首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Little is known regarding the potential adjustment of maternal care towards late-born young by reintroduced female ungulates, which may be adapted to environments quite different than those at their release site. We compared nursing behaviors of young to investigate whether females would adjust maternal care toward late-born young between two populations of reintroduced bighorn sheep (Ovis canadensis) in Utah, USA. Neonates on Mount Timpanogos were born on average 28 days later in 2002 and 13 days later in 2003 than neonates in Rock Canyon. Suckling and weaning behaviors, however, were similar in 2002 and 2003 between those populations, except for the number of unsuccessful suckles, which was greater for young in Rock Canyon than for young on Mount Timpanogos during the middle of lactation in 2002. Our results provide preliminary evidence that females did not adjust maternal care to compensate for late-born young within the first 3 years following reintroduction, which possibly influenced survivorship of young.  相似文献   

2.
Mating by young males or low male‐to‐female ratios can decrease pregnancy rates and postpone birthdates in ungulates, thereby hindering population growth. Young (2.5–3.5 yr old) male bighorn (Ovis canadensis) behave differently than older males, and age, horn size, mating behavior, and social rank help determine reproductive success. We estimated birthdates in two populations of bighorn sheep in Utah, USA, to determine if mating by young males or low male‐to‐female ratios resulted in fewer young born per female, a shift in mean timing of births, or asynchronous births. When reintroduced, the Rock Canyon population consisted of four males (two each of 2.5 yr old and 1.5 yr old) and a 1 to 7.5 ratio of males (>2 yr old) to adult females (≥3.5 yr old); the Mount Nebo population consisted of four males ≤1.5 yr old and a 0 to 12 ratio of males to adult females. For both populations, the number of young born per female did not differ between the first parturition period after reintroduction (where females were impregnated by males from their source populations) and the second period of parturition (where females were impregnated by young, reintroduced males). Mean birthdates and synchrony (SD) of births did not differ for Rock Canyon (May 12, 2001 ± 4.5 d, May 14, 2002 ± 3.2 d) or Mount Nebo (May 23, 2005 ± 8.1 d, May 22, 2006 ± 10.2 d) between the first and second years following reintroduction. Mating by young males or low male‐to‐female ratios had no demonstrable effect on the number of young born per female or timing and synchrony of births in these populations.  相似文献   

3.
To test the hypothesis that Mycoplasma ovipneumoniae is an important agent of the bighorn sheep (Ovis canadensis) pneumonia that has previously inevitably followed experimental commingling with domestic sheep (Ovis aries), we commingled M. ovipneumoniae-free domestic and bighorn sheep (n=4 each). One bighorn sheep died with acute pneumonia 90 days after commingling, but the other three remained healthy for >100 days. This unprecedented survival rate is significantly different (P=0.002) from that of previous bighorn-domestic sheep contact studies but similar to (P>0.05) bighorn sheep survival following commingling with other ungulates. The absence of epizootic respiratory disease in this experiment supports the hypothesized role of M. ovipneumoniae as a key pathogen of epizootic pneumonia in bighorn sheep commingled with domestic sheep.  相似文献   

