首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxygen reduction reaction (ORR) is one of the most important reactions in renewable energy conversion and storage devices. The full deployment of these devices depends on the development of highly active, stable, and low‐cost catalysts. Herein, a new hybrid material consisting of Na2Ta8O21?x/Ta2O5/Ta3N5 nanocrystals grown on N‐doped reduced graphene oxide is reported. This catalyst shows a significantly enhanced ORR activity by ≈4 orders of magnitude in acidic media and by ≈2 orders of magnitude in alkaline media compared to individual Na2Ta8O21?x on graphene. Moreover, it has excellent stability in both acid and alkaline media. It also has much better methanol tolerance than the commercial Pt/C, which is relevant to methanol fuel cells. The high ORR activity arises not only from the synergistic effect among the three Ta phases, but also from the concomitant nitrogen doping of the reduced graphene oxide nanosheets. A correlation between ORR activity and nitrogen content is demonstrated. Deep insights into the mechanism of the synergistic effect among these three Ta‐based phases, which boosts the ORR's kinetics, are acquired by combining specific experiments and density functional theory calculations.  相似文献   

2.
Nonprecious metals are promising catalysts to avoid the sluggish oxygen reduction reaction (ORR) in next‐generation regenerative fuel cells or metal–air batteries. Therefore, development of nonprecious metal catalysts for ORR is highly desirable. Herein, precise tuning of the atomic ratio of Fe and Co encapsulated in melamine‐derived nitrogen‐rich graphitic tube (NGT) is reported. The Co1.08Fe3.34 hybrid with metal? nitrogen bonds ( 1 : Co1.08Fe3.34@NGT) shows remarkable ORR catalytic activities (80 mV higher in onset potential and 50 mV higher in half‐wave potential than those of state‐of‐the‐art commercial Pt/C catalysts), high current density, and stability. In acidic solution, 1 also shows compatible performance to commercial Pt/C in terms of ORR activity, current density, stability, and methanol tolerance. The high ORR activity is ascribed to the co‐existence of Fe? N, Co? N, and sufficient metallic FeCo alloys which favor faster electron movement and better adsorption of oxygen molecules on the catalyst surface. In the alkaline anion exchange membrane fuel cell setup, this cell delivers the power density of 117 mW cm?2, demonstrating its potential use for energy conversion and storage applications.  相似文献   

3.
Nonprecious metal catalysts (NPMCs) Fe?N?C are promising alternatives to noble metal Pt as the oxygen reduction reaction (ORR) catalysts for proton‐exchange‐membrane fuel cells. Herein, a new modulation strategy is reported to the active moiety Fe?N4 via a precise “single‐atom to single‐atom” grafting of a Pt atom onto the Fe center through a bridging oxygen molecule, creating a new active moiety of Pt1?O2?Fe1?N4. The modulated Fe?N?C exhibits remarkably improved ORR stabilities in acidic media. Moreover, it shows unexpectedly high catalytic activities toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), with overpotentials of 310 mV for OER in alkaline solution and 60 mV for HER in acidic media at a current density of 10 mA cm?2, outperforming the benchmark RuO2 and comparable with Pt/C(20%), respectively. The enhanced multifunctional electrocatalytic properties are associated with the newly constructed active moiety Pt1?O2?Fe1?N4, which protects Fe sites from harmful species. Density functional theory calculations reveal the synergy in the new active moiety, which promotes the proton adsorption and reduction kinetics. In addition, the grafted Pt1?O2? dangling bonds may boost the OER activity. This study paves a new way to improve and extend NPMCs electrocatalytic properties through a precisely single‐atom to single‐atom grafting strategy.  相似文献   

