首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Florida Bay exhibits a natural gradient of strong P limitation in the east which shifts to weak P or even N limitation at the western boundary. This nutrient gradient greatly affects seagrass abundance and productivity across the bay. We assessed the effects of N and P additions on sediment bacterial community structure in relation to the existing nutrient gradient in Florida Bay. Sediment samples from 24 permanent 0.25 m2 plots in each of six sites across Florida Bay were fertilized with granular N and P in a factorial design for 26 months. Sediment bacterial community structure was analyzed using PCR-denaturing gradient gel electrophoresis (DGGE) analysis of 16S ribosomal RNA (rRNA) genes and a cloning strategy from DGGE bands. The phylogenetic positions of 16S rRNA sequences mostly fell into common members found in marine sediments such as sulfate-reducing Deltaproteobacteria, Gammaproteobacteria, Spirochaetes, and Bacteriodetes. Twenty-eight common DGGE bands were found in all sediment samples; however, some DGGE bands were only found or were better represented in eastern sites. Bacterial community diversity (Shannon-Weiner index) showed similar values throughout all sediment samples. The N treatment had no effect on the bacterial community structures across the bay. Conversely, the addition of P significantly influenced the bacterial community structure at all but the most western site, where P is least limiting due to inputs from the Gulf of Mexico. P additions enhanced DGGE band sequences related to Cytophagales, Ectothiorhodospiraceae, and Desulfobulbaceae, suggesting a shift toward bacterial communities with increased capability to degrade polymeric organic matter. In addition, a band related to Deferribacteres was enhanced in eastern sites. Thus, indigenous environmental conditions were the primary determining factors controlling the bacterial communities, while the addition of P was a secondary determining factor. This P-induced change in community composition tended to be proportional to the amount of P limitation obviated by the nutrient additions.  相似文献   

2.
In this study, an advanced wastewater treatment process, the denitrifying phosphorus/side stream phosphorus removal system (DPR-Phostrip), was developed for the purpose of enhancing denitrifying phosphorus removal. The enrichment of denitrifying phosphorus-accumulating organisms (DPAOs) and the microbial community structure of DPR-Phostrip were evaluated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), and the metabolic activity of seed sludge and activated sludge collected after 55 days of operation were evaluated by Biolog? analysis. This experimental study of DPR-Phostrip operation showed that nutrients were removed effectively, and denitrifying phosphorus removal was observed during the pre-anoxic period. PCR-DGGE analysis indicated that DPR-Phostrip supported DPAO growth while inhibiting PAOs and GAOs. The major dominant species in DPR-Phostrip were Bacteroidetes bacterium, Saprospiraceae bacterium, and Chloroflexi bacterium. Moreover, the functional diversity indices calculated on the basis of Biolog analysis indicated that DPR-Phostrip had almost no effect on microbial community diversity but was associated with a shift in the dominant species, which confirms the results of the PCR-DGGE analysis. The results for average well color development, calculated via Biolog analysis, showed that DPR-Phostrip had a little impact on the metabolic activity of sludge. Further principal component analysis suggested that the ability to utilize low-molecular-weight organic compounds was reduced in DPR-Phostrip.  相似文献   

3.
Sponges are important components of marine benthic communities. High microbial abundance sponges host a large diversity of associated microbial assemblages. However, the dynamics of such assemblages are still poorly known. In this study, we investigated whether bacterial assemblages present in Spongia lamella remained constant or changed as a function of the environment and life cycle. Sponges were collected in multiple locations and at different times of the year in the western Mediterranean Sea and in nearby Atlantic Ocean to cover heterogeneous environmental variability. Co-occurring adult sponges and offsprings were compared at two of the sites. To explore the composition and abundance of the main bacteria present in the sponge mesohyl, embryos, and larvae, we applied both 16S rRNA gene-denaturing gradient gel electrophoresis (DGGE) and sequencing of excised DGGE bands and quantitative polymerase chain reactions (qPCR). On average, the overall core bacterial assemblage showed over 60 % similarity. The associated bacterial assemblage fingerprints varied both within and between sponge populations, and the abundance of specific bacterial taxa assessed by qPCR significantly differed among sponge populations and between adult sponge and offsprings (higher proportions of Actinobacteria in the latter). Sequences showed between 92 and 100 % identity to sequences previously reported in GenBank, and all were affiliated with uncultured invertebrate bacterial symbionts (mainly sponges). Sequences were mainly related to Chloroflexi and Acidobacteria and a few to Actinobacteria and Bacteroidetes. Additional populations may have been present under detection limits. Overall, these results support that both ecological and biological sponge features may shape the composition of endobiont bacterial communities in S. lamella.  相似文献   

