首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Increased prevalence of antibiotic-resistant bacteria has become a major threat to the health sector worldwide due to their virulence, limited therapeutic options and distribution in both hospital and community settings. Discovery and development of new agents to combat antibiotic-resistant bacteria is thus needed. This study therefore aimed to evaluate the ability of bovine lactoferrin (LF), peptides from two antimicrobial domains lactoferricin B (LFcin17-30) and lactoferrampin (LFampin265-284) and a chimeric construct (LFchimera) containing both peptides, as potential bactericidal agents against clinical isolates of antibiotic-resistant Staphylococcus aureus and Escherichia coli. Results in kinetics of growth show that LF chimera and peptides inhibited the growth of both bacterial species. By confocal microscopy and flow cytometry it was observed that LF and FITC-labeled peptides are able to interact with these bacteria and cause membrane permeabilization, as monitored by propidium iodide staining, these effects were decreased by preincubation with lipopolysaccharide in E. coli. By electron microscopy, a clear cellular damage was observed in bacteria after treatments with LFchimera and peptides, suggesting that interaction and membrane disruption are probably involved as a mechanism of action. In conclusion, results show that LFchimera, LF and peptides have potential as bactericidal agents in the antibiotic-resistant strains of S. aureus and E. coli and also the work strongly suggest that LFcin17-30 and LFampin265-284 acts synergistically with antibiotics against multidrug resistant EPEC and MRSA in vitro.  相似文献   

2.
3.
Aims: To investigate the bactericidal activity of lactoferrin‐derived peptides and a new LF‐derived peptides chimera (LFchimera) against P. aeruginosa and the influence on virulence factors of P. aeruginosa. Methods and Results: Lactoferricin (LFcin) and lactoferrampin (LFampin) are highly bioactive peptides isolated from the N‐terminal region of lactoferrin (LF) by pepsin digestion. In this study, we designed LFchimera containing LFcin amino acids 17‐30 and LFampin amino acids 268‐284. Pseudomonas aeruginosa cells were incubated in medium with peptides at different concentrations, and then the assays of viability, pyocyanin, elastase activity and biofilm formation of P. aeruginosa were performed. We found that the concentration‐dependent antibactericidal activity and down‐regulating pyocyanin, elastase and biofilm formation of LFchimera were significantly stronger than those of LF, LFcin, LFampin or LFcin plus LFampin. Conclusions: Our results indicated that LF, LFcin, LFampin and LFchimera were potential candidates to combat P. aeruginosa, and LFchimera was the most effective in them. Significance and Impact of the Study: The new LFchimera has better activity against P. aeruginosa than LF, LFcin and LFampin and may be a promising new compound for treatment of P. aeruginosa infection.  相似文献   

4.
Bovine lactoferrin (LF) and lactoferricin B (LFcin B), an antimicrobial peptide derived from bovine LF, inhibited thiobarbituric acid-reactive substance (TBARS) formation in a iron/ascorbate-induced liposomal phospholipid peroxidation system. The inhibition of TBARS formation occurred with N-acylated 9-mer peptides with a core sequence of LFcin B and, compared to LFcin B, their antioxidant effect was clearly observed at a concentration almost 100 times lower.  相似文献   

5.
Bovine lactoferrin (LF) and lactoferricin B (LFcin B), an antimicrobial peptide derived from bovine LF, inhibited thiobarbituric acid-reactive substance (TBARS) formation in a iron/ascorbate-induced liposomal phospholipid peroxidation system. The inhibition of TBARS formation occurred with N-acylated 9-mer peptides with a core sequence of LFcin B and, compared to LFcin B, their antioxidant effect was clearly observed at a concentration almost 100 times lower.  相似文献   