4.
Nonprecious metal catalysts (NPMCs) Fe? N? C are promising alternatives to noble metal Pt as the oxygen reduction reaction (ORR) catalysts for proton‐exchange‐membrane fuel cells. Herein, a new modulation strategy is reported to the active moiety Fe? N4 via a precise “single‐atom to single‐atom” grafting of a Pt atom onto the Fe center through a bridging oxygen molecule, creating a new active moiety of Pt1? O2? Fe1? N4. The modulated Fe? N? C exhibits remarkably improved ORR stabilities in acidic media. Moreover, it shows unexpectedly high catalytic activities toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), with overpotentials of 310 mV for OER in alkaline solution and 60 mV for HER in acidic media at a current density of 10 mA cm?2, outperforming the benchmark RuO2 and comparable with Pt/C(20%), respectively. The enhanced multifunctional electrocatalytic properties are associated with the newly constructed active moiety Pt1? O2? Fe1? N4, which protects Fe sites from harmful species. Density functional theory calculations reveal the synergy in the new active moiety, which promotes the proton adsorption and reduction kinetics. In addition, the grafted Pt1? O2? dangling bonds may boost the OER activity. This study paves a new way to improve and extend NPMCs electrocatalytic properties through a precisely single‐atom to single‐atom grafting strategy.  相似文献   

5.
Development of highly active and stable bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts from earth‐abundant elements remains a grand challenge for highly demanded reversible fuel cells and metal–air batteries. Carbon catalysts have many advantages over others due to their low cost, excellent electrical conductivity, high surface area, and easy functionalization. However, they typically cannot withstand the highly oxidative OER environment. Here, a new class of bifunctional electrocatalyst is reported, consisting of ultralarge sized nitrogen doped graphene tubes (N‐GTs) (>500 nm) decorated with FeCoNi alloy particles. These tubes are prepared from an inexpensive precursor, dicyandiamide, via a template‐free graphitization process. The ORR/OER activity and the stability of these graphene tube catalysts depend strongly on the transition metal precursors. The best performing FeCoNi‐derived N‐GT catalyst exhibits excellent ORR and OER activity along with adequate electrochemical durability over a wide potential window (0–1.9 V) in alkaline media. The measured OER current is solely due to desirable O2 evolution, rather than carbon oxidation. Extensive electrochemical and physical characterization indicated that high graphitization degree, thicker tube walls, proper nitrogen doping, and presence of FeCoNi alloy particles are vital for high bifunctional activity and electrochemical durability of tubular carbon catalysts.  相似文献   

6.
Rational design and massive production of bifunctional catalysts with superior oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities are essential for developing metal–air batteries and fuel cells. Herein, controllable large‐scale synthesis of sulfur‐doped CaMnO3 nanotubes is demonstrated via an electrospinning technique followed by calcination and sulfurization treatment. The sulfur doping can not only replace oxygen atoms to increase intrinsic electrical conductivity but also introduce abundant oxygen vacancies to provide enough catalytically active sites, which is further demonstrated by density functional theory calculation. The resulting sulfur‐modified CaMnO3 (CMO/S) exhibits better electrocatalytic activity for ORR and OER in alkaline solution with higher stability performance than the pristine CMO. These results highlight the importance of sulfur treatment as a facile yet effective strategy to improve the ORR and OER catalytic activity of the pristine CaMnO3. As a proof‐of‐concept, a rechargeable Zn–air battery using the bifunctional catalyst exhibits a small charge–discharge voltage polarization, and long cycling life. Furthermore, a solid‐state flexible and rechargeable Zn–air battery gives superior discharge–charge performance and remarkable stability. Therefore, the CMO/S nanotubes might be a promising replacement to the Pt‐based electrocatalysts for metal–air batteries and fuel cells.  相似文献   

