首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitation of the hydroxyl radical by reaction with dimethyl sulfoxide   总被引:6,自引:0,他引:6  
This investigation was conducted to validate the use of dimethyl sulfoxide (DMSO) as a quantitative molecular probe for the generation of hydroxyl radicals (HO.) in aqueous systems. Reaction of HO. with DMSO produces methane sulfinic acid as a primary product, which can be detected by a simple colorimetric assay. To evaluate this method for estimating total HO. production, we studied three model systems, including the Fenton reaction, gamma irradiation of water, and ultraviolet photolysis of hydrogen peroxide, for which the theoretical maximum yield of HO. could be calculated and compared to measured DMSO oxidation. The results confirm that 0.05 to 1 M DMSO may be used to capture nearly all of the expected HO. radicals formed. Thus, methane sulfinic acid production from DMSO holds promise as an easily measured marker for HO. formation in aqueous systems pretreated with DMSO.  相似文献   

2.
Hydroxyl radical generation by postischemic rat kidney slices in vitro   总被引:1,自引:0,他引:1  
To quantitate the formation of hydroxyl radicals (HO.) in ischemia and reoxygenation, dimethyl sulfoxide (DMSO) was added to "trap" evolving HO. in normal, in ischemic, and in ischemic and reoxygenated rat kidney slices, incubated in short-term organ culture in vitro. Hydroxyl radical generation was measured as the accumulation of the specific product of DMSO oxidation by HO., methane sulfinic acid (MSA) in the kidney tissue and surrounding medium using a new colorimetric assay. A mean difference of 7 nmol cumulative HO./gram tissue was detected in rat kidney slices subjected to ischemia and reoxygenation. This amount of HO. generation was not significantly greater than that found in nonischemic or in ischemic but not reoxygenated control tissues, and does not appear to represent the highly toxic burst of HO. radicals implied in current theoretical discussions of reperfusion injury. However, the addition of EDTA chelated iron (1:1) to the incubation medium led to marked postischemic HO. generation. We conclude that clearly toxic numbers of HO. radicals are not formed during reoxygenation in rat kidney slices, either because there is insufficient iron, because only a small fraction of cells in the kidney tissue make oxygen radicals, or because cellular defenses against HO. formation are more powerful than currently appreciated.  相似文献   

3.
To help settle controversy as to whether the chelating agent diethylenetriaminepentaacetate (DTPA) supports or prevents hydroxyl radical production by superoxide/hydrogen peroxide systems, we have reinvestigated the question by spectroscopic, kinetic, and thermodynamic analyses. Potassium superoxide in DMSO was found to reduce Fe(III)DTPA. The rate constant for autoxidation of Fe(II)DTPA was found (by electron paramagnetic resonance spectroscopy) to be 3.10 M-1 s-1, which leads to a predicted rate constant for reduction of Fe(III)DTPA by superoxide of 5.9 x 10(3) M-1 s-1 in aqueous solution. This reduction is a necessary requirement for catalytic production of hydroxyl radicals via the Fenton reaction and is confirmed by spin-trapping experiments using DMPO. In the presence of Fe(III)DTPA, the xanthine/xanthine oxidase system generates hydroxyl radicals. The reaction is inhibited by both superoxide dismutase and catalase (indicating that both superoxide and hydrogen peroxide are required for generation of HO.). The generation of hydroxyl radicals (rather than oxidation side-products of DMPO and DMPO adducts) is attested to by the trapping of alpha-hydroxethyl radicals in the presence of 9% ethanol. Generation of HO. upon reaction of H2O2 with Fe(II)DTPA (the Fenton reaction) can be inhibited by catalase, but not superoxide dismutase. The data strongly indicate that iron-DTPA can catalyze the Haber-Weiss reaction.  相似文献   

4.
Free radicals and the etiology of colon cancer   总被引:12,自引:0,他引:12  
This hypothesis paper reviews diverse evidence suggesting that intracolonic production of oxygen radicals may play a role in carcinogenesis. The hypothesis began to evolve when the author made the chance discovery that 1/10,000 dilutions of feces generated detectable quantities of highly reactive hydroxyl radicals (HO.). The rate of HO. formation, detected using DMSO as a molecular probe, was quite remarkable, corresponding to that which would be produced by over 10,000 rads of gamma irradiation per day, absorbed in the periphery of the fecal mass adjacent to the mucosa. The relatively high concentrations of iron in feces, together with the ability of bile pigments to act as iron chelators that support Fenton chemistry, may very well permit efficient HO. generation from superoxide and hydrogen peroxide produced by bacterial metabolism. Such free radical generation in feces could provide a missing link in our understanding of the etiology of colon cancer: the oxidation of procarcinogens either by fecal HO., or by secondary peroxyl radicals (ROO.) to form active carcinogens or mitogenic tumor promotors. Intracolonic free radical formation may explain the high incidence of cancer in the colon and rectum, compared to other regions of the GI tract, as well as the observed correlations of a higher incidence of colon cancer with red meat in the diet, which increases stool iron, and with excessive fat in the diet, which may increase the fecal content of procarcinogens and bile pigments.  相似文献   