4.
A pneumonia epidemic reduced bighorn sheep (Ovis canadensis) survival and recruitment during 1997-2000 in a population comprised of three interconnected wintering herds (Kenosha Mountains, Sugarloaf Mountain, Twin Eagles) that inhabited the Kenosha and Tarryall Mountain ranges in central Colorado, USA. The onset of this epidemic coincided temporally and spatially with the appearance of a single domestic sheep (Ovis aires) on the Sugarloaf Mountain herd's winter range in December 1997. Although only bighorns in the Sugarloaf Mountain herd were affected in 1997-98, cases also occurred during 1998-99 in the other two wintering herds, likely after the epidemic spread via established seasonal movements of male bighorns. In all, we located 86 bighorn carcasses during 1997-2000. Three species of Pasteurella were isolated in various combinations from affected lung tissues from 20 bighorn carcasses where tissues were available and suitable for diagnostic evaluation; with one exception, beta-hemolytic mannheimia (Pasteurella) haemolytica (primarily reported as biogroup 1(G) or 1(alphaG)) was isolated from lung tissues of cases evaluated during winter 1997-98. The epidemic dramatically lowered adult bighorn monthly survival in all three herds; a model that included an acute epidemic effect, differing between sexes and with vaccination status, that diminished linearly over the next 12 mo best represented field data. In addition to the direct mortality associated with epidemics in these three herds, lamb recruitment in years following the pneumonia epidemic also was depressed as compared to years prior to the epidemic. Based on observations presented here, pasteurellosis epidemics in free-ranging bighorn sheep can arise through incursion of domestic sheep onto native ranges, and thus minimizing contact between domestic and bighorn sheep appears to be a logical principle for bighorn sheep conservation.  相似文献   

5.
Alveolar macrophages were obtained from Rocky Mountain bighorn sheep (Ovis canadensis canadensis) and domestic sheep for the purpose of comparing pulmonary host defense mechanisms in the two species. Specific variables studied included (1) characterization of the cell types present in the lung, (2) alveolar macrophage phagocytic and bactericidal functions, (3) measurement of protein levels in lavage fluid, and (4) measurement of cortisol levels in lavage fluid. While phagocytic cell populations were similar between bighorn and domestic sheep, a significantly higher percentage of lymphocytes were present in bighorns than domestics (20% in bighorn versus 6% in domestic sheep). Significant differences were not observed in the phagocytic or bactericidal functions of macrophages between the two species. Significant differences were not observed in either lavage fluid protein levels or in cortisol levels.  相似文献   

6.
We conpared three fecal steroid metabolite assays for their usefulness in detecting pregnalcy among free-ranging Rocky Mountain bighorn sheep (Ovis canadensis canadensis) from Bighorn Canyon National Recreation Area, Wyoming and Montana (USA) and captive bighorn ewes at ZooMontana in Billings, Montana. Fecal samples were collected from 11 free-ranging, radio-collared bighorn ewes in late January-May 2001 and from 20 free-ranging, radio-collared ewes in late March to mid-May 2002. Free-ranging ewes were monitored the following spring to determine whether or not they lambed. In addition, two captive ewes were studied at ZooMontana. With three exceptions, free-ranging bighorn ewes that produced lambs had nonspecific progesterone metabolite (iPdG) levels of >1800 ng/g feces and iPdG levels >7000 ng/gm feces when samples were collected between early March and mid-May. Samples collected earlier in the year were inconclusive. One false negative was suspected to be the result of sample collection error. Of the captive ewes, nonspecific pregnanediol-3alpha-glucuronide (PdG) and iPdG followed a predictable curve over the course of the 180-day pregnancies. We conclude that estrone conjugates are not useful in diagnosing pregnancy; however, fecal steroid analysis of PdG and iPdG can be used to accurately determine pregnancy and reproductive function in bighorn sheep. This holds great potential as a noninvasive technique for understanding the role of reproductive disease in wild bighom sheep.  相似文献   