6.
Escherichia coli (E. coli) are the most common aerobic gram-negative bacilli in a normal intestinal tract. They cause most of the intra-abdominal infections, wound infections associated with abdominal surgery, and septicemia. Most of these infections are of endogenous intestinal origin. Lactoferrin (LF) is an iron-binding glycoprotein found in milk and various external secretions. This protein has been found to have a number of biological functions, including antimicrobial, anti-cancer, antioxidant, and immunomodulatory effects. Partial degradation of LF by pepsin can give rise to peptides termed lactoferricin (LFcin) with more potent antimicrobial activity. LF and LFcin have been shown to inhibit the growth of a number of pathogenic bacteria (including E. coli and antibiotic-resistant strains), fungi, and even viruses in both in vitro and in vivo studies. We previously demonstrated that both recombinant porcine LF (pLF) produced from yeast and a synthetic 20-residue porcine LFcin peptide exhibit antimicrobial activity in vitro. In one of our recent studies, we performed pathogen challenges, including pathogenic E. coli, Staphylococcus aureus and Candida albicans, of the digestive tract of a transgenic milk-fed animal model. The results showed that LF has broad spectrum antimicrobial activity in the digestive tract and protects the mucosa of the small intestine from injury. Our following study also revealed that pLF as a feedstuff additive enhances avian immunity, including antibody formation and cell-mediated immunity. All of these results suggest that LF could be a novel natural protein in the treatment and prevention of infections with E. coli or antibiotic-resistant bacteria strains.  相似文献   

7.
Positive selection drives lactoferrin evolution in mammals   总被引:1,自引:0,他引:1  
Lactoferrin (LF) is a member of the transferrin family that is abundantly expressed and secreted by glandular epithelial cells. The biological functions of LF involve in iron homeostasis regulation of the body and antibacterial activity. Previous studies demonstrated that it had a high cationic N-terminal domain that could interact with glycosaminoglycans, lipopolysaccharides and the bacterial virulence protein. Two anti-microbial peptides, lactoferricin (LFcin) and lactoferrampin (LFampin), were also isolated and identified in N-terminal of LF. Although the antibacterial mechanism was carefully studied, little was known about the molecular evolution of LF. In this study, we estimated the nonsynonymous-to-synonymous substitution ratios ( w = dN \mathord
/ \vphantom dN dS dS \omega = {{d_{N} } \mathord{\left/ {\vphantom {{d_{N} } {d_{S} }}} \right. \kern-\nulldelimiterspace} {d_{S} }} ) per site using maximum likelihood method to analyze the LF evolution. The results of ω > 1 and five identified positive selection sites of amino acid suggested that the evolution of LF gene was characterized by positive selection. Further study found that the positive selection sites were either located in the LF-bacteria binding region or the peptides of LFcin and LFampin, indicating that the selection pressure was related to LF-bacteria interaction. The identification of these sites may contribute to the mechanism of bacteria-LF interaction.  相似文献   

8.
The antimicrobial peptide PMAP-36 is a highly cationic and amphipathic α-helical peptide. PRW4 is a truncated analog that replaces paired lysine residues with tryptophan along the N-terminal and deletes the C-terminal hydrophobic tail of PMAP-36. Studies on the two peptides have already been performed. However, whether there is a synergistic effect with antibiotics has not been investigated, and the study of the antibacterial mechanism of the peptides is inadequate. In this study, antibiotic-peptide combinations were tested against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213, and the confocal laser scanning microscopy (LSCM) and DNA gel retardation were measured. The results indicated synergy between the peptides and gentamicin when tested against E. coli [fractional lethal concentration (FLC) < 0.5]; partial synergy was observed between the peptides and gentamicin against S. aureus (0.5 < FLC < 1); and streptomycin showed no reaction with the peptides against E. coli and S. aureus (1 < FLC < 4). LSCM and DNA binding suggest that PMAP-36 was able to translocate across the bacterial membranes and interact with intracellular DNA, but PRW4 presented no DNA-binding ability. These results indicate that the combination of PMAP-36 and PRW4 with aminoglycosides may provide useful information for clinical application, and the antibacterial mechanism of peptides likely does not solely involve cytoplasmic-membrane permeabilization.  相似文献   