4.
While the unequivocal pattern of endothelial nitric oxide synthase (eNOS) inhibition in cardiovascular control is recognized, the role of NO produced by neuronal NOS (nNOS) remains unclear. The aim of this study was to compare the effects of chronic treatment with 7-nitroindazole (7-NI, nNOS inhibitor) and NG-nitro-l-arginine methylester (l-NAME, general and predominantly eNOS inhibitor) on cardiovascular system of young normotensive rats. Wistar rats (4 weeks old) were used: controls and rats administered either 7-NI (10 mg/kg bw/day) or l-NAME (50 mg/kg bw/day) in drinking water for 6 weeks. The systolic blood pressure (sBP) was measured by plethysmographic method, and the vasoactivity of isolated arteries was recorded. 7-NI-treatment did not affect sBP; however, the sBP was increased after l-NAME-treatment. l-NAME inhibited acetylcholine-induced relaxation of thoracic aorta (TA), whereas it remained unchanged after 7-NI-treatment. The response of TA to sodium nitroprusside was increased in both experimental groups. The expression of eNOS and nNOS in TA was unchanged in both experimental groups, whereas the activity of NOS was decreased in l-NAME-treated group. Noradrenaline- and angiotensin II-induced contractions of TA were reduced in l-NAME-treated group; however, the contractions remained unchanged in 7-NI-treated group. In all groups, the endogenous angiotensin II participated in adrenergic contraction of TA; this contribution was significantly increased in l-NAME-treated group. Neurogenic contractions in mesenteric artery (MA) remained unchanged after 7-NI-treatment, but increased after l-NAME-treatment. Results show that NO deficiency induced by administration of 7-NI and l-NAME had different cardiovascular effects: eNOS and nNOS triggered distinct signaling pathways in young normotensive rats.  相似文献   

5.
The experiments presented here were based on the conclusions of our previous results. In order to avoid introduction of expression plasmid and to balance the NADH/NAD ratio, the NADH biosynthetic enzyme, i.e., NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GADPH), was replaced by NADP-dependent GADPH, which was used to biosynthesize NADPH rather than NADH. The results indicated that the NADH/NAD ratio significantly decreased, and glucose consumption and l-lysine production drastically improved. Moreover, increasing the flux through l-lysine biosynthetic pathway and disruption of ilvN and hom, which involve in the branched amino acid and l-methionine biosynthesis, further improved l-lysine production by Corynebacterium glutamicum. Compared to the original strain C. glutamicum Lys5, the l-lysine production and glucose conversion efficiency (α) were enhanced to 81.0 ± 6.59 mM and 36.45 % by the resulting strain C. glutamicum Lys5-8 in shake flask. In addition, the by-products (i.e., l-threonine, l-methionine and l-valine) were significantly decreased as results of genetic modification in homoserine dehydrogenase (HSD) and acetohydroxyacid synthase (AHAS). In fed-batch fermentation, C. glutamicum Lys5-8 began to produce l-lysine at post-exponential growth phase and continuously increased over 36 h to a final titer of 896 ± 33.41 mM. The l-lysine productivity was 2.73 g l?1 h?1 and the α was 47.06 % after 48 h. However, the attenuation of MurE was not beneficial to increase the l-lysine production because of decreasing the cell growth. Based on the above-mentioned results, we get the following conclusions: cofactor NADPH, precursor, the flux through l-lysine biosynthetic pathway and DCW are beneficial to improve l-lysine production in C. glutamicum.  相似文献   

