首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of continuous Achilles tendon vibration on the soleus H-reflex amplitude was quantified over the entire H-reflex recruitment trajectory in 30 controls and 33 patients with spasticity in the lower limbs. The results show that with increasing stimulus intensities, vibratory inhibition of the Hreflex initially increases, then subsequently decreases. This is probably a direct consequence of how the activation thresholds of the motoneurons are distributed over the motoneuron pool. In patients, vibratory inhibition of the H-reflex was less over the entire recruitment trajectory than in controls. The decrease in vibratory inhibition in spasticity is commonly attributed to a decrease in presynaptic inhibition or post-activation depression. However, the average Hreflex threshold was lower in the patients, suggesting a decrease of the motoneuron activation thresholds. A lower reflex threshold in spasticity, therefore, may contribute to the observed reduction of vibratory inhibition.  相似文献   

2.
A computer model is presented that describes soleus H-reflex recruitment as a function of electric stimulus intensity. The model consists of two coupled non-linear transfer functions. The first transfer function describes the activation of muscle spindle (Ia) afferent terminals as a function of the electric stimulus intensity; whereas the second describes the activation of a number of motoneurons as a function of the number of active Ia afferent terminals. The effect of change in these transfer functions on the H-reflex recruitment curve is simulated. In spastic patients, a higher average maximal H-response amplitude is observed in combination with a decreased H-reflex threshold. Vibration of the Achilles tendon reduces the H-reflex amplitude, presumably by reducing the excitatory afferent input. Vibratory inhibition is diminished in spasticity. In the model, the afferent-motoneuron transfer function was modified to represent the possible alterations occurring in spasticity. The simulations show that vibratory suppression of the H-reflex is determined only in part by the inhibition level of the afferent input. With a constant level of presynaptic inhibition, the suppression of reflexes of different sizes may vary. A lowering of the motoneuron activation thresholds in spastic patients will directly contribute to a decrease of vibratory inhibition in spasticity.  相似文献   

3.
To analyse the mechanism by which sensory inputs are integrated, interactions of somatosensory evoked potentials (SEPs) in response to simultaneous stimulation of two nerves were examined in 12 healthy subjects. Right, left and bilateral median nerves were stimulated in random order so that a precise comparison could be made among the SEPs. The arithmetical sum of the independent right and left median nerve SEPs was almost equal within 40 msec of stimulus onset to that evoked by the simultaneous stimulation of bilateral median nerves. However, a difference emerged after 40 msec. The greatest difference was recorded after 100 msec. Sensory information from right and left median nerves may interact in the late phase of sensory processing. Left median, left ulnar, and both nerves together were stimulated. The sum of the SEPs of left median and ulnar nerves was not equal to that evoked by the simultaneous stimulation of the two nerves even at early latencies. Differences between them were first recorded at 14–18 msec and became greater after 30–40 msec. It is suggested that the neural interactions between impulses in the median and ulnar nerves begin below the thalamic level.  相似文献   

4.
Postural and startle responses rapidly habituate with repeated exposures to the same stimulus, and the first exposure to a seated forward acceleration elicits a startle response in the neck muscles. Our goal was to examine how the acoustic startle response is integrated with the habituated neck postural response elicited by forward accelerations of seated subjects. In experiment 1, 14 subjects underwent 11 sequential forward accelerations followed by 5 additional sled accelerations combined with a startling tone (124-dB sound pressure level) initiated 18 ms after sled acceleration onset. During the acceleration-only trials, changes consistent with habituation occurred in the root-mean-square amplitude of the neck muscles and in the peak amplitude of five head and torso kinematic variables. The subsequent addition of the startling tone restored the amplitude of the neck muscles and four of the five kinematic variables but shortened onset of muscle activity by 9-12 ms. These shortened onset times were further explored in experiment 2, wherein 16 subjects underwent 11 acceleration-only trials followed by 15 combined acceleration-tone trials with interstimulus delays of 0, 13, 18, 23, and 28 ms. Onset times shortened further for the 0- and 13-ms delays but did not lengthen for the 23- and 28-ms delays. These temporal and spatial changes in EMG can be explained by a summation of the excitatory drive converging at or before the neck muscle motoneurons. The present observations suggest that habituation to repeated sled accelerations involves extinguishing the startle response and tuning the postural response to the whole body disturbance.  相似文献   