5.
We recently reported that capsaicin (CAP) is capable of scavenging peroxyl radicals derived from 2,2'-azobis(2,4-dimethylvaleronitrile) as measured by electron spin resonance (ESR) spectroscopy. The present study describes the hydroxyl radical (HO*) scavenging ability of CAP as measured by DNA strand scission assay and by an ESR spin trapping technique with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The Fenton reaction [Fe(II)+ H(2)O(2) --> Fe(III) + HO* + HO(-)] was used as a source of HO*. The incubation of DNA with a mixture of FeSO(4) and H(2)O(2) caused DNA strand scission. The addition of CAP to the incubation mixture decreased the strand scission in a concentration-dependent manner. To understand the antioxidative mechanism of CAP, we used an ESR spin trapping technique. Kinetic competition studies using different concentrations of DMPO indicated that the decrease of the oxidative DNA damage was mainly due to the scavenging of HO* by CAP, not to the inhibition of the HO* generation system itself. We estimated the second order rate constants in the reaction of CAP and common HO* scavengers with HO* by kinetic competition studies. By comparison with the common HO* scavengers, CAP was found to scavenge HO* more effectively than mannitol, deoxyribose and ethanol, and to be equivalent to DMSO and benzoic acid, demonstrating that CAP is a potent HO* scavenger. The results suggest that CAP may act as an effective HO* scavenger as well as a peroxyl radical scavenger in biological systems.  相似文献   

6.
Lethal hydroxyl radical production in paraquat-treated plants   总被引:28,自引:5,他引:23       下载免费PDF全文
Bipyridinium herbicides, including paraquat and diquat, are believed to act by generating highly reactive, oxygen-centered free radicals within chloroplasts when treated plants are exposed to sunlight. This hypothesis has not yet been confirmed by direct chemical measurements of specific free radicals. We studied paraquat-treated plants using a new method able to detect and quantify formation of highly reactive and deleterious hydroxyl radicals (HO*), in which dimethyl sulfoxide (DMSO) is used as a molecular probe. DMSO is oxidized by HO* to form the stable, nonradical compound, methane sulfinic acid, which can be easily extracted from plant tissue and measured spectrophotometrically. Initial experiments revealed formation of extraordinary numbers of hydroxyl radicals in light-exposed, paraquat + DMSO-treated plants, equivalent at least to the cumulative number of HO* radicals per gram of fresh tissue that would be produced by 10,000 rads of gamma irradiation. This appears to be the greatest production of hydroxyl radicals yet observed in a biological system and is quite sufficient to explain the rapid death of top growth in paraquat-treated plants.  相似文献   

7.
The effect of pH on the conversion of superoxide to hydroxyl free radicals   总被引:5,自引:0,他引:5  
The conversion of superoxide (O-.2) to the hydroxyl (HO.) free radical by superoxide-driven Fenton reactions was measured by the formation of hydroxylated derivatives from benzoate. Among a range of catalysts required for the conversion, the Fe3+EDTA complex was the most effective. The effect of superoxide dismutase and catalase indicated that O-.2 and H2O2 were essential reactants, while the formation of authentic HO. was confirmed by the inhibiting capacities of formate, t-butanol, and mannitol. The conversion of O-.2 to HO. was tested over a broad pH range, and was found to be highest at pH 4.8 whether Fe3+EDTA or free Fe3+ were used as the catalysts. When Fe3+EDTA was used at the optimum pH, every HO. produced required 3.7 O-.2 radicals, close to the theoretical limit of one HO. from every three O-.2 radicals generated.  相似文献   

8.
《Free radical research》2013,47(1):629-632
Pretreatment with radical scavengers significantly reduced the intestinal myoelectric disturbances following either E. coli endotoxin or platelet-activating factor (PAF) injection in the rat indicating that free radicals might be involved in the intestinal motor alterations observed in endotoxin shock and that PAF acts partially via free radical production. Moreover, dimethylsulfoxide (DMSO) was found to be more effective in inhibiting the endoxotin-induced intestinal motor alterations, than superoxide dismutase (SOD) and allopurinol. BN 52021, a specific PAF antagonist, was able to reduce the effects of endotoxin on intestinal motility, However, when BN 52021 was combined with free radical scavengers, no additive effect was observed. It is concluded that free radicals involved in endotoxin-induced intestinal motility alterations are at least in part produced in response to PAF.  相似文献   

