首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laminin- and elastin-binding proteins were isolated by ligand affinity chromatography from plasma membranes of fetal bovine auricular chondroblasts and human A2058 melanoma cells. From both cell types, a 67-kDa protein was identified which bound to either elastin or laminin affinity resins. Structural and functional similarities between the elastin and laminin-binding proteins were suggested by 1) cross-reactivity between antibodies directed against the two proteins; 2) elution of the laminin receptor from laminin columns with soluble elastin peptides; and 3) modulation of substrate binding by galactoside sugars. In addition, extraction properties indicate that both receptors are peripheral membrane proteins whose association with the cell surface is mediated by their lectin properties. Mapping of the binding site on laminin suggests that the 67-kDa chondroblast receptor interacts with a hydrophobic elastin-like sequence in domain V of the B1 chain, and chemotaxis studies indicate that cell migration to elastin peptides and laminin involves the same receptor.  相似文献   

2.
Many pathogenic bacteria specifically bind to components of the extracellular matrix. In this study, we report the specific association of Staphylococcus aureus with elastin, a major structural component of elastic tissue. Competition assays in which the binding of radiolabeled tropoelastin was inhibited by excess unlabeled elastin peptides, but not by other proteins, established the specificity of the interaction. Kinetic studies showed that tropoelastin binding to the bacteria was rapid and saturable. Scatchard analysis of the equilibrium binding data indicated the presence of a single class of high affinity binding sites (KD approximately 4-7 nM) with approximately 1000 sites per organism. Protease susceptibility suggested that the elastin binding moiety on S. aureus was a protein, which was confirmed by the isolation of a 25-kDa elastin-binding protein from S. aureus extracts through affinity chromatography. Using a truncated form of tropoelastin, the bacterial binding domain on elastin was mapped to a 30-kDa fragment at the amino end of the molecule. Although the precise amino acid sequence recognized by the staphylococcal elastin receptor has not been characterized, it is clearly different from the region of tropoelastin that specifies binding to mammalian elastin receptors.  相似文献   

3.
The formation of a suitable extracellular matrix (ECM) that promotes cell adhesion, organization, and proliferation is essential within biomaterial scaffolds for tissue engineering applications. In this work, short elastin mimetic peptide sequences, EM-19 and EM-23, were engineered to mimic the active motifs of human elastin in hopes that they can stimulate ECM development in synthetic polymer scaffolds. Each peptide was incubated with human aortic smooth muscle cells (SMCs) and elastin and desmosine production were quantified after 48 h. EM-19 inhibited elastin production through competitive binding phenomena with the elastin binding protein (EBP), whereas EM-23, which contains an RGDS domain, induces recovery of elastin production at higher concentrations, alluding to a higher binding affinity for the integrins than for the EBP and the involvement of integrins in elastin production. Colocalization of each peptide with the elastin matrix was confirmed using immunofluorescent techniques. Our data suggest that with appropriate cell-binding motifs, we can simulate the cross-linking of tropoelastin into the developing elastin matrix using short peptide sequences. The potential for increased cell adhesion and the incorporation of elastin chains into tissue engineering scaffolds make these peptides attractive bioactive moieties that can easily be incorporated into synthetic biomaterials to induce ECM formation.  相似文献   

4.
L E Grosso  P W Park  R P Mecham 《Biochemistry》1991,30(13):3346-3350
The 67-kDa elastin binding protein shares many immunological and structural properties with the high-affinity 67-kDa tumor cell laminin receptor. Taking advantage of these similarities, we have screened a bovine cDNA library with a partial cDNA probe for the laminin receptor and have isolated and characterized a cDNA clone of 1038 bp that hybridizes to a single-size mRNA of 1.3 kb. The clone encodes a protein with a predicted molecular weight of 33K that lacks an N-terminal leader sequence, shows no posttranslational processing when translated in vitro in the presence of microsomes, and does not bind to elastin affinity columns. Although the bovine clone is nearly identical with clones encoding human and mouse proteins proported to be 67-kDa laminin receptor, physical and functional characteristics of the encoded protein suggest that it is a cytoplasmic protein that does not bind elastin. This finding calls into question the earlier conclusion that the clone encodes the 67-kDa receptor.  相似文献   

