transformed trichloroethene (TCE) in an aqueous medium containing elemental iron as the sole electron source. The TCE disappearance rate was enhanced and the product distribution was markedly altered when the culture was present. In abiotic samples containing Fe(0) but no culture, 11 µmol TCE (equivalent to an aqueous concentration of 260 µM) disappeared over a period of 39 days, with ethene and ethane as the major reduction products. Small amounts of cis-dichloroethene (cis-DCE), 1,1-DCE, and vinyl chloride (VC) also were detected. When the culture was incubated with TCE and Fe(0), the same amount of TCE was transformed in less than 2 weeks. The major products after 39 days were VC, ethene, and ethane. VC accounted for 65% of the initial TCE and appeared to be reduced further to ethene at slow rates. The significant VC production in the culture-amended samples indicates that most TCE was transformed microbially rather than chemically. The data indicate that abiotic and biological reduction of chlorinated ethenes can be coupled to enhance treatment efficiency. The results also suggest that microbial dechlorination within and downgradient from iron walls is potentially important for evaluating the long-term performance of permeable iron barriers.  相似文献   

12.
Pseudomonas putida strain AJ and Ochrobactrum strain TD were isolated from hazardous waste sites based on their ability to use vinyl chloride (VC) as the sole source of carbon and energy under aerobic conditions. Strains AJ and TD also use ethene and ethylene oxide as growth substrates. Strain AJ contained a linear megaplasmid (approximately 260 kb) when grown on VC or ethene, but it contained no circular plasmids. While strain AJ was growing on ethylene oxide, it was observed to contain a 100-kb linear plasmid, and its ability to use VC as a substrate was retained. The linear plasmids in strain AJ were cured, and the ability of strain AJ to consume VC, ethene, and ethylene oxide was lost following growth on a rich substrate (Luria-Bertani broth) through at least three transfers. Strain TD contained three linear plasmids, ranging in size from approximately 90 kb to 320 kb, when growing on VC or ethene. As with strain AJ, the linear plasmids in strain TD were cured following growth on Luria-Bertani broth and its ability to consume VC and ethene was lost. Further analysis of these linear plasmids may help reveal the pathway for VC biodegradation in strains AJ and TD and explain why this process occurs at many but not all sites where groundwater is contaminated with chloroethenes. Metabolism of VC and ethene by strains AJ and TD is initiated by an alkene monooxygenase. Their yields during growth on VC (0.15 to 0.20 mg of total suspended solids per mg of VC) are similar to the yields reported for other isolates (i.e., Mycobacterium sp., Nocardioides sp., and Pseudomonas sp.).  相似文献   

13.
1,1,2,2-Tetrachloroethane (TeCA) contaminated groundwater at the Aberdeen Proving Ground discharges through an anaerobic wetland in West Branch Canal Creek (MD), where dechlorination occurs. Two microbially mediated pathways, dichloroelimination and hydrogenolysis, account for most of the TeCA degradation at this site. The dichloroelimination pathways lead to the formation of vinyl chloride (VC), a recalcitrant carcinogen of great concern. The goal of this investigation was to determine whether microbially-available Fe(III) in the wetland surface sediment influenced the fate of TeCA and its daughter products. Differences were identified in the TeCA degradation pathway between microcosms treated with amorphous ferric oxyhydroxide (AFO-treated) and untreated (no AFO) microcosms. TeCA degradation was accompanied by a lower accumulation of VC in AFO-treated microcosms than untreated microcosms. The microcosm incubations and subsequent experiments with the microcosm materials showed that AFO treatment resulted in lower production of VC by (1) shifting TeCA degradation from dichloroelimination pathways to production of a greater proportion of chlorinated ethane products, and (2) decreasing the microbial capability to produce VC from 1,2-dichloroethene (DCE). VC degradation was not stimulated in the presence of Fe(III). Rather, VC degradation occurred readily under methanogenic conditions and was inhibited under Fe(III)-reducing conditions.  相似文献   