5.
In healthy human the excitability of spinal alpha-motoneurons under application of vibrostimulation (20-60 Hz) to different leg muscles was investigated both in stationary condition and during stepping movements caused by vibration in the condition of suspended leg. In 15 subjects the amplitude of H-reflex were compared under vibration of rectus femoris (RF) and biceps femoris (BF) muscles of left leg as well during vibration of rectus femoris of contralateral, motionless leg in three spatial positions: upright, supine and on right side of body with suspended left leg. In dynamic conditions the amount of H-reflex was compared during evoked and voluntary stepping at 8 intervals of step cycle. In all body positions the vibration of each ipsilateral leg muscles caused significant suppression of H-reflex, this suppression was more prominent in the air-stepping conditions. The vibration of contralateral leg RF muscle had a weak influence on the amplitude of H-reflex. In 7 subjects the muscle vibration of ipsilateral and contralateral legs generated stepping movements. During evoked "air-stepping" H-reflex had different amplitudes in different phases of step cycle. At the same time the differences between responses under voluntary and non-voluntary stepping were revealed only in stance phase. Thus, different degree of H-reflex suppression by vibration under different body position in space depends on, it seems to be, from summary afferent inflows to spinal cord interneurons, which participate in regulation of posture and locomotion. Seemingly, the increasing of spinal cord neurons excitability occurs under involuntary air-stepping in swing phase, which is necessary for activation of locomotor automatism under unloading leg conditions.  相似文献   

6.
The responses of single vibratory receptors and ascending ventral cord interneurones were studied extracellularly in Gryllus campestris L. The physiology of the vibration receptors resembled those found in tettigoniids and locusts. The frequency responses of the subgenual receptors provide two possible cues for central frequency discrimination: differences in mean tuning between groups of receptors in the different leg pairs and a range of receptors tuned to different frequencies within one subgenual organ.Most of the ascending vibratory interneurones were highly sensitive in either the low or high frequency range. Broadbanded neurones were less sensitive. The characteristic sensitivity peaks of these units are due mainly to receptor inputs from a particular leg pair, although most central neurones receive inputs from all 6 legs. Only one neurone type, TN1 received excitatory inputs from both auditory and vibratory receptors; its responses were greatly enhanced by the simultaneous presentation of both stimulus modes. The responses to sound stimuli of AN2, on the other hand, were inhibited by vibration. No other auditory interneurones investigated were influenced by inputs from vibration receptors. Central processing of vibratory information in the cricket is compared with that of tettigoniids and locusts.  相似文献   

7.
The purpose of this study was to investigate whether rhythmic arm swing modulates the long latency effect of transcranial magnetic stimulation (TMS) on soleus motoneuron pool excitability. Ten healthy humans rhythmically swung the left arm back and forth in a sitting position. The soleus H-reflex was evoked when the arm was in the backward swing phase. Conditioning TMS was delivered over the motor cortex 8?ms before the soleus H-reflex was evoked. The soleus H-reflex amplitude in both legs was depressed by the rhythmic arm swing. In contrast, rhythmic arm swing enhanced the facilitatory effect of conditioning TMS over the motor cortex contralateral to the arm swing side on the soleus H-reflex ipsilateral to the arm swing side. This finding indicates that rhythmic arm swing enhances some polysynaptic facilitatory pathways from the motor cortex contralateral to the arm swing side to the soleus motoneuron pool ipsilateral to the arm swing side.  相似文献   

8.
The purpose of this study was to investigate whether rhythmic arm swing modulates the long latency effect of transcranial magnetic stimulation (TMS) on soleus motoneuron pool excitability. Ten healthy humans rhythmically swung the left arm back and forth in a sitting position. The soleus H-reflex was evoked when the arm was in the backward swing phase. Conditioning TMS was delivered over the motor cortex 8 ms before the soleus H-reflex was evoked. The soleus H-reflex amplitude in both legs was depressed by the rhythmic arm swing. In contrast, rhythmic arm swing enhanced the facilitatory effect of conditioning TMS over the motor cortex contralateral to the arm swing side on the soleus H-reflex ipsilateral to the arm swing side. This finding indicates that rhythmic arm swing enhances some polysynaptic facilitatory pathways from the motor cortex contralateral to the arm swing side to the soleus motoneuron pool ipsilateral to the arm swing side.  相似文献   