9.
Lactoferrampin 265–284 (LFampin 265–284) is a peptide consisting of residues 265–284 of N1‐domain of bovine Lactoferrin (LF). This peptide has several cationic groups in the C‐terminal lobe, exhibiting an antibacterial activity against a wide range of microorganisms. However, LFampin 265–284 exhibits low antimicrobial activity against the O157:H7 enterohaemorrhagic Escherichia coli (EHEC O157:H7) when compared with Lactoferrin chimera and Lactoferricin. Here, we have designed three analogues of LFampin 265–284 based on the distribution of cationic groups, hydrophobicity, size, and sequence. Analogues were synthesized by solid phase chemistry using Fmoc methodology obtaining peptides with 95% purity. All peptides maintain the ability to adopt helical conformations (checked by circular dichroism spectra and molecular simulations). Some of these analogues exhibited a significant increase in antimicrobial activity by counting colony forming units against EHEC O157:H7 compared to native LFampin 265–284, with MIC of 10 and 40 µM for 264G‐D265K and 264G‐D265K/S272R, respectively. The incorporation of a GKLI sequence in the N‐terminal lobe increased dramatically its antibacterial activity, an effect which has been attributed to the addition of cationic groups in the N‐terminal side that may stabilize the helical conformation of the new designed peptides. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 319–328, 2014.  相似文献   

10.
The porcine cathelicidin PR-39 is a host defence peptide that plays a pivotal role in the innate immune defence of the pig against infections. Besides direct antimicrobial activity, it is involved in immunomodulation, wound healing and several other biological processes. In this study, the antimicrobial- and immunomodulatory activity of PR-39, and N- and C-terminal derivatives of PR-39 were tested. PR-39 exhibited an unexpected broad antimicrobial spectrum including several Gram positive strains such as Bacillus globigii and Enterococcus faecalis. Of organisms tested, only Staphylococcus aureus was insensitive to PR-39. Truncation of PR-39 down to 15 (N-terminal) amino acids did not lead to major loss of activity, while peptides corresponding to the C-terminal part of PR-39 were hampered in their antimicrobial activity. However, shorter peptides were all much more sensitive to inhibition by salt. Active peptides induced ATP leakage and loss of membrane potential in Bacillus globigii and Escherichia coli, indicating a lytic mechanism of action for these peptides. Finally, only the mature peptide was able to induce IL-8 production in porcine macrophages, but some shorter peptides also had an effect on TNF-α production showing differential regulation of cytokine induction by PR-39 derived peptides. None of the active peptides showed high cytotoxicity highlighting the potential of these peptides for use as an alternative to antibiotics.  相似文献   

11.
Earlier, in the wheat Triticum kiharae Dorof. et Migusch., a new family of genes coding for the hevein-like antimicrobial peptides WAMPs, involved in the protection of wheat plants against pathogens, was discovered. In the present study, we examined the wamp homologs in plants belonging to ten di-, tetra-, and hexaploid species of the genus Aegilops L., among which there are donors of polyploid wheat genomes, as well as of the resistance genes to the most important wheat pathogens. Using PCR amplification with genomic DNA as a template and primers specific to the sequences of the wheat wamp genes, for the first time, nucleotide sequences of the protein-coding regions of wamp homologs were determined in the species of the genus Aegilops L. The wamp homologs were found in all species studied. It was demonstrated that the WAMP peptide precursors encoded by them differed in single nucleotide substitutions, as well as deletions/insertions of amino acid sequences. The most conserved region of the precursor is the mature peptide region, where, in addition to the variable position 34, deletions of amino acid sequences were found in a number of peptides. To elucidate the role of deletions in the antimicrobial activity of WAMPs, a recombinant WAMP-3 peptide with a deletion in the N-terminal region was produced by expression in E. coli cells, and it was shown that antimicrobial activity of the peptide was preserved. It was demonstrated that all the discovered wamp genes were expressed in seedlings of the studied Aegilops species. The results shed new light on the structural diversity of genes encoding the hevein-like antimicrobial peptides WAMPs.  相似文献   