9.
Molecule of fullerene, having a spherical or ellipsoidal shape, is made of rings consisting of five or six carbon atoms, combined with conjugated pi bonds. Delocalization of pi electrons in the molecule of fullerene makes it easy to scavenge free radicals. But, despite being the effective antioxidants and radical scavengers fullerenes may be prooxidants by reactive oxygen species generation. Mammalian cells consist mainly of water (about 70%). Thus, the radical and non-radical products of water radiolysis are the basic sources of radiation damage to biomolecules. Reactive oxygen species, such as hydroxyl (HO*) and superoxide (O2-*) radicals and hydrogen peroxide (H2O2), are responsible for radiation-induced damage in aerated systems. Free radical mechanism of radiation damage suggests that scavengers of free radicals should protect cellular structures against damage. Electron donor compounds should also exhibit protective properties towards oxidized functional groups by reducing them. However, the electron transfer from fullerene to oxygen may generate superoxide radical. The shape of fullerenes allows them to act as carriers of radioactive atoms of isotopes used in the therapy and medical diagnostics. Fullerenes and their derivatives due to its properties are new promising chemicals for application in radiobiology. Fullerenes may be radioprotectors, radiosensitizer or auxiliary compounds in diagnostic imaging. What they are depends on the experimental system used.  相似文献   

10.
DNA alkalinization experiments on lymphocytes from sonicated whole blood and on in vitro cultured lymphocytes in presence of free radical scavengers (superoxide dismutase, catalase and mannitol) showed that lesions inflicted upon DNA by pulsed ultrasounds could be ascribed to production of free radicals (O2-, OH.) and H2O2, which could mediate the production of still unidentified organic radicals, likely to be responsible for DNA damage.  相似文献   

11.
Lesion formation due to oral administration of absolute ethanol could be prevented by parenteral pretreatment with antiperoxidative drugs such as butylated hydroxytoluene (BHT), quercetin and quinacrine. Also effective were allopurinol and oxypurinol, inhibitors of xanthine oxidase, but not superoxide dismutase (SOD) and hydroxyl radical scavengers, such as sodium benzoate and dimethyl sulfoxide (DMSO). BHT, quercetin, quinacrine and sulfhydryl compounds such as reduced glutathione and cysteamine which offer gastroprotection in vivo against ethanol inhibited lipid peroxidation induced in vitro by ferrous ion in porcine gastric mucosal homogenate, but SOD, sodium benzoate, DMSO, allopurinol and oxypurinol did not. These results suggest the possibility that an active species, probably derived from free iron mobilized by the xanthine oxidase system, other than oxygen radicals such as hydroxyl radicals, contributes to lipid peroxidation and lesion formation in the gastric mucosa after absolute ethanol administration.  相似文献   

12.
There has been considerable controversy regarding the role of oxygen free radicals as important mediators of cell damage in reperfused myocardium. This controversy regards whether superoxide and hydroxyl free radicals are generated on reperfusion and if these radicals actually cause impaired contractile function. In this study, EPR studies using the spin trap 5,5-dimethyl-1-pyroline-n-oxide (DMPO) demonstrate the formation of .OH and R. free radicals in the reperfused heart. EPR signals of DMPO-OH, aN = aH = 14.9 G, and DMPO-R aN = 15.8 G aH = 22.8 G are observed, with peak concentrations during the first minute of reperfusion. It is demonstrated that these radicals are derived from .O2- since reperfusion in the presence of enzymatically active recombinant human superoxide dismutase markedly reduced the formation of these signals while inactive recombinant human superoxide dismutase had no effect. On reperfusion with perfusate pretreated to remove adventitial iron, the concentration of the DMPO-OH signal was increased 2-fold and a 4-fold decrease in the DMPO-R signal was observed demonstrating that iron-mediated Fenton chemistry occurs. Hearts reperfused with recombinant human superoxide dismutase exhibited improved contractile function in parallel with the marked reduction in measured free radicals. In order to determine if the reperfusion free radical burst results in impaired contractile function, simultaneous measurements of free radical generation and contractile function were performed. A direct relationship between free radical generation and subsequent impaired contractile function was observed. These studies suggest that superoxide derived .OH and R. free radicals are generated in the reperfused heart via Fenton chemistry. These radicals appear to be key mediators of myocardial reperfusion injury.  相似文献   