9.
Unit activity in 66 neurons of the reticular (R) nucleus and 31 neurons of the ventropostrolateral nuclei of the thalamus, and 14 neurons of the posterolateral nuclear complex, the pulvinar, were studied during extinction of the conditioned food implementation reflex. The number of R neurons that had responded to initial excitation in the first 300 msec after the conditional stimulus (CS) decreased with the extinction. Simultaneous disappearance of conditioned-reflex placement movements and late excitatory and inhibitory responses of R and dorsal thalamic nuclei neurons with latent periods exceeding 300 msec was also observed. Extinction of the conditioned reflex (CR) led to a significant lowering of background activity in two-thirds of investigated R and other thalamic nuclear neurons. This suggests that efferent effects from the reticular nucleus are decreased during Cr extinction.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the USSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 1, pp. 3–8, January–February, 1991.  相似文献   

10.
Scalp potential topographies evoked by innocuous and noxious sural nerve stimulation were obtained from 15 human subjects. The SEP scalp topography could be separated into 6 different stable periods (SP), that is, consecutive time points where there were no major changes in the topographic pattern, SP1 (occurring 58–90 msec post stimulus) was characterized by a contralateral frontal positivity and a central negativity oriented ipsilateral to the evoking stimulus; SP2 (92–120 msec by a bilateral frontal positivity and a symmetrical central negativity; SP3 (135–158 msec) by a widespread negativity with a minimum at the contralateral temporo-frontal region; and SP4 (178–222 msec), SP5 (223–277 msec) and SP6 (282–339 msec) by a widespread positivity with a maximum located along the centro-parietal midline. SP4, SP5, amd SP6 could be distinguished by changes in the orientation of the isovoltage contour lines and/or by changes in the location of the maximum. The stable periods had similar onset and offset latencies and the same major features across subjects. However, the topographic patterns were not identical across subjects. These individual differences are likely due to the expected variability in the orientation of the equivalent regional dipole sources generating these potentials.  相似文献   

11.
The extent to which motoneuron pool excitability, as measured by the Hoffmann reflex (H-reflex), is affected by an acute bout of whole-body vibration (WBV) was recorded in 19 college-aged subjects (8 male and 11 female; mean age 19 +/- 1 years) after tibial nerve stimulation. H/M recruitment curves were mapped for the soleus muscle by increasing stimulus intensity in 0.2- to 1.0-volt increments with 10-second rest intervals between stimuli, until the maximal M-wave and H-reflex were obtained. After determination of Hmax and Mmax, the intensity necessary to generate an H-reflex approximately 30% of Mmax (mean 31.5% +/- 4.1%) was determined and used for all subsequent measurements. Fatigue was then induced by 1 minute of WBV at 40 Hz and low amplitude (2-4 mm). Successive measurements of the H-reflex were recorded at the test intensity every 30 seconds for 30 minutes post fatigue. All subjects displayed a significant suppression of the H-reflex during the first minute post-WBV; however, four distinct recovery patterns were observed among the participants (alpha = 0.50). There were no significant differences between genders across time (P = 0.401). The differences observed in this study cannot be explained by level or type training. One plausible interpretation of these data is that the multiple patterns of recovery may display variation of muscle fiber content among subjects. Future investigation should consider factors such as training specificity and muscle fiber type that might contribute to the differing H-reflex response, and the effect of WBV on specific performance measures should be interpreted with the understanding that there may be considerable variability among individuals. Recovery times and sample size should be adjusted accordingly.  相似文献   

12.
Spike responses of area 4 neurons in the projection area of the contralateral forelimb to acoustic stimulation (1 sec), which became the conditioned stimulus after training, and to dropping of the platform beneath the test limb, which served as reinforcing stimulus, were studied in trained and untrained cats. Responses only of those neurons which were activated during a passive movement caused by dropping of the platform were studied. In trained animals the number of these neurons which responded to the conditioned stimulus if a reflex occurred was 100%, and in the absence of conditioned-reflex movements to the conditioned stimulus it was 70%, much greater than the number of neurons responding to the same acoustic stimulus in untrained animals (45%). On peristimulus histograms of responses of the test neuron population in untrained and trained animals to acoustic stimulation (in the absence of movements) only the initial spike response with a latent period of under 50 msec and a duration of up to 100 msec could be clearly distinguished. In the presence of reflex movement multicomponent spike responses were observed: an initial spike response and early and late after-responses linked with performance of conditioned-reflex limb flexion. Early after-responses 100–200 msec in duration, appearing after a latent period of 100–150 msec, were linked to the time of application of the conditioned stimulus, whereas the appearance and duration of late after-responses were determined by the time of onset of conditioned-reflex movement. The magnitude of the neuronal response to reinforcement in trained animals does not depend on the appearance of the conditioned movement.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 1, pp. 93–102, January–February, 1985.  相似文献   