12.
The endangered anuran species, Odorrana ishikawae, is endemic to only two small Japanese Islands, Amami and Okinawa. To assess the innate immune system in this frog, we investigated antimicrobial peptides in the skin using artificially bred animals. Nine novel antimicrobial peptides containing the C-terminal cyclic heptapeptide domain were isolated on the basis of antimicrobial activity against Escherichia coli. The peptides were members of the esculentin-1 (two peptides), esculentin-2 (one peptide), palustrin-2 (one peptide), brevinin-2 (three peptides) and nigrocin-2 (two peptides) antimicrobial peptide families. They were named esculentin-1ISa, esculentin-1ISb, esculentin-2ISa, palustrin-2ISa, brevinin-2ISa, brevinin-2ISb, brevinin-2ISc, nigrocin-2ISa and nigrocin-2ISb. Peptide primary structures suggest a close relationship with the Asian odorous frogs, Odorrana grahami and Odorrana hosii. These antimicrobial peptides possessed a broad-spectrum of growth inhibition against five microorganisms (E. coli, Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus subtilis and Candida albicans). Nine different cDNAs encoding the precursor proteins were also cloned and showed that the precursor proteins exhibited a signal peptide, an N-terminal acidic spacer domain, a Lys-Arg processing site and an antimicrobial peptide at the C-terminus.  相似文献   

13.
Antimicrobial peptides (AMPs) have been paid considerable attention owing to their broad-spectrum antimicrobial activity and have great potential as novel antimicrobials. In this study, a novel hybrid peptide LF15-CA8 was designed on the basis of bovine lactoferricin (LfcinB) and cecropin A. The gene segment encoding LF15-CA8 was synthesized and cloned into pGEX-4T-BH to form pGEX-4T-LC1 containing one copy of the LF15-CA8 coding region. A series of recombinant vectors containing up to six multiple-copy LF15-CA8 coding regions, i.e., pGEX-4T-LCn (n = 1–6), were subsequently constructed, and used for transformation in Escherichia coli BL21(DE3). After induction with IPTG, pGEX-4T-LC1 and pGEX-4T-LC2 transformants successfully expressed fusion proteins GST-LF15-CA8 and GST-(LF15-CA8)2 in the form of inclusion bodies, respectively. The inclusion bodies were dissolved and the peptide was successfully released in 70 % formic acid in a single step. After purification, about 10.0 mg of the recombinant peptide LF15-CA8 with purity more than 97 % was obtained from 1 l of bacteria culture of pGEX-4T-LC2 transformants. LF15-CA8 caused an increase in antibacterial activity against Gram-positive bacterium (Staphylococcus aureus ATCC 25923) compared with the parent peptides and did not show obvious hemolytic activity against human erythrocytes in the range of effective antibacterial concentration. These results suggest that the peptide LF15-CA8 could be a promising candidate for therapeutic applications, and may lead to a cost-effective solution for the large-scale production of AMPs.  相似文献   

14.
Two antimicrobial cryptopeptides from the N1 domain of bovine lactoferrin, lactoferricin (LFcin17–30) and lactoferrampin (LFampin265–284), together with a hybrid version (LFchimera), were tested against the protozoan parasite Leishmania. All peptides were leishmanicidal against Leishmania donovani promastigotes, and LFchimera showed a significantly higher activity over its two composing moieties. Besides, it was the only peptide active on Leishmania pifanoi axenic amastigotes, already showing activity below 10?μM. To investigate their leishmanicidal mechanism, promastigote membrane permeabilization was assessed by decrease of free ATP levels in living parasites, entrance of the vital dye SYTOX Green (MW?=?600?Da) and confocal and transmission electron microscopy. The peptides induced plasma membrane permeabilization and bioenergetic collapse of the parasites. To further clarify the structural traits underlying the increased leishmanicidal activity of LFchimera, the activity of several analogues was assessed. Results revealed that the high activity of these hybrid peptides seems to be related to the order and sequence orientation of the two cryptopeptide moieties, rather than to their particular linkage through an additional lysine, as in the initial LFchimera. The incorporation of both antimicrobial cryptopeptide motifs into a single linear sequence facilitates chemical synthesis and should help in the potential clinical application of these optimized analogues.  相似文献   