6.
Sulfate-reducing bacteria (SRB) are widely used for heavy metal (HM) treatment in bioreactors but their growth and biological activity can be inhibited by such treatment. Here, bioreactor experiments were used to investigate changes in the SRB community and the copy number of the dissimilatory sulfite reductase β-subunit functional gene (dsrB) under high doses of sulfates and HMs. The SRB community was investigated using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and sequencing techniques, while the dsrB gene abundance was measured by quantitative real-time PCR (qRT-PCR). The sulfate reduction rate was initially much higher in reactors without HMs than in those containing HMs (p = 0.001). Sulfate levels were reduced by 50% within the first 3 days of operation. As a result, the HM removal rate was initially much lower in the reactors containing HMs. Most of the HMs reduced to safe limits within 9 ~ 12 days of operation. The SRB community mainly consisted of Desulfovibrio vulgaris, D. termitidis, D. desulfuricans, D. simplex and Desulfomicrobium baculatum, as determined by PCR-DGGE. qRT-PCR revealed a decreasing trend in the copy numbers of a functional gene (dsrB) after 6 days in samples lacking HMs; however, the opposite trend was observed in the HM-containing samples.  相似文献   

7.
To investigate the mechanism of apoptosis in myocardial cells of aging rats induced by d-galactose and to study the effect of the Polysaccharide isolated from the seeds of Cuscuta chinensis Lam (PCCL) on apoptosis of cardiomyocytes and its corresponding machinasim in aging rat model. Fifty male SD rats were randomly divided into 5 groups. Normal control group (NC). d-galactose (100 mg·kg?1d?1 for 56 day) indued aging group (MC), d-galactose plus 100 mg kg?1 d?1 PCCL group (ML), d-galactose plus 200 mg kg?1 d?1 PCCL group (MM), and d-galactose plus 400 mg kg?1 d?1 PCCL group (MH). Same volume of solution (water, or PCCL aqueous solution) was given by gavage for 56 days. Then the hearts were collected and apoptosis parameters were evaluated. Caspase-3 and Cyt c were determined by fluorescence spectrometer, the apoptosis rate was assessed by AnnexinV-FITC method by Flow-Cytometry, [Ca2+]i and [Ca2+]i overloaded by KCL were observed by laser scanning confocal microscopy (LSCM); Bcl-2 and Bax were examined by immunohistochemistry. The content of Cyt C, [Ca2+]i of cardiomyocytes, the activity of Caspase-3, Bax expression level in d-galactose induced aging group were higher than NC (p < 0.05). The ratio of Bcl-2/Bax was decreased in d-galactose induced aging group compared to NC. On the other hand, the content of Cyt C, [Ca2+]i of cardiomyocytes, the activity of Caspase-3 and apoptosis rate, as well as Bax expression level in all three PCCL groups were decreased compared to galactose induced group (p < 0.05). Bcl-2/Bax ratio was increased in all PCCL groups compared to galactose induced aging group. PCCL could decrease the apoptosis of cardiomyocytes by the mitochondria apoptosis pathway.  相似文献   