13.
 Simple exposure to repeatitive stimulation is known to induce short-term learning effects across a wide range of species. These effects can be both suppressive and facilitatory depending on stimulus conditions: repeatitive presentation of a weak stimulus decreases the strength of the response (habituation), whereas presentation of a tonic stimulus following a series of weak stimuli transiently increases the response strength (dishabituation). Although these phenomena have been comprehensively characterized at both behavioral and cellular levels, most existing models of nonassociative learning focus exclusively on the suppressive or facilitatory changes in response, and do not attempt to relate cellular events to behavior. I propose here a feedforward model of habituation effects that explains both suppressive and facilitatory changes in response relying on the interaction between excitatory and inhibitory processes that develop in parallel on two different timescales. The model's properties are used to explain the rate sensitivity property of habituation and recovery and stimulus dishabituation. Received: 1 June 2001 / Accepted in revised form: 4 December 2001  相似文献   

14.
We analyzed human postural responses to muscle vibration applied at four different frequencies to lower leg muscles, the lateral gastrocnemius (GA) or tibialis anterior (TA) muscles. The muscle vibrations induced changes in postural orientation characterized by the center of pressure (CoP) on the force platform surface on which the subjects were standing. Unilateral vibratory stimulation of TA induced body leaning forward and in the direction of the stimulated leg. Unilateral vibration of GA muscles induced body tilting backwards and in the opposite direction of the stimulated leg. The time course of postural responses was similar and started within 1 s after the onset of vibration by a gradual body tilt. When a new slope of the body position was reached, oscillations of body alignment occurred. When the vibrations were discontinued, this was followed by rapid recovery of the initial body position. The relationship between the magnitude of the postural response and frequency of vibration differed between TA and GA. While the magnitude of postural responses to TA vibration increased approximately linearly in the 60-100 Hz range of vibration frequency, the magnitude of response to GA vibration increased linearly only at lower frequencies of 40-60 Hz. The direction of body tilt induced by muscle vibration did not depend on the vibration frequency.  相似文献   

15.
Unanesthetized cats were immobilized with D-tubocurarine. Single unit responses in area 5b of the suprasylvian gyrus to stimulation of the ventral posterolateral thalamic nucleus were recorded extracellularly. Of the total number of neurons tested, 32% were excited and 3% inhibited. In 65% of neurons the responses were mixed, most of them being predominantly excitatory. Repetitive stimulation of the ventral posterolateral nucleus (6–9/sec) frequently intensified the excitatory component of the responses. Sometimes inhibition, present in the response to a single stimulus, was replaced by increased excitation. However, the same response as to a single stimulus frequently appeared in response to each consecutive stimulus of a series. Stimulation of the ventral posterolateral nucleus had a mainly excitatory effect on neurons in area 5b. Stimulation of the dorsal lateral nucleus, on the other hand, inhibited their activity. This antagonism could also be observed on the same neuron. It was concluded from the short latent periods of the orthodromic responses (3–6 msec) and from the antidromic responses of the cortical neurons to stimulation of the ventral posterolateral nucleus that this nucleus has direct two-way connections with the cortex of area 5b.  相似文献   

16.
Reaction times were determined for monkeys and humans who made wrist flexion and extension movements in response to vibratory and visual cues. Humans initiated movements approximately 50 msec sooner in response to vibratory as compared to visual cues. For monkeys, this difference was approximately 100 msec. Mean daily reaction times for monkeys and humans improved with practice until they reached a steady level of performance. Increased differences between vibratory and visual reaction times were weakly correlated with increased age of humans. The increase in the differences appeared to result from decreased reaction times by older subjects for vibratory-cued movements; reaction times for visually cued movements did not consistently vary across the age range of subjects tested (19-36 years). The results obtained using this novel paradigm suggest that it may be a useful tool for simultaneously testing behavioral performance or neurological function during somatosensorimotor and visuomotor tasks.  相似文献   