7.
The efficacy of a Pasteurella haemolytica vaccine (serotypes A1, A2, and T10) to induce humoral antibodies and alter colonization of the upper respiratory tract by related P. haemolytica spp. strains was evaluated in 10 bighorn (Ovis canadensis canadensis) and 10 domestic (Ovis aries) sheep. Sheep of each species were divided into five pairs based on age and history of respiratory disease. One sheep in each pair was vaccinated twice 2 wk apart with 2 ml of vaccine (VAC group) and the remaining animals (NV group) were injected with 2 ml of sterile saline. Mild, transient lameness was the only observed adverse effect. Blood sera from the sheep were tested for agglutinating antibodies against whole cells of A1, A2, and T10 and for leukotoxin neutralizing antibodies. Antibody titers were expressed as the reciprocal log2 of the highest reactive dilutions. Domestic sheep > 1-yr-old and two bighorn sheep with a history of A1 infection had higher titers throughout the study against A1 cells than domestic sheep < 1-yr-old and bighorns without a history of A1 infection. Both domestic and bighorn sheep had log2 titers of 8 to 12 against A2 cells and 6 to 12 against T10 cells during this time. Bighorn sheep in the VAC group had 2 to 32 fold titer increases for A1 cells by 2 wk post-vaccination (PV) compared to 0 to 2 fold increases in VAC domestic sheep. Two to 16 and 0 to 8 fold increases in antibodies titers to A2 and T10 cells, respectively, were detected in sera of both VAC groups. Sera of bighorn sheep with a history of respiratory disease and all domestic sheep had log2 leukotoxin neutralizing antibody titers of 4 to 14 in contrast to < or = 2 in sera of bighorn sheep without a history of respiratory disease. Neutralizing antibody titers of two bighorns without a history of respiratory disease in the VAC group increased from log2 0 to 5 in one and from 0 to 9 in the other 2 wk PV. Antibody increases in these animals were no longer evident at 16 wk PV while titers of animals with histories of disease remained relatively stable. The types and numbers of Pasteurella spp. isolated from nasal and pharyngeal swabs varied throughout the study without conclusive evidence of suppression of colonization. Although the animals were not experimentally challenged to determine the efficacy of the vaccine, one VAC and one NV bighorn sheep died following introduction of an A2 P. haemolytica strain when leukotoxin neutralizing antibodies had returned to pre-vaccination levels. This vaccine appeared to be safe for use in bighorn sheep and stimulated moderate but transient increases in antibody levels which should provide some protection against naturally occurring disease. A vaccine which would induce production of high and maintained antibodies against multiple strains of P. haemolytica would be valuable for use in bighorn sheep maintained in captivity or when captured for relocation.  相似文献   

8.
Between 1978 and 1997, a combination of psoroptic scabies (Psoroptes spp.), mountain lion (Puma concolor) predation, and periodic drought reduced a population of native desert bighorn sheep (Ovis canadensis) in the San Andres Mountains (SAM), New Mexico, from >200 individuals to a single ewe. In 1999, this ewe was captured, ensured to be Psoroptes-free, and released back into the SAM. Eleven radio-collared rams were translocated from the Red Rock Wildlife Area (RRWA) in New Mexico into the SAM range and monitored through 2002 to determine whether Psoroptes spp. mites were still in the environment. None of these sentinel rams acquired scabies during this period, and no additional native sheep were found to be present in the range. In 2002, 51 desert bighorn sheep were translocated into the SAM from the Kofa National Wildlife Refuge in Arizona (n = 20) and the RRWA in New Mexico (n = 31). Twenty-one bighorn sheep have died in the SAM since that time, but Psoroptes spp. mites have not been detected on any of these animals, nor have they been found on mule deer (Odocoileus hemionus) sampled since 2000. We conclude that psoroptic scabies is no longer present in the San Andres bighorn sheep population and that psoroptic scabies poses a minimal to nonexistent threat to the persistence of this population at this time.  相似文献   

9.
An epizootic of infectious keratoconjunctivitis occurred in bighorn sheep (Ovis canadensis) in Yellowstone National Park during the winter of 1981-82. The causative organism was identified as Chlamydia sp. Mortality related to the epizootic was approximately 60% of an estimated 500 bighorn sheep in the northern range population. The infection probably affected all sex and age classes, but field surveys of live animals and mortality suggested that mature rams died disproportionately. Limited field observations the following winter on individuals having both normal and cloudy-appearing eyes suggested that half of the bighorns then present on the core units of winter range had contracted the disease and survived. By 1988, there were about 300 bighorn sheep in the population.  相似文献   