15.
Bovine lactoferrin harbors 2 antimicrobial sequences (LFcin and LFampin), situated in close proximity in the N1-domain. To mimic their semi parallel configuration we have synthesized a chimeric peptide (LFchimera) in which these sequences are linked in a head-to-head fashion to the α- and ε-amino group, respectively, of a single lysine. In line with previously described bactericidal effects, this peptide was also a stronger candidacidal agent than the antimicrobial peptides LFcin17-30 and LFampin265-284, or a combination of these 2. Conditions that strongly reduced the candidacidal activities of LFcin17-30 and LFampin265-284, such as high ionic strength and energy depletion, had little influence on the activity of LFchimera. Freeze-fracture electron microscopy showed that LFchimera severely affected the membrane morphology, resulting in disintegration of the membrane bilayer and in an efflux of small and high molecular weight molecules such as ATP and proteins. The differential effects displayed by the chimeric peptide and a mixture of its constituent peptides clearly demonstrate the synergistic effect of linking these peptides in a fashion that allows a similar spatial arrangement as in the parent protein, suggesting that in bovine lactoferrrin the corresponding fragments act in concert in its candidacidal activity.  相似文献   

16.
We herein summarized the effects of lactoferrin (LF) on bifidobacteria. Many in vitro studies previously reported the growth-promoting (bifidogenic) effects of LF on bifidobacteria. The involvement of bound iron, sugar chains, and LF peptides has been proposed in this bifidogenic mechanism. Peptides in the LF pepsin hydrolysate (LFH) showed stronger bifidogenic activity than natural LF; therefore, we speculated that peptides may be the bifidogenic active principle of LF. LF or its peptides may be recognized by LF-binding proteins on the surface of bifidobacterial cells, and the cationic nature or disulfide bonds of LF or its peptides may play a crucial role in its recognition by these proteins. Of the bifidobacterial species so far identified, human LF and peptides in human LFH were more likely to show bifidogenic activity especially to Bifidobacterium bifidum, and bovine LF (bLF) and peptides in bovine LFH (bLFH) to B. breve and B. infantis. In animal studies, the administration of LF to mice or piglets increased bifidobacteria levels in the intestine. In human trials, the administration of LF-containing formula to infants increased bifidobacteria levels in the feces; however, human milk achieved better results than LF-containing formula. In the case of breast-fed infants, LF may show bifidogenic activity synergistically with other milk components such as human milk oligosaccharides. As bLFH showed stronger bifidogenic activity than natural bLF, especially to B. breve and B. infantis in vitro, and these species are known to be infant-specific species, bLFH may be a beneficial ingredient in formula.  相似文献   

17.
This study aimed to find antibiotics or other compounds that could increase the antimicrobial activity of an antimicrobial peptide, lactoferricin B (LFcin B), against Staphylococcus aureus, including antibiotic-resistant strains. Among conventional antibiotics, minocycline increased the bactericidal activity of LFcin B against S. aureus, but methicillin, ceftizoxime, and sulfamethoxazole-trimethoprim did not have such an effect. The combination of minocycline and LFcin B had synergistic effects against three antibiotic-resistant strains of S. aureus, according to result of checkerboard analysis. Screening of 33 compounds, including acids and salts, alcohols, amino acids, proteins and peptides, sugar, and lipids, showed that medium-chain monoacylglycerols increased the bactericidal activity of LFcin B against three S. aureus strains. The short-term killing test in water and the killing curve test in growing cultures showed that a combination of LFcin B and monolaurin (a monoacylglycerol with a 12-carbon acyl chain) killed S. aureus more rapidly than either agent alone. These findings may be helpful in the application of antimicrobial peptides in medical or other situations.  相似文献   