8.
Whereas an abundance of literature is available on the occurrence of common proteinogenic amino acids (AAs) in edible fruits of the date palm (Phoenix dactylifera L.), recent reports on non-proteinogenic (non-coded) AAs and amino components are scarce. With emphasis on these components we have analyzed total hydrolysates of twelve cultivars of date fruits using automated ion-exchange chromatography, HPLC employing a fluorescent aminoquinolyl label, and GC–MS of total hydrolysates using the chiral stationary phases Chirasil®-L-Val and Lipodex® E. Besides common proteinogenic AAs, relatively large amounts of the following non-proteinogenic amino acids were detected: (2S,5R)-5-hydroxypipecolic acid (1.4–4.0 g/kg dry matter, DM), 1-aminocyclopropane-1-carboxylic acid (1.3–2.6 g/kg DM), γ-amino-n-butyric acid (0.5–1.2 g/kg DM), (2S,4R)-4-hydroxyproline (130–230 mg/kg DM), l-pipecolic acid (40–140 mg/kg DM), and 2-aminoethanol (40–160 mg/kg DM) as well as low or trace amounts (<70 mg/kg DM) of l-ornithine, 5-hydroxylysine, β-alanine, and in some samples (<20 mg/kg DM) of (S)-β-aminoisobutyric acid and (<10 mg/kg DM) l-allo-isoleucine. In one date fruit, traces of α-aminoadipic acid could be determined. Enantiomeric analysis of 6 M DCl/D2O hydrolysates of AAs using chiral capillary gas chromatography–mass spectrometry revealed the presence of very low amounts of d-Ala, d-Asp, d-Glu, d-Ser and d-Phe (1.2–0.4 %, relative to the corresponding l-enantiomers), besides traces (0.2–1 %) of other d-AAs. The possible relevance of non-proteinogenic amino acids in date fruits is briefly addressed.  相似文献   

9.
l-Arginine is a semi essential amino acid synthesised from glutamine, glutamate and proline via the intestinal-renal axis in humans and most mammals. l-Arginine degradation occurs via multiple pathways initiated by arginase, nitric-oxide synthase, Arg: glycine amidinotransferase, and Arg decarboxylase. These pathways produce nitric oxide, polyamines, proline, glutamate, creatine and agmatine with each having enormous biological importance. Several disease are associated to an l-arginine impaired levels and/or to its metabolites: in particular various l-arginine metabolites may participate in pathogenesis of kidney and cardiovascular disease. l-Arginine and its metabolites may constitute both a marker of pathology progression both the rationale for manipulating l-arginine metabolism as a strategy to ameliorate these disease. A large number of studies have been performed in experimental models of kidney disease with sometimes conflicting results, which underlie the complexity of Arg metabolism and our incomplete knowledge of all the mechanisms involved. Moreover several lines of evidence demonstrate the role of l-arg metabolites in cardiovascular disease and that l-arg administration role in reversing endothelial dysfunction, which is the leading cause of cardiovascular diseases, such as hypertension and atherosclerosis. This review will discuss the implication of the mains l-arginine metabolites and l-arginine-derived guanidine compounds in kidney and cardiovascular disease considering the more recent literature in the field.  相似文献   

10.
Science increasingly involves complex modeling. Here we describe a model for cell electroporation in which membrane properties are dynamically modified by poration. Spatial scales range from cell membrane thickness (5 nm) to a typical mammalian cell radius (10  \(\upmu\) m), and can be used with idealized and experimental pulse waveforms. The model consists of traditional passive components and additional active components representing nonequilibrium processes. Model responses include measurable quantities: transmembrane voltage, membrane electrical conductance, and solute transport rates and amounts for the representative “long” and “short” pulses. The long pulse—1.5 kV/cm, 100  \(\upmu\) s—evolves two pore subpopulations with a valley at \({\sim}\) 5 nm, which separates the subpopulations that have peaks at \({\sim}\) 1.5 and \({\sim}\) 12 nm radius. Such pulses are widely used in biological research, biotechnology, and medicine, including cancer therapy by drug delivery and nonthermal physical tumor ablation by causing necrosis. The short pulse—40 kV/cm, 10 ns—creates 80-fold more pores, all small ( \(<\) 3 nm; \(\sim\) 1 nm peak). These nanosecond pulses ablate tumors by apoptosis. We demonstrate the model’s responses by illustrative electrical and poration behavior, and transport of calcein and propidium. We then identify extensions for expanding modeling capability. Structure-function results from MD can allow extrapolations that bring response specificity to cell membranes based on their lipid composition. After a pulse, changes in pore energy landscape can be included over seconds to minutes, by mechanisms such as cell swelling and pulse-induced chemical reactions that slowly alter pore behavior.  相似文献   

