首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cultured Thalictrum rugosum cells were immobilized using a glass fiber substratum previously shown to provide optimum immobilization efficiency based on spontaneous adhesion mechanisms. When cultivated in shake flasks, immobilized cells exhibited decreased growth and protoberberine alkaloid production rates in comparison to freely suspended cells. Since alkaloid production is growth associated in T. rugosum, the decreased specific production rate was a function of the slower growth rate. Cells immobilized on glass fiber mats appear to be amenable for extended culture periods. Maximum biomass and protoberberine alkaloid levels were maintained for at least 14 days in immobilized cultures. In contrast, fresh weight, dry weight, and total alkaloid content decreased in suspension cultures following the linear growth phase.Glass fiber mats were incorporated in to a 4.5-L plant cell bioreactor as horizontal disks supported on a central rod. Mixing in the reactor was provided by the combined actions of a magnetic impeller and a cylindrical sparging colum. fThe magnetic impeller and a cylindrical sparging column. The entire inoculum biomass of T. rougosum, introduced as suspension, was spontaneously immobilized with in 8h. During liner phase, the growth rate of bioreactor cultivated immobilized cells (mu = 0.06 day(-1)) was 50% that immobilized cell viability in both systems was determined to be similar. The increase in specific production of protoberberine alklodis was initially similar in bioreactor-and culture period. The increase in specific production of protoberberine alkaloids was initially similar in bioreactor-and shake-flask-cultivated immobilized cells. However, the maximum specific production of bioreactor grown cultures was lower. The scale up potential of an immobilization strategy based on the spontaneous adhesion of immobilization strategy based on the spontaneous adhesion of cultured plant cells to glass fiber is demonstrated.  相似文献   

2.
Recycle batch fermentations using immobilized cells of Propionibacterium acidipropionici were studied for propionate production from whey permeate, de-lactose whey permeate, and acid whey. Cells were immobilized in a spirally wound fibrous sheet packed in a 0.5-L column reactor, which was connected to a 5-L stirred tank batch fermentor with recirculation. The immobilized cells bioreactor served as a breeder for these recycle batch fermentations. High fermentation rates and conversions were obtained with these whey media without nutrient supplementation. It took approximately 55 h to ferment whey permeate containing approximately 45 g/L lactose to approximately 20 g/L propionic acid. Higher propionate concentrations can be produced with various concentrated whey media containing more lactose. The highest propionic acid concentration obtained with the recycle batch reactor was 65 g/L, which is much higher than the normal maximum concentration of 35 to 45 g/L reported in the literature. The volumetric productivity ranged from 0.22 g/L . h to 0.47 g/L . h, depending on the propionate concentration and whey medium used. The corresponding specific cell productivity was 0.033 to 0.07 g/L . g cell. The productivity increased to 0.68 g/L . h when whey permeate was supplemented with 1% (w/v) yeast extract. Compared with conventional batch fermentation, the recycle batch fermentation with the immobilized cell bioreactor allows faster fermentation, produces a higher concentration of product, and can be run continually without significant downtime. The process also produced similar fermentation results with nonsterile whey media. (c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
The industrial production of antibiotics with filamentous fungi is usually carried out in conventional aerated and agitated tank fermentors. Highly viscous non-Newtonian broths are produced and a compromise must be found between convenient shear stress and adequate oxygen transfer. In this work, cephalosporin C production by bioparticles of immobilized cells of Cephalosporium acremonium ATCC 48272 was studied in a repeated batch tower bioreactor as an alternative to the conventional process. Also, gas-liquid oxygen transfer volumetric coefficients, k(L)a, were determined at various air flow-rates and alumina contents in the bioparticle. The bioparticles were composed of calcium alginate (2.0% w/w), alumina ( < 44 micra), cells, and water. A model describing the cell growth, cephalosporin C production, oxygen, glucose, and sucrose consumption was proposed. To describe the radial variation of oxygen concentration within the pellet, the reaction-diffusion model forecasting a dead core bioparticle was adopted. The k(L)a measurements with gel beads prepared with 0.0, 1.0, 1.5, and 2.0% alumina showed that a higher k(L)a value is attained with 1.5 and 2.0%. An expression relating this coefficient to particle density, liquid density, and air velocity was obtained and further utilized in the simulation of the proposed model. Batch, followed by repeated batch experiments, were accomplished by draining the spent medium, washing with saline solution, and pouring fresh medium into the bioreactor. Results showed that glucose is consumed very quickly, within 24 h, followed by sucrose consumption and cephalosporin C production. Higher productivities were attained during the second batch, as cell concentration was already high, resulting in rapid glucose consumption and an early derepression of cephalosporin C synthesizing enzymes. The model incorporated this improvement predicting higher cephalosporin C productivity.  相似文献   