7.
Despite intense research in past decades, the development of high‐performance bifunctional catalysts for direct ethylene glycol or glycerol oxidation reaction (EGOR or GOR) and oxygen reduction reaction (ORR) remains a grand challenge in realizing fuel‐cell technologies for portable electronic devices and fuel‐cell vehicle applications. Here, a general method is reported for controllable synthesis of a class of ultrathin multimetallic PtPdM (M = Ni, Fe, Co) nanosheets (NSs) with a thickness of only 1.4 nm by coreduction of metal precursors in the presence of CO and oleylamine. With the optimized composition and components, ultrathin Pt32Pd48Ni20 NSs exhibit the highest electrocatalytic activity for EGOR, GOR, and ORR among all different ultrathin PtPdM NSs, ultrathin PtPd NSs, and the commercial catalysts. The mass activities of ultrathin Pt32Pd48Ni20 NSs for EGOR, GOR, and ORR are 7.7, 5.4, and 7.7 times higher respectively than a commercial catalyst, and they are the most efficient nanocatalysts ever reported for EGOR/GOR. The ultrathin PtPdNi NSs are also very stable for EGOR/GOR/ORR. It is further demonstrated that these ultrathin multimetallic NSs can be readily generalized to other sensor‐related electrocatalysis system such as high‐sensitivity electrochemical detection of H2O2.  相似文献   

8.
The development of high‐performance oxygen reduction reaction (ORR) catalysts derived from non‐Pt group metals (non‐PGMs) is urgent for the wide applications of proton exchange membrane fuel cells (PEMFCs). In this work, a facile and cost‐efficient supramolecular route is developed for making non‐PGM ORR catalyst with atomically dispersed Fe‐Nx/C sites through pyrolyzing the metal‐organic polymer coordinative hydrogel formed between Fe3+ and α‐L‐guluronate blocks of sodium alginate (SA). High‐angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption spectroscopy (XAS) verify that Fe atoms achieve atomic‐level dispersion on the obtained SA‐Fe‐N nanosheets and a possible fourfold coordination with N atoms. The best‐performing SA‐Fe‐N catalyst exhibits excellent ORR activity with half‐wave potential (E1/2) of 0.812 and 0.910 V versus the reversible hydrogen electrode (RHE) in 0.5 m H2SO4 and 0.1 m KOH, respectively, along with respectable durability. Such performance surpasses that of most reported non‐PGM ORR catalysts. Density functional theory calculations suggest that the relieved passivation effect of OH* on Fe‐N4/C structure leads to its superior ORR activity to Pt/C in alkaline solution. The work demonstrates a novel strategy for developing high‐performance non‐PGM ORR electrocatalysts with atomically dispersed and stable M‐Nx coordination sites in both acidic and alkaline media.  相似文献   

9.
Unveiling the intrinsic effects of Ruddlesden‐Popper (RP) series An+1BnO3n+1 (A = La, B = Ni, Co, Mn, Cu, n = 1, 2 and 3) catalysts is essential in order to optimize the activity of oxygen reduction reaction (ORR) and evolution reaction (OER). Here, it is demonstrated that the oxygen vacancy is not the key point for RP to realize high ORR and OER activity at high temperature. Instead, interstitial O2? with high concentration and fast migration, and lattice oxygen with high activity are favorable for the high‐temperature catalytic activity. Aliovalent cation doping is an effective strategy to modify the catalytic activity. For the RP catalysts, low‐valence ion doping does not introduce oxygen vacancies, which suppresses the activity of lattice oxygen and decreases the interstitial O2? concentration; whereas high‐valence ion doping enhances the interstitial O2– concentration and the lattice oxygen activity. The evaluations of six RP series (La2NiO4, La2CoO4, La3Co2O7, La4Ni3O10, La2MnO4, and La2CuO4 based) and twenty samples as oxygen electrodes for solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs) demonstrate that this finding is applicable to all the selected RP series.  相似文献   