11.
In this study, we compared N-methyl-d-aspartate receptor type 1 (NMDAR1) and 4-hydroxynonenal (4-HNE) in the hippocampus of d-galactose (d-gal)-induced and naturally aging models of mice. These markers represent general phenotypes in aging, and they allowed us to examine the possibility of d-gal as a chemical model agent for aging. We observed an age-dependent reduction of NMDAR1 and an increase in 4-HNE in the dentate gyrus, CA1, and CA3 regions of the hippocampus via immunohistochemistry and western blot analyses. In the d-gal-induced chemical aging model, we observed similar changes in NMDAR1 and 4-HNE although the degree of reduction/increase in NMDAR1/4-HNE was not as severe as that in the naturally aged mice. These results suggest that the d-gal-induced aging model is comparable to naturally aged mice and may be useful for studies of the aging hippocampus.  相似文献   

12.
Release rates of recently fixed $ {\text{NH}}^{{\text{ + }}}_{{\text{4}}} $ from non-exchangeable interlayer sites in 2:1 silicate minerals were determined for decomposed granite (DG) saprolites from three locations in California, USA. Recently-fixed $ {\text{NH}}^{{\text{ + }}}_{{\text{4}}} $ release from the DG substrate was quantified by extracting diffused $ {\text{NH}}^{{\text{ + }}}_{{\text{4}}} $ with H-resin, as well as a native, annual grass Vulpia microstachys. The $ {\text{NH}}^{{\text{ + }}}_{{\text{4}}} $ release data varied with via the method of extraction, which included H-resin pre-treatments (Na+ or H+) and V. microstachys uptake (mycorrhizal inoculated or uninoculated). After 6 weeks (1008 h), more $ {\text{NH}}^{{\text{ + }}}_{{\text{4}}} $ was recovered from fixed interlayer positions by the H-resins as compared to uptake by V. microstachys. The H+ treated H-resins recovered more released $ {\text{NH}}^{{\text{ + }}}_{{\text{4}}} $ (≈94 mg ${\text{NH}}^{{\text{ + }}}_{{\text{4}}} - {\text{N}}\;{\text{kg}}^{1} $ or (12%) of total fixed $ {\text{NH}}^{{\text{ + }}}_{{\text{4}}} $ ) in two of the three DG samples as compared to the Na+ treated resins, (which recovered ≈70–78 mg ${\text{NH}}^{{\text{ + }}}_{{\text{4}}} - {\text{N}}\;{\text{kg}}^{{{\text{ - 1}}}} $ (or 9–10%) of the total fixed $ {\text{NH}}^{{\text{ + }}}_{{\text{4}}} $ ). The V. microstachys assimilated 8–9% of the total fixed $ {\text{NH}}^{{\text{ + }}}_{{\text{4}}} $ with mycorrhizal inoculum as compared to only 2% without a mycorrhizal inoculum, over the same time period. The fixed $ {\text{NH}}^{{\text{ + }}}_{{\text{4}}} $ release kinetics from the H-resin experiments were most accurately described by first order and power function models, and can be characterized as biphasic using a heterogeneous diffusion model. Uptake of both the 15N and ambient, unlabelled N from the soils was closely related to plant biomass. There was no significant difference in percent of N per unit of biomass between the control and mycorrhizal treatments. The findings presented here indicate that observed, long-term $ {\text{NH}}^{{\text{ + }}}_{{\text{4}}} $ release rates from DG in studies utilizing resins, may overestimate the levels of fixed $ {\text{NH}}^{{\text{ + }}}_{{\text{4}}} $ made available to plants and microorganisms. Additionally, the study suggested that mycorrhizae facilitate the acquisition and plant uptake of fixed $ {\text{NH}}^{{\text{ + }}}_{{\text{4}}} $ , resulting in markedly increased plant biomass production.  相似文献   

