首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial disorders are often associated with primary or secondary CoQ10 decrease. In clinical practice, Coenzyme Q10 (CoQ10) levels are measured to diagnose deficiencies and to direct and monitor supplemental therapy. CoQ10 is reduced by complex I or II and oxidized by complex III in the mitochondrial respiratory chain. Therefore, the ratio between the reduced (ubiquinol) and oxidized (ubiquinone) CoQ10 may provide clinically significant information in patients with mitochondrial electron transport chain (ETC) defects. Here, we exploit mutants of Caenorhabditis elegans (C. elegans) with defined defects of the ETC to demonstrate an altered redox ratio in Coenzyme Q9 (CoQ9), the native quinone in these organisms. The percentage of reduced CoQ9 is decreased in complex I (gas-1) and complex II (mev-1) deficient animals, consistent with the diminished activity of these complexes that normally reduce CoQ9. As anticipated, reduced CoQ9 is increased in the complex III deficient mutant (isp-1), since the oxidase activity of the complex is severely defective. These data provide proof of principle of our hypothesis that an altered redox status of CoQ may be present in respiratory complex deficiencies. The assessment of CoQ10 redox status in patients with mitochondrial disorders may be a simple and useful tool to uncover and monitor specific respiratory complex defects.  相似文献   

2.
Coenzyme Q (CoQ) is a medically valuable compound and a high yielding strain for CoQ will have several benefits for the industrial production of CoQ. To increase the CoQ8 content of E. coli, we blocked the pathway for the synthesis of menaquinone by deleting the menA gene. The blocking of menaquinone pathway increased the CoQ8 content by 81 % in E. coli (ΔmenA). To study the CoQ producing potential of E. coli, we employed previous known increasing strategies for systematic metabolic engineering. These include the supplementation with substrate precursors and the co-expression of rate-limiting genes. The co-expression of dxs-ubiA and the supplementation with substrate precursors such as pyruvate (PYR) and parahydroxybenzoic acid (pHBA) increased the content of CoQ8 in E. coli (ΔmenA) by 125 and 59 %, respectively. Moreover, a 180 % increase in the CoQ8 content in E. coli (ΔmenA) was realized by the combination of the co-expression of dxs-ubiA and the supplementation with PYR and pHBA. All in all, CoQ8 content in E. coli increased 4.06 times by blocking the menaquinone pathway, dxs-ubiA co-expression and the addition of sodium pyruvate and parahydroxybenzoic acid to the medium. Results suggested a synergistic effect among different metabolic engineering strategies.  相似文献   

3.
Coenzyme Q10 (CoQ10) is a popular food supplement. Earlier, we successfully produced CoQ10 in rice, which normally produces predominately CoQ9. Here we developed efficient production of CoQ10 in rice by introducing the gene for decaprenyl diphosphate synthase into rice sugary and shrunken mutants. These rices produced 1.3 to 1.6 times as much CoQ10 as the earlier enriched rice did.  相似文献   

4.
辅酶Q10(CoQ10)不仅是呼吸链上的电子传递体,同时也具有抗氧化功能。目前全球市场上的CoQ10正处于一种供不应求的状态。我们简要论述了CoQ10的结构、性质、功能及其生物合成过程,同时概括总结了现阶段为提高CoQ10产量而采用的新型技术手段。  相似文献   

5.
Coenzyme Q10 (CoQ10) or Ubiquinone10 (UQ10), an isoprenylated benzoquinone, is well-known for its role as an electron carrier in aerobic respiration. It is a sole representative of lipid soluble antioxidant that is synthesized in our body. In recent years, it has been found to be associated with a range of patho-physiological conditions and its oral administration has also reported to be of therapeutic value in a wide spectrum of chronic diseases. Additionally, as an antioxidant, it has been widely used as an ingredient in dietary supplements, neutraceuticals, and functional foods as well as in anti-aging creams. Since its limited dietary uptake and decrease in its endogenous synthesis in the body with age and under various diseases states warrants its adequate supply from an external source. To meet its growing demand for pharmaceutical, cosmetic and food industries, there is a great interest in the commercial production of CoQ10. Various synthetic and fermentation of microbial natural producers and their mutated strains have been developed for its commercial production. Although, microbial production is the major industrial source of CoQ10 but due to low yield and high production cost, other cost-effective and alternative sources need to be explored. Plants, being photosynthetic, producing high biomass and the engineering of pathways for producing CoQ10 directly in food crops will eliminate the additional step for purification and thus could be used as an ideal and cost-effective alternative to chemical synthesis and microbial production of CoQ10. A better understanding of CoQ10 biosynthetic enzymes and their regulation in model systems like E. coli and yeast has led to the use of metabolic engineering to enhance CoQ10 production not only in microbes but also in plants. The plant-based CoQ10 production has emerged as a cost-effective and environment-friendly approach capable of supplying CoQ10 in ample amounts. The current strategies, progress and constraints of CoQ10 production in plants are discussed in this review.  相似文献   