17.
Reaction times were determined for monkeys and humans who made wrist flexion and extension movements in response to vibratory and visual cues. Humans initiated movements approximately 50 msec sooner in response to vibratory as compared to visual cues. For monkeys, this difference was approximately 100 msec. Mean daily reaction times for monkeys and humans improved with practice until they reached a steady level of performance. Increased differences between vibratory and visual reaction times were weakly correlated with increased age of humans. The increase in the differences appeared to result from decreased reaction times by older subjects for vibratory-cued movements; reaction times for visually cued movements did not consistently vary across the age range of subjects tested (19-36 years). The results obtained using this novel paradigm suggest that it may be a useful tool for simultaneously testing behavioral performance or neurological function during somatosensorimotor and visuomotor tasks.  相似文献   

18.
Unit activity was studied in areas 3 and 4 during the conditioned placing reflex in cats. Responses of somatic cortical neurons in this case were shown to develop comparatively late — 80–100 or, more often, 200–450 msec after the conditioned stimulus. In the motor cortex responses preceded movement by 50–550 msec, whereas in the somatosensory cortex they usually began simultaneously with or after the beginning of the movement. Judging from responses of somatic cortical neurons, the placing reflex is realized by the same neuronal mechanism as the corresponding voluntary movement. The differential stimulus and positive conditioned stimulus, after extinction of the conditioned placing reflex, evoked short-latency spike responses lasting 250–350 msec in the same neurons as took part in the reflex itself. In these types of internal inhibition, responses of the neurons were thus initially excitatory in character. Participation of the neurons in the conditioned placing reflex and its extinction, disinhibition, and differentiation, is the result of a change in the time course of excitatory processes and is evidently connected with differential changes in the efficiency of the various synaptic inputs of the neuron.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 392–401, July–August, 1982.  相似文献   

19.
In the present study, we investigated whether weak (10% of maximal voluntary contraction) tonic dorsiflexion (DF) and plantarflexion (PF) affects the two conventional parameters used for evaluating the excitability of the soleus motoneuron (MN) pool, i.e. the ratio of the threshold of H-reflex to that of M-response (Hth:Mth) and the ratio of the maximal amplitude of H-reflex to that of M-response (Hmax:Mmax) in human subjects. The results showed that the Hmax:Mmax decreased during DF and increased during PF compared with that during rest, whereas no clear alteration was observed in Hth:Mth. These results are consistent with the scheme proposed by earlier workers, who have argued that neither inhibitory nor facilitatory effects of the conditioning stimulus apply to specific spinal reflex circuits occurring around the threshold of the test H-reflex. It is suggested, therefore, that the conventional use of the Hth:Mth ratio as a parameter reflecting the excitability of the MN pool should be reconsidered.  相似文献   

20.
Mechanisms of the "enhancing" evoked potential arising in the visual cortex in response to repeated stimulation at intervals of 100–150 msec were investigated on unanesthetized rabbits. Such intervals correspond to the phase of postinhibitory activation caused by the first (conditioning) stimulus. It is shown that the enhancing response lasts slightly longer than the primary response to a single stimulus and develops upon stimulation of the optic nerve and subcortical white substance under the point of derivation. The enhancing response is accompanied by a high-amplitude excitatory postsynaptic potential in cortical neurons and by a burst of impulse activity. Hence it can be concluded that it is generated by excitatory synapses of cortical neurons. Characteristic features of the enhancing response are the relation between the duration of the response and its amplitude (the response is shorter, the higher its amplitude) and the weak effect of the intensity of the stimulus on the amplitude of the response. An analysis of the possible mechanisms of enhancement of the response when the stimulus evoking it coincides with the phase of postinhibitory activation leads to the suggestion that this response is generated by a recurrent excitatory intracortical system. This suggestion makes it possible to explain the ability of the response to be enhanced in the presence of postinhibitory activity and some other properties of it.A. N. Severtsov Institute of Evolutionary Animal Morphology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 1, pp. 64–72, January–February, 1970.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号