18.
Increasing numbers of bacterial strains being resistant to conventional antibiotics emphasize the urgent need for new antimicrobial agents. One strategy is based on host defence peptides that can be found in every organism including humans. We have studied the antimicrobial peptide LF11, derived from the pepsin cleavage product of human lactoferrin, known for its antimicrobial and lipid A-binding activity, and peptide C12LF11, the N-lauryl-derivative of LF11, which has owing to the attached hydrocarbon chain an additional hydrophobic segment. The influence of this hydrocarbon chain on membrane selectivity was studied using model membranes composed of dipalmitoylphosphatidylglycerol (DPPG), mimicking bacterial plasma membranes, and of dipalmitoylphosphatidylcholine (DPPC), a model system for mammalian membranes. A variety of biophysical techniques was applied. Thereby, we found that LF11 did not affect DPPC bilayers and showed only moderate effects on DPPG membranes in accordance with its non-hemolytic and weak antimicrobial activity. In contrast, the introduction of the N-lauryl group caused significant changes in the phase behaviour and lipid chain packing in both model membrane systems. These findings correlate with the in vitro tests on methicillin resistant S. aureus, E. coli, P. aeruginosa and human red blood cells, showing increased biological activity of C12LF11 towards these test organisms. This provides evidence that both electrostatic and hydrophobic interactions are crucial for biological activity of antimicrobial peptides, whereas a certain balance between the two components has to be kept, in order not to loose the specificity for bacterial membranes.  相似文献   

19.

Background

Cellular prion-related protein (PrPc) is a cell-surface protein that is ubiquitously expressed in the human body. The multifunctionality of PrPc, and presence of an exposed cationic and heparin-binding N-terminus, a feature characterizing many antimicrobial peptides, made us hypotesize that PrPc could exert antimicrobial activity.

Methodology and Principal Findings

Intact recombinant PrP exerted antibacterial and antifungal effects at normal and low pH. Studies employing recombinant PrP and N- and C-terminally truncated variants, as well as overlapping peptide 20mers, demonstrated that the antimicrobial activity is mediated by the unstructured N-terminal part of the protein. Synthetic peptides of the N-terminus of PrP killed the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida parapsilosis. Fluorescence studies of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen after treatment with the “classical” human antimicrobial peptide LL-37. In contrast to LL-37, however, no marked helix induction was detected for the PrP-derived peptides in presence of negatively charged (bacteria-mimicking) liposomes. PrP furthermore showed an inducible expression during wounding of human skin ex vivo and in vivo, as well as stimulation of keratinocytes with TGF-α in vitro.

Conclusions

The demonstration of an antimicrobial activity of PrP, localisation of its activity to the N-terminal and heparin-binding region, combined with results showing an increased expression of PrP during wounding, indicate that PrPs could have a previously undisclosed role in host defense.  相似文献   

20.
We investigated the transfer of dietary bovine lactoferrin (LF) and its functional lactoferricin (LFcin) B-containing fragments to the portal blood of healthy adult rats by using several techniques. After a single administration of (125)I-labeled LF, radioactive bands were detected in autoradioluminograms of the portal blood, but similar bands were also observed after the administration of [(125)I]NaI. Although ovalbumin was detected by ELISA at 3-18 ng/ml in the portal blood plasma after an overnight administration, no LF was detected (< or =1.5 ng/ml). The antibody-captured ovalbumin fragments, but not the LF fragments, were detected in the plasma by surface-enhanced laser desorption/ionization affinity mass spectrometry (SELDI affinity MS). We finally attempted to detect the LFcin B-containing fragments by SELDI affinity MS with on-chip LFcin B-conversion, but could not detect them (< or =1 ng/ml) in the portal blood after the LF ingestion. The level of LF or its functional fragments transferred to the portal blood was therefore extremely low, if any.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号