6.
7.
Coenzyme Q (CoQ), an electron transfer molecule in the respiratory chain and a lipid-soluble antioxidant, is present in almost all organisms. Most cereal crops produce CoQ9, which has nine isoprene units. CoQ10, with 10 isoprene units, is a very popular food supplement. Here, we report the genetic engineering of rice to produce CoQ10 using the gene for decaprenyl diphosphate synthase (DdsA). The production of CoQ9 was almost completely replaced with that of CoQ10, despite the presence of endogenous CoQ9 synthesis. DdsA designed to express at the mitochondria increased accumulation of total CoQ amount in seeds.  相似文献   

8.

Background

The objective of this study was to evaluate whether the levels of coenzyme Q10 (CoQ10) in brain tissue of multiple system atrophy (MSA) patients differ from those in elderly controls and in patients with other neurodegenerative diseases.

Methods

Flash frozen brain tissue of a series of 20 pathologically confirmed MSA patients [9 olivopontocerebellar atrophy (OPCA) type, 6 striatonigral degeneration (SND) type, and 5 mixed type] was used for this study. Elderly controls (n = 37) as well as idiopathic Parkinson''s disease (n = 7), dementia with Lewy bodies (n = 20), corticobasal degeneration (n = 15) and cerebellar ataxia (n = 18) patients were used as comparison groups. CoQ10 was measured in cerebellar and frontal cortex tissue by high performance liquid chromatography.

Results

We detected a statistically significant decrease (by 3–5%) in the level of CoQ10 in the cerebellum of MSA cases (P = 0.001), specifically in OPCA (P = 0.001) and mixed cases (P = 0.005), when compared to controls as well as to other neurodegenerative diseases [dementia with Lewy bodies (P<0.001), idiopathic Parkinson''s disease (P<0.001), corticobasal degeneration (P<0.001), and cerebellar ataxia (P = 0.001)].

Conclusion

Our results suggest that a perturbation in the CoQ10 biosynthetic pathway is associated with the pathogenesis of MSA but the mechanism behind this finding remains to be elucidated.  相似文献   

9.
The aims of this study were to evaluate the effects of the addition of metabolic precursors and polydimethylsiloxane (PDMS) as an oxygen carrier to cultures of Bacillus subtilis BL53 during the production of γ-PGA. Kinetics analyses of cultivations of different media showed that B. subtilis BL53 is an exogenous glutamic acid-dependent strain. When the metabolic pathway precursors of γ-PGA synthesis, l-glutamine and a-ketoglutaric acid, were added to the culture medium, production of the biopolymer was increased by 20 % considering the medium without these precursors. The addition of 10 % of the oxygen carrier PDMS to cultures caused a two-fold increase in the volumetric oxygen mass transfer coefficient (kLa), improving γ-PGA production and productivity. Finally, bioreactor cultures of B. subtilis BL53 adopting the combination of optimized medium E, added of glutamine, α-ketoglutaric acid, and PDMS, showed a productivity of 1 g L?1 h?1 of g-PGA after only 24 h of cultivation. Results of this study suggest that the use of metabolic pathway precursors glutamine and a-ketolgutaric acid, combined with the addition of PDMS as an oxygen carrier in bioreactors, can improve γ-PGA production and productivity by Bacillus strains .  相似文献   

10.
Intervention strategies for obesity are global issues that require immediate attention. The objective of this study was to assess the possibility that Clostridium butyricum and its potential components could reduce lipogenesis. Co-culture experiments of Caco-2 cells and 1?×?106, 1?×?107, and 1?×?108 CFU/ml of C. butyricum were set up to monitor the cytotoxicity of C. butyricum and the changes of angiopoietin-like protein 4 (ANGPTL4) mRNA expression. It was found that cell viability was not affected by C. butyricum, and ANGPTL4 mRNA expression in Caco-2 cells was highly induced by 1?×?107 CFU/ml of C. butyricum. Co-culture experiment of Caco-2 cells and potential components of C. butyricum were set up to monitor any ensuing alteration in ANGPTL4. It was observed that bacterial wall components and potentially secreted factors from C. butyricum could induce ANGPTL4 mRNA expression and protein secretion. To determine whether butyrate could affect the ANGPTL4 production in Caco-2 cells, the role of monocarboxylate transporter 1 (MCT1) in mediating potentially secreted factors from C. butyricum-induced ANGPTL4 production in Caco-2 cells and the effect of 0.1 mM of butyrate on ANGPTL4 production in Caco-2 cells were investigated. It is confirmed that butyrate was the factor secreted by C. butyricum to stimulate ANGPTL4 production. Besides, the soluble factors secreted by live C. butyricum-Caco-2 cells interaction, bacterial wall components-Caco-2 cells interaction, and the main metabolites butyrate-Caco-2 cells interaction reduced lipogenic gene expression in HepG2 cells. In conclusion, 1?×?107 CFU/ml of C. butyricum could reduce lipogenesis through the bacterial wall components and the metabolites such as butyrate.  相似文献   