13.
Phenolic compounds are widely present in plants and they have received considerable attention due to their antioxidant property. In this article we report the results of a study of the reactivity of 10 selected phenolics (sesamol, three phenolic acids, three flavonols, one flavone, and two flavanones) with superoxide anion radical (O(2) (*)), hydroxyl radical (HO(*)) and singlet oxygen ((1)O(2)). The following generators of reactive oxygen species were used: 18-crown-6/KO(2)/dimethylsulfoxide (DMSO) or hypoxanthine/xanthine oxidase as sources of O(2) (*), the Fenton reaction carried out in a sodium trifluoroacetate (pH 6.15) for HO(*), and a mixture of alkaline aqueous H(2)O(2) and cobalt ions for (1)O(2). We have employed chemiluminescence, electron spin resonance spin trapping, and spectrophotometry techniques to examine an antioxidative property. All tested compounds acted as scavengers of various reactive oxygen species. The reactivity indexes (beta) for the reaction of the phenolic compounds with HO(*) were calculated.  相似文献   

14.
We have studied the effects of oxygen radical scavengers on the inactivation of ss ΦX174 DNA by the semi-quinone free radical of the antitumor agent etoposide (VP 16-213), which was generated from the ortho-quinone of etoposide at pH ≥ 7.4. A semi-quinone free radical of etoposide is thought to play a role in the inactivation of ss ΦDX174 DNA by its precursors 3',4'-ortho-quinone and 3',4'-ortho-dihydroxy-derivative. The possible role of oxygen radicals formed secondary to semi-quinone formation in the inactivation of DNA by the semi-quinone free radical was investigated using the hydroxyl radical scavengers t-butanol and DMSO. the spin trap DMPO, the enzymes catalase and superoxide dismutase, the iron chelator EDTA and potassium superoxide. Hydroxyl radicals seem not important in the process of inactivation of DNA by the semi-quinone free radical, since t-butanol, DMSO, catalase and EDTA had no inhibitory effect on DNA inactivation. The spin trapping agent DMPO strongly inhibited DNA inactivation and semi-quinone formation from the ortho-quinone of etoposide at pH ≥ 7.4 with the concomitant formation of a DMPO-OH adduct. This adduct probably did not arise from OH· trapping but from trapping of O2-. DMSO increased both the semi-quinone formation from and the DNA inactivation by the ortho-quinone of etoposide at pH ≥ 7.4. Potassium superoxide also stimulated ΦDX174 DNA inactivation by the ortho-quinone at pH ≤ 7. From the present study, it is also concluded that superoxide anion radicals probably play an important role in the formation of the semi-quinone free radical from the orthoquinone of etoposide, thus indirectly influencing DNA inactivation.  相似文献   

15.
The metal-mediated site-specific mechanism for free radical-induced biological damage is reviewed. According to this mechanism, cooper- or iron-binding sites on macromolecules serve as centers for repeated production of hydroxyl radicals that are generated via the Fenton reaction. The aberrations induced by superoxide, ascorbate, isouramil, and paraquat are summarized. An illustrative example is the enhancement of double-strand breaks by ascorbate/copper. Prevention of the site-specific free radical damage can be accomplished by using selective chelators for iron and copper, by displacing these redox-active metals with other redox-inactive metals such as zinc, by introducing high concentrations of hydroxyl radicals scavengers and spin trapping agents, and by applying protective enzymes that remove superoxide or hydrogen peroxide. Histidine is a special agent that can intervene in free radical reactions in variety of modes. In biological systems, there are traces of copper and iron that are at high enough levels to catalyze free-radical reactions, and account for such deleterious processes. In the human body Fe/Cu = 80/1 (w/w). Nevertheless, both (free) copper and iron are soluble enough, and the rate constants of their reduced forms with hydrogen peroxide are sufficiently high to suggest that they might be important mediators of free radical toxicity.  相似文献   

16.
In rats and in humans, dimethylformamide (DMF) is mainly metabolized into N-hydroxymethyl-N-methylformamide (DMF-OH). The in vitro oxidation of DMF by rat liver microsomes is decreased in the presence of catalase and superoxide dismutase. The radical scavengers, dimethylsulfoxide (DMSO), tertiary butyl alcohol (t-butanol), aminopyrine, hydroquinone and trichloroacetonitrile reduce the oxidation of DMF to DMF-OH in vitro and in vivo. Conversely, DMF inhibits the demethylation of DMSO, t-butanol and aminopyrine. The addition of iron-EDTA to the incubation system induces the production of N-methylformamide (NMF) from DMF. These results support the hypothesis that the metabolic pathway leading from DMF to DMF-OH and NMF involves hydroxyl radicals. Superoxide radical and hydrogen peroxide take part in the metabolic process. DMF is preferentially metabolized into DMF-OH. NMF appears mainly when the production of hydroxyl radicals is stimulated, the methyl group being recovered as formic acid.  相似文献   