13.
Biological denitrification typically requires the addition of a supplemental electron donor, which can add a significant operating expense to wastewater treatment facilities. Most common electron donors are organic, but reduced inorganic sulfur compounds (RISCs), such as sulfide (HS?) and elemental sulfur (S0), may be more cost-effective. S0 is an inexpensive and well characterized electron donor, but it provides slow denitrification rates due to its low solubility. A lesser-known RISC is sulfite (\({\text{SO}}_{3}^{2 - }\)), which can be easily produced from S0 by a simple combustion process. Unlike S0, \({\text{SO}}_{3}^{2 - }\) is highly soluble, and therefore may provide higher denitrification rates. However, very little is known about microbial denitrification with \({\text{SO}}_{3}^{2 - }\). Also, \({\text{SO}}_{3}^{2 - }\) is a strong reductant that reacts abiotically with oxygen and has toxic effects on microorganisms. This paper reviews \({\text{SO}}_{3}^{2 - }\) in the environment, \({\text{SO}}_{3}^{2 - }\) chemistry, microbiology, toxicity, and its potential use for denitrification. Since \({\text{SO}}_{3}^{2 - }\) is an intermediate in the sulfur oxidation pathway of most sulfur-oxidizing microorganisms, it is an energetic electron donor and it should select for a \({\text{SO}}_{3}^{2 - }\)-oxidizing community. Our review of the literature, as well as our own lab experience, suggests that \({\text{SO}}_{3}^{2 - }\) can effectively serve as an electron donor for denitrification. Further research is needed to determine the kinetics of \({\text{SO}}_{3}^{2 - }\)-based denitrification, its toxic threshold for sulfur-oxidizing microorganisms, and its potential inhibition of sensitive species such as nitrifying microorganisms and potential formation of nitrous oxide. Its effect on sludge settling efficiency also should be explored.  相似文献   

14.
The following eleven species currently classified in the generaBacidia s. lat. andCatillaria s. lat. are transferred to the new genusBacidina Vězda gen. n. (Lecideaceae s. lat.):Bacidina apiahica (Müll. Arg.) comb. n.,B. chloroticula (Nyl.)Vězda etPoelt comb. n.,B. egenula (Nyl.) comb. n.,B. inundata (Fr.) comb. n.,B. mirabilis (Vězda) comb. n.,B. neglecta (Vězda) comb.n.,B. pallidocarnea (Müll. Arg.) comb. n.,B. phacodes (Koerb.) comb.n.,B. scutellifera (Vězda) comb.n.,B. vasakii (Vězda) comb.n., andB. ziamensis (Vězda) comb.n.  相似文献   

15.
We introduce a mathematical model of the in vivo progression of Alzheimer’s disease with focus on the role of prions in memory impairment. Our model consists of differential equations that describe the dynamic formation of \(\upbeta \) -amyloid plaques based on the concentrations of A \(\upbeta \)  oligomers, PrPC proteins, and the A \(\upbeta \) - \(\times \) -PrPCcomplex, which are hypothesized to be responsible for synaptic toxicity. We prove the well-posedness of the model and provided stability results for its unique equilibrium, when the polymerization rate of \(\upbeta \) -amyloid is constant and also when it is described by a power law.  相似文献   