11.
The distribution of antigenic determinants recognized by the anti-Ia-like antigen monoclonal antibodies (MoAb) Q2/70, Q5/6 and Q5/13 on molecules coded for by theDR locus and by non-DR loci was investigated using a binding assay with125I-labeled Ia-like antigens isolated from four B lymphoid cell lines. The determinants reacting with the MoAb Q2/70 and Q5/13 are expressed on all DR alloantigens tested and on BR4X7 specificities, while those reacting with the MoAb Q5/6 are not detectable on DRw7 and BR4X7 molecules. None of the monoclonal antibodies reacted with DC1 molecules. The MoAb Q5/6 and Q5/13 reacted with the isolatedβ subunit of the Ia-like antigenic complex, while the MoAb Q2/70 did not react with the isolated chains.  相似文献   

12.
Coenzyme Q(10) (CoQ(10)) is a potent lipophilic antioxidant in cell membranes and a carrier of electrons in the mitochondrial respiratory chain. We previously characterized the effects of varying severities of CoQ(10) deficiency on ROS production and mitochondrial bioenergetics in cells harboring genetic defects of CoQ(10) biosynthesis. We observed a unimodal distribution of ROS production with CoQ(10) deficiency: cells with <20% of CoQ(10) and 50-70% of CoQ(10) did not generate excess ROS while cells with 30-45% of CoQ(10) showed increased ROS production and lipid peroxidation. Because our previous studies were limited to a small number of mutant cell lines with heterogeneous molecular defects, here, we treated 5 control and 2 mildly CoQ(10) deficient fibroblasts with varying doses of 4-nitrobenzoate (4-NB), an analog of 4-hydroxybenzoate (4-HB) and inhibitor of 4-para-hydroxybenzoate:polyprenyl transferase (COQ2) to induce a range of CoQ(10) deficiencies. Our results support the concept that the degree of CoQ(10) deficiency in cells dictates the extent of ATP synthesis defects and ROS production and that 40-50% residual CoQ(10) produces maximal oxidative stress and cell death.  相似文献   

13.

Coenzyme Q10 (CoQ10) is the main CoQ species in human and is used extensively in food, cosmetic and medicine industries because of its antioxidant properties and its benefit in prophylactic medicine and therapy for a variety of diseases. Among various approaches to increase the production of CoQ10, microbial fermentation is the most effective. As knowledge of the biosynthetic enzymes and regulatory mechanisms modulating CoQ10 production increases, opportunities arise for metabolic engineering of CoQ10 in microbial hosts. In this review, we present various strategies used up to date to improve CoQ10 production and focus on metabolic engineering of CoQ10 overproduction in microbes. General strategies of metabolic engineering include providing sufficient precursors for CoQ10, increasing metabolic fluxes, and expanding storage capacity for CoQ10. Based on these strategies, CoQ10 production has been significantly improved in natural CoQ10 producers, as well as in heterologous hosts.

  相似文献   

14.
The proton-translocating NADH-quinone oxidoreductase (complex I/NDH-1) is the first and largest enzyme of the respiratory chain which has a central role in cellular energy production and is implicated in many human neurodegenerative diseases and aging. It is believed that the peripheral domain of complex I/NDH-1 transfers the electron from NADH to Quinone (Q) and the redox energy couples the proton translocation in the membrane domain. To investigate the mechanism of the proton translocation, in a series of works we have systematically studied all membrane subunits in the Escherichia coli NDH-1 by site-directed mutagenesis. In this mini-review, we have summarized our strategy and results of the mutagenesis by depicting residues essential for proton translocation, along with those for subunit connection. It is suggested that clues to understanding the driving forces of proton translocation lie in the similarities and differences of the membrane subunits, highlighting the communication of essential charged residues among the subunits. A possible proton translocation mechanism with all membrane subunits operating in unison is described.  相似文献   