17.
比色法测定Fenton反应产生的羟自由基及其应用   总被引:46,自引:0,他引:46  
Fenton反应产生的羟自由基与二甲亚砜反应,生成甲基亚磺酸,再与坚牢蓝BB盐反应生成偶氮砜,比色法测定其含量可间接测定OH·的生成量. 通过对测定条件的研究,得到最佳实验方案. 抗氧化剂药物硫脲和抗坏血酸与羟自由基清除率具有明显的量效关系. 测定了核桃、黑芝麻等几种天然食物的水提取物清除羟自由基的功能. 此法可用于羟自由基清除剂的筛选.  相似文献   

18.
The spin trapping EPR technique was used to study the influence of carotenoids (beta-carotene, 8'-apo-beta-caroten-8'-al, canthaxanthin, and ethyl 8'-apo-beta-caroten-8'-oate) on the yield of free radicals in the Fenton reaction (Fe(2+) + H(2)O(2) --> Fe(3+) + .OH + -OH) in the organic solvents, DMSO, and methanol. DMPO and PBN were used as spin trapping agents. It was demonstrated that carotenoids could increase or decrease the total yield of free radicals depending on the oxidation potential of the carotenoids and the nature of the radicals. A reaction mechanism is suggested which includes the reduction of Fe(3+) to Fe(2+) by carotenoids. The effectiveness of this carotenoid-driven Fenton reaction increases with a decrease of the scavenging rates for free radicals and with decreasing oxidation potentials of carotenoids.  相似文献   

19.
When dimethyl sulfoxide (DMSO) is oxidized via hydroxyl radical (HO(.-)), it forms methyl radicals ((.-)CH(3)) that can be spin trapped and detected by electron spin resonance (ESR). This ESR spin trapping technique has been widely used in many biological systems to indicate in vivo HO(.-) formation. However, we recently reported that (.-)CH(3) might not be the only carbon-centered radical that was trapped and detected by ESR from in vivo DMSO oxidation. In the present study, newly developed combination techniques consisting of dual spin trapping (free radicals trapped by both regular and deuterated alpha-[4-pyridyl 1]-N-tert-butyl nitrone, d(0)/d(9)-POBN) followed by LC/ESR and LC/MS were used to characterize and quantify all POBN-trapped free radicals from the interaction of HO(.-) and DMSO. In addition to identifying the two well-known free radicals, (.-)CH(3) and (.-)OCH(3), from this interaction, we also characterized two additional free radicals, (.-)CH(2)OH and (.-)CH(2)S(O)CH(3). Unlike ESR, which can measure POBN adducts only in their radical forms, LC/MS identified and quantified all three redox forms, including the ESR-active radical adduct and two ESR-silent forms, the nitrone adduct (oxidized adduct) and the hydroxylamine (reduced adduct). In the bile of rats treated with DMSO and POBN, the ESR-active form of POBN/(.-)CH(3) was not detected. However, with the addition of the LC/MS technique, we found approximately 0.75 microM POBN/(.-)CH(3) hydroxylamine, which represents a great improvement in radical detection sensitivity and reliability. This novel protocol provides a comprehensive way to characterize and quantify in vitro and in vivo free radical formation and will have many applications in biological research.  相似文献   

20.
《Phytochemistry》1986,25(2):367-371
Di- and polyamines are effective scavengers of free radicals generated in a number of chemical and in vitro enzyme systems. Free radical production was quantified spectrophotometrically using nitroblue tetrazolium and cytochrome c or by electron spin resonance. Levels of superoxide radical formed either enzymatically with xanthine oxidase or chemically from riboflavin or pyrogallol were significantly inhibited by spermine, spermidine, putrescine and cadaverine at 10 and 50 mM. The more reactive hydroxyl radical generated by the Fenton reaction was also effectively scavenged by di- and polyamines. In addition, the production of superoxide radical by senescing microsomal membranes was inhibited by di- and polyamines, as was the superoxide-dependent conversion of 1- aminocyclopropane-1-carboxylic acid (ACC) to ethylene. The efficacy of polyamine-scavenging appears to be correlated with the extent of amination suggesting the involvement of amino groups. It is also apparent that some of the physiological effects of polyamines, in particular their propensity to inhibit lipid peroxidation and retard senescence, may be attributable to their radical-scavenging capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号