10.
Bifunctional oxygen catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with high activities and low‐cost are of prime importance and challenging in the development of fuel cells and rechargeable metal–air batteries. This study reports a porous carbon nanomaterial loaded with cobalt nanoparticles (Co@NC‐x/y) derived from pyrolysis of a Co/Zn bimetallic zeolitic imidazolite framework, which exhibits incredibly high activity as bifunctional oxygen catalysts. For instance, the optimal catalyst of Co@NC‐3/1 has the interconnected framework structure between porous carbon and embedded carbon nanotubes, which shows the superb ORR activity with onset potential of ≈1.15 V and half‐wave potential of ≈0.93 V. Moreover, it presents high OER activity that can be further enhanced to over commercial RuO2 by P‐doped with overpotentials of 1.57 V versus reversible hydrogen electrode at 10 mA cm?2 and long‐term stability for 2000 circles and a Tafel slope of 85 mV dec?1. Significantly, the nanomaterial demonstrates better catalytic performance and durability than Pt/C for ORR and commercial RuO2 and IrO2 for OER. These findings suggest the importance of a synergistic effect of graphitic carbon, nanotubes, exposed Co–Nx active sites, and interconnected framework structure of various carbons for bifunctional oxygen electrocatalysts.  相似文献   

11.
The catalytic inactivation of Escherichia coli (E. coli) in water by silver loaded alumina as catalyst was investigated. Ag/Al2O3 and AgCl/Al2O3 catalysts exhibited high bactericidal activity at room temperature in water with no need for any light or electrical power input. Dissolved oxygen which can be catalyzed to reactive oxygen species (ROS) was found to be essential for the strong bactericidal activities of the catalysts. Decomposition of the cell wall leading to leakage of the intracellular component and the complete lysis of the whole cell were directly observed by transmission electron microscopy (TEM). The resultant change in cell permeability was confirmed by potassium ion leakage. The different morphological changes between E. coli cells treated with the catalysts and Ag+ were also observed. The formation of ROS involved in the bactericidal process by AgCl/Al2O3 was confirmed by addition of catalase and OH scavenger. Higher temperature and pH value were found to have positive effect on the bactericidal activity of AgCl/Al2O3. All these results indicated that the bactericidal effect of the catalyst was a synergic action of ROS and Ag+, not an additive one. A possible mechanism is proposed.  相似文献   

12.
Improving the electrocatalytic oxygen reduction reaction (ORR) activity of transition metal oxides is important for the development of non‐noble metal catalysts that are used in metal‐air batteries and fuel cells. Here, a novel facile strategy of hydrogenation to significantly enhance the ORR performance of MnO2. The hydrogenated MnO2 (H‐MnO2), which is prepared through a simple heat treatment in hydrogen gas, shows characteristics of modified lattice/surface structures and increased electrical conductivity. In 0.1 M KOH aqueous solution, the prepared H‐MnO2 exhibits high activity toward the oxygen electrocatalysis with more positive onset potential (≈60 mV), ≈14% larger of limiting current, lower yield of peroxide species, and better durability than the pristine oxide. Further conductivity testing and density functional theory (DFT) studies reveal the faster kinetics of ORR after hydrogenation is due to the formation of hydrogen bonds and altered microstructure and improved electronic properties. These results highlight the importance of hydrogenation as a facile yet effective strategy to improve the catalytic activity of transition metal oxides for ORR‐based applications.  相似文献   

13.
Efficient bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts are of great importance for rechargeable metal–air batteries. Herein, FeNx/C catalysts are synthesized by pyrolysis of thiourea and agarose containing α‐Fe2O3 nanoplate as Fe precursor, where α‐Fe2O3 nanoplate can prevent the aggregation of carbon sheets to effectively improve the specific surface area during the carbonization process. The FeNx/C‐700‐20 catalyst displays excellent catalytic performance for both ORR and OER activity in alkaline conditions with more positive onset potential (1.1 V vs the reversible hydrogen electrode) and half‐wave potential, higher stability, and stronger methanol tolerance in alkaline solution, which are all superior to that of the commercial Pt/C catalyst. In this study, the detailed analyses demonstrate that the coexistence of Fe‐based species and high content of Fe‐Nx both play an important role for the catalytic activity. Furthermore, FeNx/C‐700‐20 as cathode catalyst in Zn–air battery possesses higher charge–discharge stability and power density compared with that of commercial Pt/C catalyst, displaying great potential in practical implementation of for the rechargeable energy devices.  相似文献   