10.
During a routine telemetry flight of the Mojave Desert (California, USA) in August 1995, mortality signals were detected from two of 12 radio-collared female desert bighorn sheep (Ovis canadensis) in the vicinity of Old Dad Peak in San Bernardino County (California). A series of field investigations determined that at least 45 bighorn sheep had died near two artificial water catchments (guzzlers), including 13 bighorn sheep which had presumably drowned in a guzzler tank. Samples from water contaminated by decomposing bighorn sheep carcasses and hemolyzed blood from a fresh bighorn sheep carcass were tested for the presence of pesticides, heavy metals, strychnine, blue-green algae, Clostridium botulinum toxin, ethylene glycol, nitrates, nitrites, sodium, and salts. Mouse bioassay and enzyme-linked immunosorbent assay detected type C botulinum toxin in the hemolyzed blood and in fly larvae and pupae. This, coupled with negative results from other analyses, led us to conclude that type C botulinum poisoning was most likely responsible for the mortality of bighorn sheep outside the guzzler tank.  相似文献   

11.
The safety and efficacy of a remotely delivered multivalent Pasteurella haemolytica supernatant vaccine (serotypes A2 and T10) were examined in captive Rocky, Mountain bighorn sheep (Ovis canadensis canadensis). Twenty bighorn sheep were grouped according to baseline leukotoxin neutralizing antibody titers (< or =2 or >2 log2(-1)) and vaccination history (previously vaccinated or unvaccinated). Within these groups, animals were randomly assigned to one of two delivery treatments: hand injection (control) or biobullet implantation. All bighorns received a single dose from the same lot of vaccine (n = 10/treatment); four additional animals were injected intramuscularly with 0.9% saline as unvaccinated sentinels. Mild, transient lameness one day after hand injection or biobullet implantation was the only adverse effect. Serum neutralizing antibody titers to P. haemolytica leukotoxin differed between delivery treatments (P = 0.009) and among baseline titer/vaccination history groups (P = 0.013). Neutralizing titers were higher among hand-injected bighorns. Although neutralizing titers were lower among implanted bighorns than hand-injected controls at 1 wk (P = 0.002) and 2 wk (P = 0.021) after vaccination, seroconversion rates in response to implantation (6/10) and hand injection (9/10) did not differ (P = 0.303). Agglutinating antibody titers to T10 were high and did not vary over time or between delivery treatments. Agglutinating antibody titers to A2 in the hand-injected controls were not different (P > or = 0.07) than those in bighorns vaccinated with biobullet implantation. These data demonstrate that although hand injection elicits higher absolute titers, biobullet implantation may also stimulate effective antibody responses to P. haemolytica supernatant vaccine. Further evaluation of biobullet vaccination against pneumonic pasteurellosis in free-ranging populations of wild bighorn sheep is warranted.  相似文献   

12.
We investigated a pasteurellosis epizootic in free-ranging bighorn sheep (Ovis canadensis) wherein a Pasteurellaceae strain carried by syntopic cattle (Bos taurus) under severe winter conditions appeared to contribute to pneumonia in affected bighorns. Twenty-one moribund or dead bighorn sheep were found on the "Fossil Ridge" herd's winter range, Colorado, USA, between 13 December 2007 and 29 February 2008. Eight carcasses examined showed gross or microscopic evidence of acute to subacute fibrinous bronchopneumonia. All eight carcasses yielded at least one β-hemolytic Mannheimia haemolytica biogroup 1(±(G)) strain, and seven also yielded a β-hemolytic Bibersteinia trehalosi biogroup 4 (CDS) strain; evidence of Pasteurella multocida, Mycoplasma ovipneumoniae, and parainfluenza 3 and bovine respiratory syncytial viruses was also detected. Isolates of β-hemolytic Manneimia haemolytica biogroup 1(G) from a bighorn carcass and a syntopic cow showed 99.5% similarity in genetic fingerprints; B. trehalosi biogroup 4(CDS) isolates were ≥94.9% similar to an isolate from a nearby bighorn herd. Field and laboratory observations suggested that pneumonia in affected bighorns may have been caused by a combination of pathogens including two pathogenic Pasteurellaceae strains--one likely of cattle origin and one likely of bighorn origin--with infections in some cases perhaps exacerbated by other respiratory pathogens and severe weather conditions. Our and others' findings suggest that intimate interactions between wild sheep and cattle should be discouraged as part of a comprehensive approach to health management and conservation of North American wild sheep species.  相似文献   