15.
Coenzyme Q (CoQ, ubiquinone) is a central electron carrier in mitochondrial respiration. CoQ is synthesized through multiple steps involving a number of different enzymes. The prevailing view that the CoQ used in respiration exists as a free pool that diffuses throughout the mitochondrial inner membrane bilayer has recently been challenged. In the yeast Saccharomyces cerevisiae, deletion of the gene encoding Coq10p results in respiration deficiency without inhibiting the synthesis of CoQ, suggesting that the Coq10 protein is critical for the delivery of CoQ to the site(s) of respiration. The precise mechanism by which this is achieved remains unknown at present. We have identified a Plasmodium orthologue of Coq10 (PfCoq10), which is predominantly expressed in trophozoite-stage parasites, and localizes to the parasite mitochondrion. Expression of PfCoq10 in the S. cerevisiae coq10 deletion strain restored the capability of the yeast to grow on respiratory substrates, suggesting a remarkable functional conservation of this protein over a vast evolutionary distance, and despite a relatively low level of amino acid sequence identity. As the antimalarial drug atovaquone acts as a competitive inhibitor of CoQ, we assessed whether over-expression of PfCoq10 altered the atovaquone sensitivity in parasites and in yeast mitochondria, but found no alteration of its activity.  相似文献   

16.
武标  张千  李辉  武威 《激光生物学报》2007,16(3):364-368
以低产量辅酶Q10类球红细菌为亲本,以氩离子激光为诱变源,对其幅照诱变,结果发现:亲本株发生了明显的诱变效应,出现了不同的色素突变表型。诱变后的色素突变株不仅遗传性状稳定,且辅酶Q10产量比亲本株有明显提高。对其中的黄色突变株发酵液进行辅酶Q10提取及测定,结果显示:其辅酶Q10产量比亲本株提高102.10%,经发酵条件初步优化,其最高产量可达26.39 mg/L发酵液。  相似文献   

17.
Two-bicistronic vectors for the production of recombinant IgM monoclonal antibodies in the DG44 DHFR-negative cell line have been designed. We used tandem vectors, in which one bicistronic unit encoded the immunoglobulin light chain and DHFR and the other encoded the heavy chain and EGFP. The construct structure presumes that green cells surviving selection would be capable of producing both immunoglobulin chains. We found that the agglutinating IgM antibodies could be secreted in the absence of J-peptide. It was shown that the germinal leader peptide plays a key role in the expression of the genes for the light and heavy chains. A comparison of the chromatin regulatory elements demonstrated that construct-flanking 2xHS4 insulators stabilized the biosynthesis of the recombinant antibodies, whereas the 5′-MARLyz matrix attachment region proved to be less efficient. The strategy for obtaining a DG44-based producer cell line should include the following consecutive steps: selection on the medium without nucleoside → amplification of the inserted gene → cloning of transfectants → selection of high-productive clones. An attempt to clone before amplification and to amplify individual clones failed to result in effective producers. Cloning on a medium without selection pressure allows a more adequate assessment of the stability of the antibody production.  相似文献   

18.
The purpose of the study was to compare the expression of two Yersinia pseudotuberculosis proteins, wild-type porin OmpY and the mutant porin OmpY designated as OmpY-Q having the uncharged amino acid residue Gln instead of positively charged Arg at the penultimate position in the same heterologous host. According to the literature, a similar substitution (Lys to Gln) of the penultimate amino acid residue in Neisseria meningitidis porin PorA drastically improved the assembly of the protein in the E. coli outer membrane in vivo. Site-directed mutagenesis was used to replace Arg by Gln (R338Q) in OmpY, and the conditions for optimal expression and maturation of OmpY-Q were selected. It was found that the growth rates of E. coli strains producing OmpY and OmpY-Q and the expression levels of the porins were approximately equal. Comparative analysis of recombinant OmpY and OmpY-Q did not show significant differences in structure, antigenic, and functional properties of the porins, or any noticeable effect of the R338Q substitution in OmpY on its assembly in the E. coli outer membrane in vivo. The probable causes of discrepancies between our results and the previous data on porin PorA are discussed considering the known mechanisms of biogenesis of porins at the periplasmic stage.  相似文献   

19.
Jack Maze 《Brittonia》1968,20(4):321-333
Introgression between two allopatric species,Quercus macrocarpa andQ. gambelii, has been observed in two separate locations: northeastern New Mexico and the Black Hills of western South Dakota and adjacent Wyoming. The probability that this introgression is the result of long-range pollination appears remote. Presumably these two species hybridized during a period of past sympatric association. Further indication of past sympatry in the Black Hills is the presence of a common species of obligate parasite, i.e., wasp(Cynips insulensis) onQ. gambelii in the Rocky Mountains and onQ. macrocarpa of the Black Hills. The hybrid oaks in New Mexico probably reflect a westward migration ofQ. macrocarpa during pluvial periods of the Pleistocene.Quercus gambelii most likely reached the Black Hills during the warmer postglacial hypsithermal era. The hybridization reported here may reflect secondary sympatry, i.e., sympatric occurrence after the species, or their ancestors, became geographically separated.  相似文献   

20.
Bioprocess and Biosystems Engineering - Coenzyme Q (CoQ) plays an important role as an electron transporter in the respiratory chain. It is formed from a benzoquinone ring and an isoprenoid chain...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号