5.
Structure of the spectrin-actin binding site of erythrocyte protein 4.1   总被引:9,自引:0,他引:9  
The complete primary structure of the functional site of erythrocyte protein 4.1 involved in spectrin-actin associations has been determined. The sequence of this domain, which contains 67 amino acids and has a molecular mass of 8045 daltons, has been obtained by NH2-terminal sequence analysis of an 8-kDa chymotryptic peptide, three endoproteinase lysine C-cleaved peptides and two peptides obtained by Staphylococcus aureus protease V8 cleavage. All peptides including the 8-kDa domain peptide were purified by reverse-phase high performance liquid chromatography. Antibodies against two different synthetic peptides of the 8-kDa domain are able to inhibit the association between protein 4.1, spectrin, and F-actin, corroborating that the 8-kDa domain is responsible for the formation of a ternary complex. A computer search of the 8-kDa sequence with the National Biomedical Research Foundation database did not detect any significant homologies to known sequences. Protein 4.1 is not related to any known proteins and may represent a new protein superfamily.  相似文献   

6.
Recent evidence indicates that matrix vesicles (MV) interact with cartilage-specific collagens and other matrix proteins. Both type II and X collagens bind to and cosediment with MV. Our companion study shows that MV also are tightly coupled to proteoglycan link proteins (LP) and hyaluronic acid-binding region (HABR) in cartilage matrix. Here we sought to identify proteins responsible for the nexus between MV and matrix collagens using affinity chromatography with types I, II, and X collagen-Sepharose columns. Elution with NaCl step-gradients in the presence of nonionic detergent was used to assess the affinity between the MV proteins and the covalently attached collagens. Several MV proteins were found to bind to native type I, II, and X collagens but none bound to denatured type I collagen. Alkaline phosphatase, proteoglycan LP and HABR, and the 33- and 67-kDa annexins, bound with varying affinities to the native type I, II and X columns. In particular, LP and HABR, the 67-kDa annexin, and alkaline phosphatase bound with high affinity to the cartilage-specific collagens, although LP, HABR, and a 37-kDa protein also bound less tightly to native type I collagen. Thus, several MV proteins bind specifically to native type II and X collagens and should promote interaction between MV and the extracellular matrix. Such interactions may be important in MV formation, or in MV-mediated mineralization.  相似文献   

7.
Functional domains of the 67-kDa laminin receptor precursor   总被引:9,自引:0,他引:9  
We report the characterization of two functional domains of the metastasis-associated 67-kDa laminin receptor (67-LR). Using synthetic peptides deduced from the cDNA sequence of the 37-kDa precursor of the laminin receptor (37-LRP) as well as their corresponding affinity-purified polyclonal antibodies, we identified a unique laminin binding site as well as a membrane-associated domain of the receptor. In laminin dot blot and solid phase radioligand assays, a 20 amino acid synthetic peptide (IPCNNKGAHSVGLMWWMLAR, amino acid residues 161-180, designated peptide G) specifically bound to laminin with high affinity (Kd = 5 x 10(-8) M). Peptide G also specifically eluted the 67-LR from a laminin affinity column. Peptide G and laminin reacted with a 1:1 stoichiometry, suggesting that there is one recognition site on laminin for the peptide G domain. Immunofluorescence studies, performed on permeabilized and nonpermeabilized human A2058 melanoma cells using 10 different affinity-purified antibodies to distinct regions of the 37-LRP, identified an unusually short membrane-associated domain that was consistent with a computer predicted transmembrane domain (residues 86-101). Our data demonstrate for the first time that the 37-LRP has two functional domains consistent with the characteristics of the mature 67-LR. Furthermore, we propose peptide G as a potential inhibitor of tumor cell interactions with laminin.  相似文献   