4.
Cells of Candida guilliermondii entrapped in Ca-alginate beads were used for xylitol production, from concentrated hemicellulose hydrolyzate of sugarcane bagasse, in a fluidized bed bioreactor (FBR). The maximum xylitol concentration 28.9 g xylitol/L was obtained at a high aeration rate of 600 mL/min after 70 h of fermentation, indicating that the use of high aeration rate in this system is favored for better oxygen transfer into the immobilized cells. The specific xylitol productivity and the xylitol yield were of 0.4 g xylitol/L.h and 0.58 g xylitol/g xylose respectively. The immobilization efficiency at the end of the fermentation was of 65 %. After 90 h of fermentation xylitol productivity and yield decreased to 0.25 g xylitol/L.h and 0.47 g xylitol/g xylose respectively, indicating the beginning of xylitol consumption by the yeast. The use of FBR system with immobilized cells presented high xylitol yield and productivity.  相似文献   

5.
A simple correlation method has been developed to predict effective diffusivities of small molecules in heterogeneous materials such as immobilized cell systems. This correlation uses a single diffusivity measurement at one cell volume fraction to predict diffusivities for any other volume fraction of cell. The method has been applied to 20 sets of published diffusivity measurements in immobilized cell systems and accurately predicts affective diffusivities of molecules for the full range of cell fractions. It may also be used to predict effective diffusivities in heterogeneous materials in which the diffusivity of a molecule in each phase and the volume fraction of each phase are known. (c) 1996 John Wiley & Sons, Inc.  相似文献   

6.
The authors' mathematical model of transient immobilized cell growth and product formation is applied here to examine the performance of an immobilized cell system subject to periodic cycling of the rate-limiting substrate supply. The model system consists of a single hydrogel-like (porous) particle entrapping viable microorganisms. Proper nutrient cycling is shown to yield a relaxed periodic system and to virtually eliminate the leakage of biomass from the support that is commonly observed experimentally in steady (continuous nutrient supply) operation of these systems. The use of cyclic operation is evaluated by calculating the average product yield (the ratio of product formed to substrate consumed) and the average product flux from the particle (a measure of the total productivity of the system), for various cycling rates. Cycling increased the average product yield by at least a factor of three in nongrowth-related fermentations, relative to steady operation, without any significant sacrifice in average total productivity. Growth-related fermentations lost significant total productivity under most cycling conditions, while the average product yield was approximately unchanged at all cycling rates. Thus, immobilization in conjunction with periodic operation should be considered as an alternative process design for the production of nongrowth-related products such as penicillin and monoclonal antibodies.  相似文献   