14.
Anaerobic digestion (AD) is the most popular path of organic waste disposal. It is often used in wastewater treatment plants for excessive sludge removal. Methanogenic fermentation had usually been performed under mesophilic conditions, but in the past few years the thermophilic processes have become more popular due to economics and sludge sanitation. Methanogens, the group of microorganisms responsible for methane production, are thought to be sensitive to temperature change and it has already been proven that the communities performing methanogenesis under mesophilic and thermophilic conditions differ. But in most cases the research performed on methanogen diversity and changeability was undertaken in two separate anaerobic chambers for meso- and thermophilic conditions. It is also known that there is a group of microorganisms performing AD which are insensitive to temperature. Also the linkage between digester performance and its microbial content and community changeability is still not fully understood. That is why in this experiment we analyzed the bacterial community performing methanogenesis in a pilot scale anaerobic chamber during the shift from mesophilic to thermophilic conditions to point at the group of temperature tolerant microorganisms and their performance. The research was performed with PCR–DGGE (polymerase chain reaction–denaturing gradient gel electrophoresis). It occurred that the community biodiversity decreased together with a temperature increase. The changes were coherent for both the total bacteria community and methanogens. These bacterial shifts were also convergent with biogas production—it decreased in the beginning of the thermophilic phase with the bacterial biodiversity decrease and increased when the community seemed to be restored. DGGE results suggest that among a wide variety of microorganisms involved in AD there is a GC-rich group relatively insensitive towards temperature change, able to adapt quickly to shifts in temperature and perform AD effectively. The studies of this microbial group could be a step forward in developing more efficient anaerobic digestion technology.  相似文献   