14.
PtM alloy catalysts (e.g., PtFe, PtCo), especially in an intermetallic L10 structure, have attracted considerable interest due to their respectable activity and stability for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, metal‐catalyzed formation of ·OH from H2O2 (i.e., Fenton reaction) by Fe‐ or Co‐containing catalysts causes severe degradation of PEM/catalyst layers, hindering the prospects of commercial applications. Zinc is known as an antioxidant in Fenton reaction, but is rarely alloyed with Pt owing to its relatively negative redox potential. Here, sub‐4 nm intermetallic L10‐PtZn nanoparticles (NPs) are synthesized as high‐performance PEMFC cathode catalysts. In PEMFC tests, the L10‐PtZn cathode achieves outstanding activity (0.52 A mgPt?1 at 0.9 ViR‐free, and peak power density of 2.00 W cm?2) and stability (only 16.6% loss in mass activity after 30 000 voltage cycles), exceeding the U.S. DOE 2020 targets and most of the reported ORR catalysts. Density function theory calculations reveal that biaxial strains developed upon the disorder‐order (A1? L10) transition of PtZn NPs would modulate the surface Pt? Pt distances and optimize Pt? O binding for ORR activity enhancement, while the increased vacancy formation energy of Zn atoms in an ordered structure accounts for the improved stability.  相似文献   

15.
Bifunctional cobalt oxide (Co3O4) nanowire catalysts grown on carbon cloth (CC) fibers and their modification with nickel oxide (NiO) and manganese dioxide (MnO2) to produce core–shell nanoarchitectures are explored as catalysts for urea oxidation reaction and oxygen reduction reaction in direct urea fuel cells (DUFC). Based on a systematic electrochemical characterization of the catalyst, the as‐developed core–shell nanoarchitectures are optimized toward DUFC performance. Under alkaline conditions with an anion exchange membrane, the DUFC with a cell configuration of Co3O4@NiO(1:2)/CC(a|c)Co3O4@MnO2(1:2)/CC exhibits a maximum power density of 33.8 mW cm?2 with excellent durability for 120 h without any performance loss. Furthermore, the DUFC exhibits a maximum power density of 23.2 mW cm?2 with human urine as a fuel. These findings offer an approach to convert human waste into treasure.  相似文献   

16.
The oxygen reduction reaction (ORR) is of great importance in energy‐converting processes such as fuel cells and in metal–air batteries and is vital to facilitate the transition toward a nonfossil dependent society. The ORR has been associated with expensive noble metal catalysts that facilitate the O2 adsorption, dissociation, and subsequent electron transfer. Single‐ or few‐atom motifs based on earth‐abundant transition metals, such as Fe, Co, and Mo, combined with nonmetallic elements, such as P, S, and N, embedded in a carbon‐based matrix represent one of the most promising alternatives. Often these are referred to as single atom catalysts; however, the coordination number of the metal atom as well as the type and nearest neighbor configuration has a strong influence on the function of the active sites, and a more adequate term to describe them is metal‐coordinated motifs. Despite intense research, their function and catalytic mechanism still puzzle researchers. They are not molecular systems with discrete energy states; neither can they fully be described by theories that are adapted for heterogeneous bulk catalysts. Here, recent results on single‐ and few‐atom electrocatalyst motifs are reviewed with an emphasis on reports discussing the function and the mechanism of the active sites.  相似文献   