7.
This study examined the hydrodynamic characteristics of a liquid-solid fluidized-bed bioreactor using elastic particles (PVA gel beads) of various diameters as carriers. The drag coefficient-Reynolds number, velocity-voidage, and expansion index-Reynolds number relationships observed during fluidization of PVA gel beads in a fluidized bed in our experiments were compared with the published results. Predictions made from previous correlations were examined with our new experimental findings, revealing the inadequacy of most of these correlations. Thus, new correlations describing the above-mentioned relationships are suggested. The drag coefficient of immobilized cell beads is larger than that of free cell ones at the same Reynolds number because the surface of the immobilized cell beads is rougher. For multiparticle systems, the correction factor, f(epsilon), is a function of the falling gel bead properties (Reynolds number) as well as the fluidized gel bead properties (Archimedes number), and depend strongly on the bed voidage (epsilon). A new simple relation was developed to predict easily the epsilon value from 0.5-0.9 at 4,986 < A(r) < 40,745 or 34 < Re(t) < 186. For all the immobilized cell beads used in this study, the prediction error of the bed voidage was less than 5% at epsilon > 0.5. The prediction equations in this study can be further applied to analyzing the hydrodynamic characteristics of a fluidized-bed reactor using similar entrapped elastic particles as carriers.  相似文献   

8.
The best culture medium composition for the production of bikaverin by Gibberella fujikuroi in shake-flasks, i.e. 100 g glucose l–1; 1 g NH4Cl l–1; 2 g rice flour l–1; 5 g KH2PO4 l–1 and 2.5 g MgSO4 l–1, was obtained through a fractional factorial design and then scaled-up to a fluidized bioreactor. The effects of carbon and nitrogen concentrations, inoculum size, aeration, flow rate and bead sizes on batch bikaverin production using immobilized G. fujikuroi in a fluidized bioreactor were determined by an orthogonal experimental design. Concentrations of up to 6.83 g bikaverin l–1 were obtained when the medium contained 100 g glucose l–1 and 1 g NH4Cl l–1 with an inoculum ratio of 10% v/v, an aeration rate of 3 volumes of air per volume of medium min–1, and a bead size of 3 mm. Based on dry weight, the bikaverin production was 30–100 times larger than found in submerged culture and approximately three times larger than reported for solid substrate fermentation.  相似文献   

9.
Fine, almost single cell, suspensions were produced from both existing suspension cultures containing large cell clumps and from chopped callus pieces by immobilizing the cells in 4–5 mm diameter calcium alginate beads. The immobilized cells continued to divide inside the beads and at the bead surface, and after 2–3 weeks' culture, fine cell suspensions were formed as a result of loss of the surface cells into the medium. After removal of the cell suspensions by filtration, subsequent culture of the beads in fresh medium resulted in the further production of homogeneous cell suspensions after 1–2 weeks. In this way an almost continuous supply of fine cell suspensions could be obtained from cultures containing large clumps of cells. The cells produced by this method remained in this state for at least one culture period, although in some instances repeated subculture resulted in an increase in the size of cell groups. The technique has been successfully applied to the production of fine cell suspensions ofCatharanthus roseus, Nicotiana tabacum andDaucus carota.  相似文献   

10.
We present how whole cells can be used in different ways to stabilize enzyme catalysts in the cell environment to perform biotransformations. Some of the factors which affect their use in biotransformations, such as the nature of the substrate/product, the reusability of cells, the extension of cell viability by cell activation periods or the addition of energetic substrates and the stabilization in solids supports, are considered. The use of sufficiently active enzymes in the cell environment to perform biotransformations within growing, resting, permeabilized, dried, osmotically stressed, freely suspended and immobilized cells, is discussed in the text. The different cell states of enterobacteria, such as Escherichia coli and Proteus sp., can be used to produce l-carnitine from crotonobetaine or d-carnitine substrate, are analyzed.  相似文献   