13.
We investigated the influence of detection probability (i.e., the probability of detecting the disease or organism of interest) on the repeatability of results reported from bacterial culture tests used to demonstrate the presence of species in the Pasteurellaceae family that infect bighorn sheep (Ovis canadensis). We also estimated occupancy probabilities (i.e., the probability an individual bighorn in a herd is infected) for each cultured biovariant and examined the effects of detection probability on the number of samples needed to detect the Pasteurellaceae biovariants from within an individual sheep as well as from within a herd. We collected 5-15 samples from free-ranging bighorns in Colorado, using oropharyngeal swabs or swabs of lungs, and submitted these swabs either immediately or after 2 days for bacterial culture. We saw significant variability in results for repeated samples from each of the sheep, and detection probabilities were ≤ 0.71 for all Pasteurellaceae biovariants cultured. The delayed (≥ 2 days) sample submission reduced both the microbial diversity detected and the detection probability for the biovariants characterized when compared to samples submitted immediately. Oropharyngeal sampling had higher detection probabilities of the individual biovariants than did lung swabs, and there was a difference in the biovariants detected between oropharyngeal and lung sampling. Depending on the biovariant of interest, estimates of occupancy probabilities ranged from 0.37-0.89, and we estimated that three to >30 swab samples were necessary to obtain a 95% confidence of detecting the cultured biovariants if they were present in an individual sheep. We estimated that the optimal sample sizes to detect the observed biovariants within a sheep herd with a 95% confidence ranged from sampling two bighorns twice to sampling 40 individuals once. Detection probability impacts the results reported from bacterial cultures for Pasteurellaceae in bighorn sheep, and confounding effects of the detection process should be addressed to improve the rigor of surveillance.  相似文献   

14.
Sierra Nevada bighorn sheep (Ovis canadensis sierrae) experienced a severe population decline after European settlement from which they have never recovered; this subspecies was listed as endangered under the United States Endangered Species Act (ESA) in 1999. Recovery of a listed species is accomplished via federally mandated recovery plans with specific population goals. Our main objective was to evaluate the potential impact of disease on the probability of meeting specific population size and persistence goals, as outlined in the Sierra Nevada bighorn sheep recovery plan. We also sought to heuristically evaluate the efficacy of management strategies aimed at reducing disease risk to or impact on modeled bighorn populations. To do this, we constructed a stochastic population projection model incorporating disease dynamics for 3 populations (Langley, Mono, Wheeler) based on data collected from 1980 to 2007. We modeled the dynamics of female bighorns in 4 age classes (lamb, yearling, adult, senescent) under 2 disease scenarios: 5% lower survival across the latter 3 age classes and persistent 65% lower lamb survival (i.e., mild) or 65% reduced survival across all age classes followed by persistent 65% lower lamb survival (i.e., severe). We simulated management strategies designed to mitigate disease risk: reducing the probability of a disease outbreak (to represent a strategy like domestic sheep grazing management) and reducing mortality rate (to represent a strategy that improved survival in the face of introduced disease). Results from our projection model indicated that management strategies need to be population specific. The population with the highest growth rate ( ; Langley; = 1.13) was more robust to the effects of disease. By contrast, the population with the lowest growth rate (Mono; = 1.00) would require management intervention beyond disease management alone, and the population with a moderate growth rate (Wheeler; = 1.07) would require management sufficient to prevent severe disease outbreaks. Because severe outbreaks increased adult mortality, disease can directly reduce the probability of meeting recovery plan goals. Although mild disease outbreaks had minimal direct effects on the populations, they reduced recruitment and the number of individuals available for translocation to other populations, which can indirectly reduce the probability of meeting overall, range-wide minimum population size goals. Based on simulation results, we recommend reducing the probability of outbreak by continuing efforts to manage high-risk (i.e., spatially close) allotments through restricted grazing regimes and stray management to ensure recovery for Wheeler and Mono. Managing bighorn and domestic sheep for geographic separation until Sierra Nevada bighorn sheep achieve recovery objectives would enhance the likelihood of population recovery. © 2011 The Wildlife Society.  相似文献   