15.
Vinyl chloride (VC) is a toxic groundwater pollutant associated with plastic manufacture and chlorinated solvent use. Aerobic bacteria that grow on VC as a carbon and energy source can evolve in the laboratory from bacteria that grow on ethene, but the genetic changes involved are unknown. We investigated VC adaptation in two variants (JS623-E and JS623-T) of the ethene-oxidizing Mycobacterium strain JS623. Missense mutations in the EtnE gene developed at two positions (W243 and R257) in cultures exposed to VC but not in cultures maintained on ethene. Epoxyalkane-coenzyme M transferase (EaCoMT) activities in cell extracts of JS623-E and JS623-T (150 and 645 nmol/min/mg protein, respectively) were higher than that of wild-type JS623 (74 nmol/min/mg protein), and in both variant cultures epoxyethane no longer accumulated during growth on ethene. The heterologous expression of two variant etnE alleles (W243G [etnE1] and R257L [etnE2]) from strain JS623 in Mycobacterium smegmatis showed that they had 42 to 59% higher activities than the wild type. Recombinant JS623 cultures containing mutant EtnE genes cloned in the vector pMV261 adapted to growth on VC more rapidly than the wild-type JS623 strain, with incubation times of 60 days (wild type), 1 day (pMVetnE1), and 35 days (pMVetnE2). The JS623(pMVetnE) culture did not adapt to VC after more than 60 days of incubation. Adaptation to VC in strain JS623 is consistently associated with two particular missense mutations in the etnE gene that lead to higher EaCoMT activity. This is the first report to pinpoint a genetic change associated with the transition from cometabolic to growth-linked VC oxidation in bacteria.Bacteria that biodegrade pollutants are useful for the cleanup of contaminated sites (i.e., bioremediation) and are interesting as models of evolutionary processes (21, 38, 40). Understanding the molecular genetic and evolutionary basis of biodegradation processes allows improved monitoring and predictions of bacterial activities in situ (39) and promises the development of improved strains and enzymes with increased specific activity (3), increased substrate affinity (16), extended substrate range (3, 16, 21, 37), extended inducer range (30, 31), or constitutive expression (39). Missense mutations in catabolic enzymes or regulatory proteins commonly lead to these changes (43), although other important mechanisms include duplication, deletion, and inversion (38-40).Vinyl chloride (VC) is a common groundwater pollutant (35) and known human carcinogen (24), and it poses a health risk to exposed populations. Although trace amounts (e.g., parts per trillion) of VC have been detected in uncontaminated soil (23), higher concentrations are found only associated with human industry, particularly the manufacture of polyvinylchloride (PVC) plastic and the chlorinated solvents trichloroethene (TCE) and perchloroethene (PCE) (4). Aerobic bacteria that grow on VC as a sole carbon and energy source are diverse, including strains of Mycobacterium (8, 17, 18), Nocardioides (8), Pseudomonas (11, 41, 42), Ochrobactrum (11), and Ralstonia (13, 33). The relative ease of the isolation of VC assimilators from chlorinated ethene-contaminated sites suggests that such bacteria are influential in the natural attenuation of VC, but this interpretation is complicated by the fact that VC-assimilating bacteria are closely related to ethene-assimilating bacteria (8-10, 29) and cannot yet be distinguished from them by molecular tests.The VC and ethene pathway and genes are homologous to some extent with the propene assimilation pathway and genes in Xanthobacter Py2 and Gordonia B-276. The comparison of the genomes of the VC-assimilating Nocardioides JS614 and the propene-assimilating Xanthobacter Py2 indicates that growth on alkenes requires about 20 kb of alkene/epoxide catabolic genes and approximately 7 kb of coenzyme M (CoM) biosynthesis genes. The oxidation of VC and ethene is initiated by an alkene monooxygenase (AkMO; EtnABCD) (8-10, 29), which yields epoxyethane from ethene and chlorooxirane from VC (8, 17). An epoxyalkane-coenzyme M transferase (EaCoMT) enzyme, EtnE, acts upon these reactive, toxic, and mutagenic epoxides (2, 19), converting them to hydroxyalkyl-CoM derivatives. The remainder of the VC/ethene pathway is unclear. The JS614 genome indicates further homology with propene oxidizers, in that a reductase/carboxylase and SDR family dehydrogenase are present, but that other aspects of the VC/ethene pathway gene cluster are unique (e.g., the presence of a semialdehyde dehydrogenase [5] and a disulfide reductase-like gene [GenBank accession no. NC_008697]).The EtnE enzyme and the homologous XecA enzyme that acts on epoxypropane in Xanthobacter Py2 and Gordonia B-276 (9, 10, 12, 29) are unusual in their requirement for CoM as a cofactor. The C2- and C3-alkene oxidizers are the only Eubacteria known to biosynthesize and require CoM, which is otherwise found only in methanogenic Archaea. The XecA protein of Py2 has been purified and shown to be a Zn-dependent enzyme (1, 14, 26, 44). Based on sequence homology and the presence of the Cys-X-His-Xn-Cys motif (see Fig. S1 in the supplemental material), the EtnE enzymes also are likely to be Zn-dependent enzymes. Heterologous expression systems for XecA and EtnE have been developed (9, 25), but no crystal structures are available yet for EaCoMT from any source.Pure cultures of ethene-assimilating bacteria are capable of spontaneously adapting to growth on VC as a carbon source (22, 42), but the molecular basis of this phenomenon is not clear. This knowledge gap confounds the development of molecular probes specific for VC-assimilating bacteria. Pseudomonas aeruginosa strain DL1 shifted from cometabolism to growth on VC after more than 40 days of incubation (42), while Mycobacterium strains JS622, JS623, JS624, and JS625 took between 55 and 476 days to adapt to VC (22). The VC-adapted phenotype in Mycobacterium strains was not lost after growth in nonselective medium, suggesting a genetic change rather than a physiological adaptation (22).Here, we tested the hypothesis that mutations in the alkene/epoxide catabolic genes are responsible for VC adaptation. This was done by sequencing EtnEABCD genes in fosmid clones from cultures before and after VC adaptation, by sequencing etnE PCR products at different time points during VC adaptation, and by examining the EtnE enzyme activity in VC-adapted strains and recombinant strains carrying evolved etnE alleles.  相似文献   

16.
Increased production and use of nanomaterials can lead to new types of pollution of the environment, including aquatic ecosystems. Pollution of the aqueous environment with nanoparticles can be a new type of pollution of the environment. This requires a more detailed study of the biological effects during exposure of nanoparticles on aquatic organisms. The interactions of gold nanoparticles (Au) with aquatic macrophytes Ceratophyllum demersum have been studied. Aquatic microcosms with these plants were used. Gold nanoparticles (Au) were added to the aqueous medium of C. demersum macrophyte containing microcosms. The state of the plants was then analyzed. Phytotoxicity of Au nanoparticles for aquatic macrophytes was shown for the first time. A new method of phytotoxicity detection was suggested and successfully approved. Phytotoxicity at a concentration of Au (in the form of nanoparticles) of 6 × 10?6 M-1.8 × 10?5 M was shown.  相似文献   