11.
The present article describes two novel flexible plastic-based disposable bioreactors. The first one, the WU bioreactor, is based on the principle of a wave and undertow mechanism that provides agitation while offering convenient mixing and aeration to the plant cell culture contained within the bioreactor. The second one is a high aspect ratio bubble column bioreactor, where agitation and aeration are achieved through the intermittent generation of large diameter bubbles, "Taylor-like" or "slug bubbles" (SB bioreactor). It allows an easy volume increase from a few liters to larger volumes up to several hundred liters with the use of multiple units. The cultivation of tobacco and soya cells producing isoflavones is described up to 70 and 100 L working volume for the SB bioreactor and WU bioreactor, respectively. The bioreactors being disposable and pre-sterilized before use, cleaning, sterilization, and maintenance operations are strongly reduced or eliminated. Both bioreactors represent efficient and low cost cell culture systems, applicable to various cell cultures at small and medium scale, complementary to traditional stainless-steel bioreactors.  相似文献   

12.
A rotating packed drum reactor has been proposed as an immobilized whole cell reactor and its performance for ethanol production has been studied with yeast cells immobilized in calcium alginate gel. In a continuous operation with synthetic d-glucose medium containing 125 g d-glucose l?1, ethanol productivity was 20 g l?1 h?1 at a space velocity of 0.38 l (l gel)?1 h?1. With intermittent aeration the viability of yeast cells after 270 h of operation remained above 65%. CO2 removal was easy, but d-glucose conversion was low at a high space velocity.  相似文献   

13.
14.
The batch production of different exopolysaccharides (alginate, xanthan, pullulan, dextran) by free and immobilized microbial cultures was investigated. First, conventional free-cell cultures were performed to obtain control fermentation parameters and macromolecular characteristics of exopolysaccharides. Then microbial cultures were immobilized in composite agar layer/microporous membrane structures and tested for polysaccharide production. The immobilized-cell system proved unsuitable for xanthan and pullulan production. Owing to the fouling of the microporous membrane by the polysaccharide, dextran production by immobilized Leuconostoc mesenteroides also was inefficient. More promising results have been obtained with immobilized Azotobacter vinelandii cultures. The amount of alginate produced by immobilized A. vinelandii represented about 60% of that recovered from a free-cell culture, whereas the polysaccharide yield reached 35% instead of 9% for the free counterpart. These results are compared to the macromolecular characteristics of exopolysaccharides.  相似文献   

15.
A whole-cell technology for detoxification of organophosphates based on genetically engineered Escherichia coli cell expressing both cellulose-binding domain (CBD) and organophosphorus hydrolase (OPH) onto cell surface was reported recently (Wang et al., 2002). This study reports the application of these biocatalysts when immobilized in a cellulose hollow fiber bioreactor (HFB) for the biodetoxification of a model organophosphate, paraoxon, in a continuous flow mode. In 24 h, 0.79 mg wet cell/cm2 fiber surface were immobilized onto cellulose fibers specifically and strongly through the cellulose binding domain, forming a monolayer demonstrated by Scanning Electronic Micrograph, and essentially no cell was washed away by washing buffer. The immobilized biocatalyst had a high performance of detoxifying paraoxon solution of 5,220 mumol/h x L reactor or 990 mumol/h x m2 reactor. The immobilized biocatalysts maintained a stable degradation capacity for 15 uses over a period of 48 days with only 10% decline in degradation efficiency under operating and storage conditions. In addition, the bioreactor was easily regenerated by washing with 1% sodium dodecyl sulfate (SDS), with 86.7% immobilization capacity and 93.9% degradation efficiency recovery. This is the first report using the HFB in a non-traditional way, immobilizing whole-cell biocatalysts by specific adhesion thus rendering the catalysis operation the advantages of low pressure drop, low shear force, and low energy requirement. The successful application of this genetically engineered dual functional E. coli strain in a model bioreactor shows its promise in large-scale detoxification of organophosphate nerve agents in bulk liquid phase.  相似文献   