15.
We tested for cross‐species amplification of microsatellite loci located throughout the domestic sheep (Ovis aries) genome in two north American mountain ungulates (bighorn sheep, Ovis canadensis, and mountain goats, Oreamnos americanus). We identified 247 new polymorphic markers in bighorn sheep (≥ 3 alleles in one of two study populations) and 149 in mountain goats (≥ 2 alleles in a single study population) using 648 and 576 primer pairs, respectively. Our efforts increased the number of available polymorphic microsatellite markers to 327 for bighorn sheep and 180 for mountain goats. The average distance between successive polymorphic bighorn sheep and mountain goat markers inferred from the Australian domestic sheep genome linkage map (mean ± 1 SD) was 11.9 ± 9.2 and 15.8 ± 13.8 centimorgans, respectively. The development of genomic resources in these wildlife species enables future studies of the genetic architecture of trait variation.  相似文献   

16.
Individual host immune responses to infectious agents drive epidemic behavior and are therefore central to understanding and controlling infectious diseases. However, important features of individual immune responses, such as the strength and longevity of immunity, can be challenging to characterize, particularly if they cannot be replicated or controlled in captive environments. Our research on bighorn sheep pneumonia elucidates how individual bighorn sheep respond to infection with pneumonia pathogens by examining the relationship between exposure history and survival in situ. Pneumonia is a poorly understood disease that has impeded the recovery of bighorn sheep (Ovis canadensis) following their widespread extirpation in the 1900s. We analyzed the effects of pneumonia-exposure history on survival of 388 radio-collared adults and 753 ewe-lamb pairs. Results from Cox proportional hazards models suggested that surviving ewes develop protective immunity after exposure, but previous exposure in ewes does not protect their lambs during pneumonia outbreaks. Paradoxically, multiple exposures of ewes to pneumonia were associated with diminished survival of their offspring during pneumonia outbreaks. Although there was support for waning and boosting immunity in ewes, models with consistent immunizing exposure were similarly supported. Translocated animals that had not previously been exposed were more likely to die of pneumonia than residents. These results suggest that pneumonia in bighorn sheep can lead to aging populations of immune adults with limited recruitment. Recovery is unlikely to be enhanced by translocating naïve healthy animals into or near populations infected with pneumonia pathogens.  相似文献   

17.
Pasteurella spp. were isolated from feral goats and free-ranging bighorn sheep (Ovis canadensis canadensis) in the Hells Canyon National Recreation Area bordering Idaho, Oregon, and Washington (USA). Biovariant 1 Pasteurella haemolytica organisms were isolated from one goat and one of two bighorn sheep found in close association. Both isolates produced leukotoxin and had identical electrophoretic patterns of DNA fragments following cutting with restriction endonuclease HaeIII. Similarly Pasteurella multocida multocida a isolates cultured from the goat and one of the bighorn sheep had D type capsules, serotype 4 somatic antigens, produced dermonecrotoxin and had identical HaeIII electrophoretic profiles. A biovariant U(beta) P.haemolytica strain isolated from two other feral goats, not known to have been closely associated with bighorn sheep, did not produce leukotoxin but had biochemical utilization and HaeIII electrophoretic profiles identical to those of isolates from bighorn sheep. It was concluded that identical Pasteurella strains were shared by the goats and bighorn sheep. Although the direction of transmission could not be established, evidence suggests transmission of strains from goats to bighorn sheep. Goats may serve as a reservoir of Pasteurella strains that may be virulent in bighorn sheep; therefore, goats in bighorn sheep habitat should be managed to prevent contact with bighorn sheep. Bighorn sheep which have nose-to-nose contact with goats should be removed from the habitat.  相似文献   