17.
18.
Methyl tert-butyl ether (MTBE) is a widespread groundwater contaminant that does not respond well to conventional treatment technologies. Growing evidence indicates that microbial communities indigenous to groundwater can degrade MTBE under aerobic and anaerobic conditions. Although pure cultures of microorganisms able to degrade or cometabolize MTBE have been reported, to date the specific organisms responsible for MTBE degradation in various field studies have not be identified. We report that DNA sequences almost identical (99% homology) to those of strain PM1, originally isolated from a biofilter in southern California, are naturally occurring in an MTBE-polluted aquifer in Vandenberg Air Force Base (VAFB), Lompoc, California. Cell densities of native PM1 (measured by TaqMan quantitative PCR) in VAFB groundwater samples ranged from below the detection limit (in anaerobic sites) to 10(3) to 10(4) cells/ml (in oxygen-amended sites). In groundwater from anaerobic or aerobic sites incubated in microcosms spiked with 10 microg of MTBE/liter, densities of native PM1 increased to approximately 10(5) cells/ml. Native PM1 densities also increased during incubation of VAFB sediments during MTBE degradation. In controlled field plots amended with oxygen, artificially increasing the MTBE concentration was followed by an increase in the in situ native PM1 cell density. This is the first reported relationship between in situ MTBE biodegradation and densities of MTBE-degrading bacteria by quantitative molecular methods.  相似文献   

19.
Involvement of linear plasmids in aerobic biodegradation of vinyl chloride   总被引:1,自引:0,他引:1  
Pseudomonas putida strain AJ and Ochrobactrum strain TD were isolated from hazardous waste sites based on their ability to use vinyl chloride (VC) as the sole source of carbon and energy under aerobic conditions. Strains AJ and TD also use ethene and ethylene oxide as growth substrates. Strain AJ contained a linear megaplasmid (approximately 260 kb) when grown on VC or ethene, but it contained no circular plasmids. While strain AJ was growing on ethylene oxide, it was observed to contain a 100-kb linear plasmid, and its ability to use VC as a substrate was retained. The linear plasmids in strain AJ were cured, and the ability of strain AJ to consume VC, ethene, and ethylene oxide was lost following growth on a rich substrate (Luria-Bertani broth) through at least three transfers. Strain TD contained three linear plasmids, ranging in size from approximately 90 kb to 320 kb, when growing on VC or ethene. As with strain AJ, the linear plasmids in strain TD were cured following growth on Luria-Bertani broth and its ability to consume VC and ethene was lost. Further analysis of these linear plasmids may help reveal the pathway for VC biodegradation in strains AJ and TD and explain why this process occurs at many but not all sites where groundwater is contaminated with chloroethenes. Metabolism of VC and ethene by strains AJ and TD is initiated by an alkene monooxygenase. Their yields during growth on VC (0.15 to 0.20 mg of total suspended solids per mg of VC) are similar to the yields reported for other isolates (i.e., Mycobacterium sp., Nocardioides sp., and Pseudomonas sp.).  相似文献   

20.
Zhang S  Wang Q  Xie S 《Biodegradation》2012,23(2):221-230
Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in groundwater. The remediation of PAH-contaminated groundwater often involves anaerobic biodegradation. The knowledge about the microorganisms responsible for PAH degradation in anaerobic subsurface environment is still lacking. DNA-based stable isotope probing (SIP) was applied to discover the microorganisms responsible for anaerobic anthracene degradation within microcosms inoculated with aquifer sediment from landfill leachate-contaminated site. Three phylotypes were identified as the degraders, all falling within the phylum Proteobacteria. Two anthracene degraders were classified within the genera Methylibium and Legionella, while another one was an unclassified Rhizobiales species. They all were first linked to PAH degradation. These findings also provide an illustration of the utility of SIP to discover the roles of uncultured microorganisms in PAH-degrading processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号