8.
The ability of Staphylococcus aureus to adhere to components of the extracellular matrix is an important mechanism for colonization of host tissues during infection. We have previously shown that S. aureus binds elastin, a major component of the extracellular matrix. The integral membrane protein, elastin-binding protein (EbpS), binds soluble elastin peptides and tropoelastin via its surface-exposed N-terminal domain. In this study, we demonstrate that some strains of S. aureus adhere strongly to immobilized human elastin and that this interaction is independent of EbpS but instead is mediated by the fibronectin-binding proteins, FnBPA and FnBPB. Our results show that EbpS mutant cells adhere to elastin-coated plates, whereas the cells negative for FnBPA and FnBPB do not adhere to the plates. Furthermore, only wild-type cells from the exponential phase of growth adhered when FnBPs were expressed maximally. We show that adherence to elastin promoted by FnBPA was not affected by soluble fibronectin, suggesting that the elastin binding domain is distinct from the fibronectin binding regions. Recombinant FnBPA(37-544) (rFnBPA(37-544)) protein corresponding to the A region of FnBPA and anti-FnBPA(37-544) antibodies inhibited FnBPA-mediated bacterial adherence to immobilized elastin. Finally, recombinant A domain proteins, rFnBPA(37-544) and rFnBPB(37-540), bound immobilized elastin dose-dependently and saturably. This interaction was inhibited by soluble elastin peptides, suggesting a specific receptor-ligand interaction.  相似文献   

9.
Streptococcal protein G. Gene structure and protein binding properties   总被引:7,自引:0,他引:7  
Protein G was solubilized from 31 human group C and G streptococcal strains with the muralytic enzyme mutanolysin. As judged by the mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the binding patterns of the solubilized protein G molecules in Western blot experiments, the strains could be divided into three groups, represented by the group G streptococcal strains G148 and G43 and the group C streptococcal strain C40. The 65-kDa G148 protein G and the 58-kDa C40 protein G showed affinity for both immunoglobulin G (IgG) and human serum albumin (HSA), whereas the 40-kDa G43 protein G bound only IgG. Despite the different molecular patterns, the three protein G species had identical NH2-terminal amino acid sequences. Apart from the 65-kDa peptide, digestion of G148 streptococci with mutanolysin also produced a 52-kDa IgG- and HSA-binding peptide and a 14-kDa HSA-binding peptide. It was demonstrated that these peptides resulted from cleavage of 65-kDa protein G by proteolytic components in the mutanolysin preparation. The protein G genes of the C40 and G43 strains were cloned and sequenced, and their structure was compared to the previously published sequence of the G148 protein G gene. As compared to G148, both the C40 and G43 genes lacked a 210-base pair fragment in the IgG-binding region, accounting for the 10-fold lower affinity of these proteins for IgG. The G43 gene also lacked a 450-base pair fragment in the 5'-end of the gene, explaining why the G43 protein G did not bind HSA. The differences in protein G structure did not correlate with the clinical origin of the strains used in this study. The IgG-binding region of protein G was further mapped. Thus, a peptide corresponding to a single IgG-binding unit was obtained by the cloning and expression of a 303-base pair polymerase chain reaction-generated DNA fragment. The affinity of this 11.5-kDa peptide for human IgG was 8.0 x 10(7) M-1, as determined by Scatchard plots. Finally, a 55-amino acid-long synthetic peptide, corresponding to one of the three repeated domains in the COOH-terminal half of strain G148 protein G, effectively blocked binding of protein G to IgG.  相似文献   