17.
Here, we have synthesized Ag2O3-ZnO nanocones (NCs) by a wet-chemical route using reducing agents at low temperature. The structural, optical and morphological properties of Ag2O3-ZnO NCs were investigated by several conventional techniques such as powder XRD, XPS, FESEM, XEDS, FTIR and UV/vis. spectroscopy. The analytical parameters of prepared NCs were also calculated for a selective detection of divalent cobalt [Co(II)] prior to its determination by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NCs toward various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II), and Zn(II) was studied. Results of the selectivity study demonstrated that Ag2O3-ZnO NC phase was the most selective towards Co(II) ion. The uptake capacity for Co(II) ion was experimentally calculated to be ∼76.69 mgg−1. Moreover, adsorption isotherm data provided that the adsorption process was mainly monolayer on homogeneous adsorbent surfaces of Ag2O3-ZnO NCs. Kinetic study revealed that the adsorption of Co(II) on Ag2O3-ZnO NCs phase followed the pseudo-second-order kinetic model. In addition, thermodynamic results provided that the adsorption mechanism of Co(II) ions on Ag2O3-ZnO NCs was a spontaneous process and thermodynamically favorable. Finally, the proposed method was validated by applying it to real environmental water samples with reasonable results.  相似文献   

18.
The ability to deposit conformal catalytic thin films enables opportunities to achieve complex nanostructured designs for catalysis. Atomic layer deposition (ALD) is capable of creating conformal thin films over complex substrates. Here, ALD‐MnOx on glassy carbon is investigated as a catalyst for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), two reactions that are of growing interest due to their many applications in alternative energy technologies. The films are characterized by X‐ray photoelectron spectroscopy, X‐ray diffraction, scanning electron microscopy, ellipsometry, and cyclic voltammetry. The as‐deposited films consist of Mn(II)O, which is shown to be a poor catalyst for the ORR, but highly active for the OER. By controllably annealing the samples, Mn2O3 catalysts with good activity for both the ORR and OER are synthesized. Hypotheses are presented to explain the large difference in the activity between the MnO and Mn2O3 catalysts for the ORR, but similar activity for the OER, including the effects of surface oxidation under experimental conditions. These catalysts synthesized though ALD compare favorably to the best MnOx catalysts in the literature, demonstrating a viable way to produce highly active, conformal thin films from earth‐abundant materials for the ORR and the OER.  相似文献   

19.
Sulfate-reducing bacteria (SRB) were found to be capable of tolerating a certain amount of oxygen (O2), but how they affect oxygen reduction reaction (ORR) has not been clear. The present work investigated the impact of SRB on ORR in 3.5 wt% sodium chloride solution with the cyclic voltammetry method. The addition of SRB culture solution hampered both the reduction of O2 to superoxide (O 2 ·? ) and hydrogen peroxide (H2O2) to water (H2O), and the influence of SRB metabolites was much larger than that of bacterial cells. Sulfide and extracellular polymeric substances (EPS), typical inorganic and organic metabolic products, had great impact on ORR. Sulfide played an important role in the decrease of cathodic current for H2O2 reduction due to its hydrolysis and chemical reaction activity with H2O2. EPS were sticky, easy to adsorb on the electrode surface and abundant in functional groups, which hindered the transformation of O2 into O 2 ·? and favored the reduction of H2O2 to H2O.  相似文献   

20.
Transition metal atoms with corresponding nitrogen coordination are widely proposed as catalytic centers for the oxygen reduction reaction (ORR) in metal–nitrogen–carbon (M–N–C) catalysts. Here, an effective strategy that can tailor Fe–N–C catalysts to simultaneously enrich the number of active sites while boosting their intrinsic activity and utilization is reported. This is achieved by edge engineering of FeN4 sites via a simple ammonium chloride salt‐assisted approach, where a high fraction of FeN4 sites are preferentially generated and hosted in a graphene‐like porous scaffold. Theoretical calculations reveal that the FeN4 moieties with adjacent pore defects are likely to be more active than the nondefective configuration. Coupled with the facilitated accessibility of active sites, this prepared catalyst, when applied in a practical H2–air proton exchange membrane fuel cell, delivers a remarkable peak power density of 0.43 W cm?2, ranking it as one of the most active M–N–C catalysts reported to date. This work provides a new avenue for boosting ORR activity by edge manipulation of FeN4 sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号