16.
To investigate the effects of temperature and exercise training on swimming performance in juvenile qingbo (Spinibarbus sinensis), we measured the following: (1) the resting oxygen consumption rate $ \left( {{\dot{\text{M}}\text{O}}_{{ 2 {\text{rest}}}} } \right) $ , critical swimming speed (U crit) and active oxygen consumption rate $ \left( {{\dot{\text{M}}\text{O}}_{{ 2 {\text{active}}}} } \right) $ of fish at acclimation temperatures of 10, 15, 20, 25 and 30 °C and (2) the $ \dot{M}{\text{O}}_{{ 2 {\text{rest}}}} $ , U crit and $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $ of both exercise-trained (exhaustive chasing training for 14 days) and control fish at both low and high acclimation temperatures (15 and 25 °C). The relationship between U crit and temperature (T) approximately followed a bell-shaped curve as temperature increased: U crit = 8.21/{1 + [(T ? 27.2)/17.0]2} (R 2 = 0.915, P < 0.001, N = 40). The optimal temperature for maximal U crit (8.21 BL s?1) in juvenile qingbo was 27.2 °C. Both the $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $ and the metabolic scope (MS, $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} - \dot{M}{\text{O}}_{{ 2 {\text{rest}}}} $ ) of qingbo increased with temperature from 10 to 25 °C (P < 0.05), but there were no significant differences between fish acclimated to 25 and 30 °C. The relationships between $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $ or MS and temperature were described as $ {\dot{\text{M}}\text{O}}_{{ 2 {\text{active}}}} = 1,214.29/\left\{ {1 + \left[ {\left( {T - 28.8} \right)/10.6} \right]^{2} } \right\}\;\left( {R^{2} = 0.911,\;P < 0.001,\;N = 40} \right) $ and MS = 972.67/{1 + [(T ? 28.0)/9.34]2} (R 2 = 0.878, P < 0.001, N = 40). The optimal temperatures for $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $ and MS in juvenile qingbo were 28.8 and 28.0 °C, respectively. Exercise training resulted in significant increases in both U crit and $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $ at a low temperature (P < 0.05), but training exhibited no significant effect on either U crit or $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $ at a high temperature. These results suggest that exercise training had different effects on swimming performance at different temperatures. These differences may be related to changes in aerobic metabolic capability, arterial oxygen delivery, available dissolved oxygen, imbalances in ion fluxes and stimuli to remodel tissues with changes in temperature.  相似文献   

17.
The variation in the diversity of methanogens in sediment depths from Sitka stream was studied by constructing a 16S rRNA gene library using methanogen-specific primers and a denaturing gradient gel electrophoresis (DGGE)-based approach. A total of nine different phylotypes from the 16S rRNA library were obtained, and all of them were clustered within the order Methanosarcinales. These nine phylotypes likely represent nine new species and at least 5–6 new genera. Similarly, DGGE analysis revealed an increase in the diversity of methanogens with an increase in sediment depth. These results suggest that Methanosarcinales phylotypes might be the dominant methanogens in the sediment from Sitka stream, and the diversity of methanogens increases as the depth increases. Results of the present study will help in making effective strategies to monitor the dominant methanogen phylotypes and methane emissions in the environment.  相似文献   

18.
Levins’s asymmetrical α index quantifies between species overlap over resources more realistically than similar-purpose single-value indices. The associated community-wide \(\bar \alpha\) index expresses the degree of “species packing”. Both indices were formulated upon competing animal (i.e., mobile) organisms and are independent of population densities. However, overlap over resources for nonmobile organisms such as plants may have an impact even below carrying capacity. The proposed \(\hat \alpha\) index, based on Levins’s α index, quantifies spatial overlap for plants integrating information on species spatial distribution and crowding conditions. The \(\hat \alpha\) index is specifically designed for plant distribution data collected in discrete plots with density expressed as percent coverage (%cover) of substratum. We also propose a community-wide \({\hat \alpha_{\text{c}}}\) index, conceptually analogous to \(\bar \alpha\) , but furnished with a measure of dispersion (se \({\hat \alpha_{\text{c}}}\) ). Species importance within the community is inferred from comparisons of pairwise \(\hat \alpha\) ’s with \({\hat \alpha_{\text{c}}}\) . The \(\hat \alpha\) and \({\hat \alpha_{\text{c}}}\) indices correlate closely and exponentially with plant density, and correct apparent over- and underestimations of interaction intensity at low and very high crowding by Levins’s α and \(\bar \alpha\) , respectively. Index application to aquatic plant communities gave results consistent with within-community and general ecological patterns, suggesting a high potential of the proposed \(\hat \alpha\) and \({\hat \alpha_{\text{c}}}\) indices in basic and applied macrophyte ecological studies and management.  相似文献   