10.
《The Journal of cell biology》1990,111(6):3065-3076
Using synthetic peptides, we have identified two distinct regions of the glycoprotein SPARC (Secreted Protein Acidic and Rich in Cysteine) (osteonectin/BM-40) that inhibit cell spreading. One of these sites also contributes to the affinity of SPARC for extracellular matrix components. Peptides representing subregions of SPARC were synthesized and antipeptide antibodies were produced. Immunoglobulin fractions of sera recognizing an NH2-terminal peptide (designated 1.1) blocked SPARC- mediated anti-spreading activity. Furthermore, when peptides were added to newly plated endothelial cells or fibroblasts, peptide 1.1 and a peptide corresponding to the COOH terminal EF-hand domain (designated 4.2) inhibited cell spreading in a dose-dependent manner. These peptides exhibited anti-spreading activity at concentrations from 0.1 to 1 mM. The ability of peptides 1.1 and 4.2 to modulate cell shape was augmented by an inhibitor of protein synthesis and was blocked by specific antipeptide immunoglobulins. In addition to blocking cell spreading, peptide 4.2 competed for binding of [125I]SPARC and exhibited differential affinity for extracellular matrix molecules in solid-phase binding assays. The binding of peptide 4.2 to matrix components was Ca+(+)-dependent and displayed specificities similar to those of native SPARC. These studies demonstrate that both anti- spreading activity and affinity for collagens are functions of unique regions within the SPARC amino acid sequence. The finding that two separate regions of the SPARC protein contribute to its anti-spreading activity lead us to propose that multiple regions of the protein act in concert to regulate the interactions of cells with their extracellular matrix.  相似文献   

11.
Dendrimers are synthetic macromolecules with unique structure, which are a potential scaffold for peptides. Elastin is one of the main components of extracellular matrix and a temperature‐sensitive biomacromolecule. Previously, Val‐Pro‐Gly‐Val‐Gly peptides have been conjugated to a dendrimer for designing an elastin‐mimetic dendrimer. In this study, various elastin‐mimetic dendrimers using different length peptides and different dendrimer generations were synthesized to control the temperature dependency. The elastin‐mimetic dendrimers formed β‐turn structure by heating, which was similar to the elastin‐like peptides. The elastin‐mimetic dendrimers exhibited an inverse phase transition, largely depending on the peptide length and slightly depending on the dendrimer generation. The elastin‐mimetic dendrimers formed aggregates after the phase transition. The endothermal peak was observed in elastin‐mimetic dendrimers with long peptides, but not with short ones. The peptide length and the dendrimer generation are important factors to tune the temperature dependency on the elastin‐mimetic dendrimer. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 603–612, 2014.  相似文献   

12.
Prolapsus uteri in pelvic supportive disorders are common in elderly women, and their etiology remains unclear. We examined elastin-binding proteins (EBPs) and binding sites in cultured cardinal ligament fibroblasts derived from elderly patients with prolapsus uteri (HPLiF) and compared them with those from age-matched control subjects (HCLiF). Cell attachment to alpha-elastin was significantly lower in HPLiF than in HCLiF. Elastin suppressed the higher proliferative activity at near confluency in HPLiF. The 67-kDa EBP was detectable in HCLiF, whereas HPLiF expressed a 59-kDa EBP. The expression of EBP was significantly lower in HPLiF. The synthetic peptide Val-Gly-Val-Ala-Pro-Gly (VGVAPG), which contains a recognition sequence for the elastin receptor, inhibited the adhesion of HCLiF to alpha-elastin at 10(-5)-10(-4) M, but showed no inhibitory activity on the adhesion of HPLiF at 10(-5) M. These results suggest that fibroblasts derived from elderly women with prolapsus uteri can recognize alpha-elastin through interactions with the low-molecular-size (59-kDa) EBP for the sequence VGVAPG with low affinity and may contribute to the loss of supportive function in uterine connective tissues.  相似文献   