16.
The present study was performed to produce the protease using free and immobilized cells of locally isolated cold-adapted psychrotolerant yeast Cryptococcus victoriae CA-8. Cell immobilization was performed using sodium alginate as entrapping agent. The best conditions for enzyme production by both free and immobilized cells of the yeast were temperature of 15°C and initial pH of 8.0. The optimal incubation times were 72 and 96 h for immobilized and free cells, respectively. Immobilized cells were reused in 3 successive reaction cycles without any loss in the maximum protease activity. Little decreases in the protease activity were observed in 4 and 5 cycles. Under the optimized conditions, the maximum enzyme activities were determined as 12.1 and 13.5 U/mL for free and immobilized cells, respectively. This is a first attempt on cold-active alkaline protease production by free and/or immobilized cells of yeasts. Besides, the protease activity of the yeast C. victoriae CA-8 was investigated for the first time in the present study.  相似文献   

17.
The optimum values of substrate concentration, pH and temperature for higher yields of alcohol in cell immobilized bioreactor using alginate entrapped cells of yeasts for continuous fermentation of alcohol were obtained employing full factorial search. The results indicate that the yield of alcohol is predominantly influenced by the substrate concentration and temperature, both individually and in combination. The pH, on the other hand, has no significant influence. The path of steepest ascent method has been used to optimise the alcohol yield. A best alcohol yield has been obtained with 23.5% substrate concentration, 30°C temperature and at pH 5.0.  相似文献   

18.
Here we examine the efficiency of different immobilized cell gradients applied to immobilized Saccharomyces cerevisiae fermenting glucose to ethanol. We developed a simulation model to fully study the competing effects of mass transfer hindrance and kinetics. It is based on a diffusion-reaction model and can be used to analyze the different cell concentration profiles inside an immobilized gel bead, in terms of effectiveness factors, productivity, and mass flux. The internal diffusion coefficient, which varies with the local cell concentration, as well as the external mass transfer, is taken into account when describing the efficiency. Although the diffusion hindrance is greater at higher cell concentrations, high cell concentration is still advantageous in the present case because the increase in reaction rate outweighs the diffusion hindrance. Thus, high cell concentrations contribute to increased productivity. The influence of the cell concentration gradient on the efficiency of the beads is negligible. Within the range of cell profiles studied it has been established that the location of the cells within the bead is of lesser importance. However, a steep cell gradient increases the importance of the external mass transfer.  相似文献   

19.
Screening of mutant libraries for in vitro enzyme evolution is carried out primarily by physical separation of the cells, followed by growth of individual clones and screening of biocatalytic activity on the basis of color or fluorescence signal development. Currently, most frequently employed methods are labor-intensive or require robotic equipment, resulting in screening limited to a relatively small fraction of the potential inherent in a given library. In this study we present a design, development, and feasibility demonstration of a new screening approach, providing convenient handling of large libraries consisting of 106 to 107 clones and screening based on a simultaneous enzymatic assay with commercially available substrates. This new screening method is based on the "cell immobilized on adsorbed bead" approach: the cell population to be screened is mixed with an excess of medium pre-equilibrated polyacrylamide beads, chemically derivatized to affect quantitative cell immobilization by adsorption. The resulting bead population, comprising of single cell on a bead or blank beads, is then immobilized on a solid glass support. After removal of the freely flowing liquid, the cells immobilized on the adsorbed beads are allowed to grow into microcolonies, utilizing the medium retained within the supporting hydrogel matrix. These colonies are subsequently equilibrated with chromogenic or fluorogenic substrate and screening is affected under a stereomicroscope, resulting in readily retrieved of the most active colonies. This technique may be particularly useful when the screened mutants are expressed and displayed on the cell surface, providing an active and homogeneous "naturally immobilized" enzyme population with minimal substrate diffusion limitations.  相似文献   

20.
谢秋玲  郭勇   《广西植物》1999,19(2):146-149
刺激剂(elicitor)在植物细胞培养中被用来作为提高次生代谢物产量的手段。文中概括介绍了微生物、寡聚糖、蛋白质、第二信使及其他物质作为刺激剂在植物细胞培养中的应用及其研究成果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号