18.
A 4-mo-old free-ranging Rocky Mountain bighorn sheep (Ovis canadensis canadensis) from the Hells Canyon area (Washington, USA) was diagnosed with encephalitis associated with Toxoplasma gondii infection. The sheep had concurrent pneumonic pasteurellosis and resided in a geographic area with endemic Pasteurella-associated pneumonia and mortality in bighorn sheep. The brain had multifocal necrotizing and nonsuppurative encephalitis with intralesional protozoa. The protozoa were identified as T. gondii by immunohistochemistry. To our knowledge, this is the first report of T. gondii infection in a Rocky Mountain bighorn sheep.  相似文献   

19.
Genetic composition can influence host susceptibility to, and transmission of, pathogens, with potential population‐level consequences. In bighorn sheep (Ovis canadensis), pneumonia epidemics caused by Mycoplasma ovipneumoniae have been associated with severe population declines and limited recovery across North America. Adult survivors either clear the infection or act as carriers that continually shed M. ovipneumoniae and expose their susceptible offspring, resulting in high rates of lamb mortality for years following the outbreak event. Here, we investigated the influence of genomic composition on persistent carriage of M. ovipneumoniae in a well‐studied bighorn sheep herd in the Wallowa Mountains of Oregon, USA. Using 10,605 SNPs generated using RADseq technology for 25 female bighorn sheep, we assessed genomic diversity metrics and employed family‐based genome‐wide association methodologies to understand variant association and genetic architecture underlying chronic carriage. We observed no differences among genome‐wide diversity metrics (heterozygosity and allelic richness) between groups. However, we identified two variant loci of interest and seven associated candidate genes, which may influence carriage status. Further, we found that the SNP panel explained ~55% of the phenotypic variance (SNP‐based heritability) for M. ovipneumoniae carriage, though there was considerable uncertainty in these estimates. While small sample sizes limit conclusions drawn here, our study represents one of the first to assess the genomic factors influencing chronic carriage of a pathogen in a wild population and lays a foundation for understanding genomic influence on pathogen persistence in bighorn sheep and other wildlife populations. Future research should incorporate additional individuals as well as distinct herds to further explore the genomic basis of chronic carriage.  相似文献   

20.
An infectious keratoconjunctivitis (IKC) epizootic in bighorn sheep (Ovis canadensis) occurred in the Silver Bell Mountains, Arizona, USA, from 1 December 2003 to 31 March 2004. We used standard culture methods and polymerase chain reaction (PCR) amplification of the 16S rRNA gene to test for the causative agents of IKC and other diseases reported to be associated with bighorn sheep populations. All bighorn sheep and domestic goat test results were negative except for Mycoplasma spp. and Branhamella spp. The culture and PCR results differed. Conjunctival swabs from four of 19 IKC-affected bighorn sheep tested by culture were positive for Mycoplasma spp., whereas 22 of 22 bighorn sheep samples tested by PCR were positive for Mycoplasma spp. None of 13 domestic goats tested positive by culture for Mycoplasma spp., whereas five of 16 tested positive by PCR. Three of 16 domestic goats and seven of 24 IKC-affected bighorn sheep tested positive for Branhamella spp. by culture. Bighorn sheep began showing clinical signs of IKC between 21 and 28 days following initial detection of domestic goats in bighorn sheep habitat. The IKC epizootic lasted 122 days, and individual bighorn sheep were blind for an average of 38.4 days. Given the clear potential for disease transmission to bighorn sheep, we recommend that land managers not allow the pasturing of domestic goats near occupied bighorn sheep habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号