19.
Bicarbonate transporter (BCT) plays a crucial role in maintaining pH homeostasis of tumor cells by import of \({\text{HCO}}_{3}^{ - } .\) This helps the tumor cells in manifesting extracellular tumor acidosis, accompanied by a relative intracellular alkalinization, which in turn promotes tumor progression. Therefore, blocking BCT-mediated \({\text{HCO}}_{3}^{ - }\) transport is envisaged as a promising anticancer therapeutic approach. Thus, using a murine model of a T cell lymphoma, designated as Dalton’s lymphoma (DL), in the present in vitro investigation the antitumor consequences of blocking BCT function by its inhibitor 4-acetamido-4-isothiocyanostilbene-2,2-disulfonate (SITS) were explored. Treatment of DL cells with SITS resulted in an increase in the extracellular pH, associated with a decline in DL cell survival and augmented induction of apoptosis. BCT inhibition also elevated the expression of cytochrome c, caspase-9, caspase-3, Bax, reactive oxygen species, and nitric oxide along with inhibition of HSP-70 and Bcl2, which regulate tumor cell survival and apoptosis. SITS-treated DL cells displayed upregulated production of IFN-γ and IL-6 along with a decline of IL-10. Treatment of DL cells with SITS also inhibited the expression of fatty acid synthase, which is crucial for membrane biogenesis in neoplastic cells. The expression of lactate transporter MCT-1 and multidrug resistance regulating protein MRP-1 got inhibited along with hampered uptake of glucose and lactate production in SITS-treated DL cells. Thus, the declined tumor cell survival following inhibition of BCT could be the consequence of interplay of several inter-connected regulatory molecular events. The outcome of this study indicates the potential of BCT inhibition as a novel therapeutic approach for treatment of hematological malignancies.  相似文献   

20.
Three novel isolates (A-354T, A-328, and A-384) were retrieved from apparently healthy scleractinian Madracis decactis in the remote St Peter & St Paul Archipelago, Mid-Atlantic Ridge, Brazil. The novel isolates formed a distinct lineage based on the phylogenetic reconstruction using the 16S rRNA and pyrH gene sequences. They fell into the Mediterranei clade and their closest phylogenetic neighbour was V. mediterranei species, sharing upto 98.1 % 16S rRNA gene sequence similarity. Genomic analysis including in silico DDH, MLSA, AAI and genomic signature distinguished A-354T from V. mediterranei LMG 19703 (=AK1) with values of 33.3, 94.2, 92 %, and 11.3, respectively. Phenotypically, the novel isolates can be differentiated from V. mediterranei based on the four following features. They do not grow at 8 % NaCl; use d-gluconic acid but not l-galactonic acid lactone as carbon source; and do not have the fatty acid C18:0. Differentiation from both the other Mediterranei clade species (V. maritimus and V. variabilis) is supported by fifteen features. The novel species show lysine decarboxylase and tryptophan deaminase, but not gelatinase and arginine dihydrolase activity; produce acetoin; use α-d-lactose, N-acetyl-d-galactosamine, myo-Inositol, d-gluconic acid, and β-hydroxy-d,l-butyric acid; and present the fatty acids C14:0 iso, C15:0 anteiso, C16:0 iso, C17:0 anteiso, and C17:1x8c . Whole-cell protein profiles, based on MALDI-TOF, showed that the isolates are not clonal and also distinguished them from the closes phylogenetic neighbors. The name Vibrio madracius sp. nov. is proposed to encompass these novel isolates. The G+C content of the type strain A-354T (=LMG 28124T=CBAS 482T) is 44.5 mol%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号