13.
Receptor-ligand interactions between synthetic peptides and normal human erythrocytes were studied to determine Plasmodium falciparum merozoite surface protein-3 (MSP-3) FC27 strain regions that specifically bind to membrane surface receptors on human erythrocytes. Three MSP-3 protein high activity binding peptides (HABPs) were identified; their binding to erythrocytes became saturable, had nanomolar affinity constants, and became sensitive on being treated with neuraminidase and trypsin but were resistant to chymotrypsin treatment. All of them specifically recognized 45-, 55-, and 72-kDa erythrocyte membrane proteins. They all presented alpha-helix structural elements. All HABPs inhibited in vitro P. falciparum merozoite invasion of erythrocytes by ~55%-85%, suggesting that MSP-3 protein's role in the invasion process probably functions by using mechanisms similar to those described for other MSP family antigens.  相似文献   

14.
Five protein kinases were used to study the phosphorylation pattern of the purified skeletal muscle receptor for calcium-channel blockers (CaCB). cAMP kinase, cGMP kinase, protein kinase C, calmodulin kinase II and casein kinase II phosphorylated the 165-kDa and the 55-kDa proteins of the purified CaCB receptor. The 130/28-kDa and the 32-kDa protein of the receptor are not phosphorylated by these protein kinases. Among these protein kinases only cAMP kinase phosphorylated the 165-kDa subunit with 2-3-fold higher initial rate than the 55-kDa subunit. Casein kinase II phosphorylated the 165-kDa and the 55-kDa protein of the receptor with comparable rates. cGMP kinase, protein kinase C and calmodulin kinase II phosphorylated preferentially the 55-kDa protein. The 55-kDa protein is phosphorylated 50 times faster by cGMP kinase and protein kinase C than by calmodulin kinase II or casein kinase II and about 10 times faster by these enzymes than by cAMP kinase. Two-dimensional peptide maps of the 165-kDa subunit yielded a total of 11 phosphopeptides. Four or five peptides are phosphorylated specifically by cAMP kinase, cGMP kinase, casein kinase II and protein kinase C, whereas the other peptides are modified by several kinases. The same kinases phosphorylate 11 peptides in the 55-kDa subunit. Again, some of these peptides are modified specifically by each kinase. These results suggest that the 165-kDa and the 55-kDa subunit contain specific phosphorylation sites for cAMP kinase, cGMP kinase, casein kinase II and protein kinase C. Phosphorylation of these sites may be relevant for the in vivo function of the CaCB receptor.  相似文献   

15.
Fifteen overlapping synthetic peptides, spanning the entire amino acid sequence of the Mycobacterium tuberculosis 19-kDa protein, were used to identify epitopes recognized by murine T cells. Five of the 15 peptides tested were able to elicit in vitro lymph node T cell proliferative responses in C57BL/10 mice primed by footpad inoculation with homologous peptide. Analysis in congenic strains of mice revealed H-2 restriction in the response to four peptides. However, one peptide, 19.7 (residues 61 to 80), induced T cell responses in all four haplotypes tested. This peptide was also unique in being able to stimulate lymph node cells from C57BL/10 mice immunized with recombinant 19-kDa protein, killed M. tuberculosis, or live bacillus Calmette Guerin infection. T cell lines specific for peptide 19.7 were of the CD4 phenotype. Significantly, sequence analysis revealed that residues 61 to 80 of the 19-kDa protein exhibited considerable homology with a single 20-amino acid sequence (residues 120 to 140), but not with any other region of the 28-kDa protein expressed in Mycobacterium leprae. This finding is the first evidence of epitope-restricted homology between otherwise structurally unrelated microbial Ag.  相似文献   

16.
The dihydropyridine receptor purified from rabbit skeletal muscle yields in the presence of dithiothreitol and sodium dodecyl sulfate on polyacrylamide gels bands of apparent molecular mass 165 +/- 5, 130 +/- 5, 55 +/- 3, 32 +/- 2 and 28 +/- 1 kDa (chi +/- SEM, n = 12). Under nonreducing conditions, the 130 kDa and 28-kDa peptides migrate as a single peptide of 165 kDa. These peptides were separated on a HPLC size-exclusion column. The specific absorption coefficients of the isolated peptides were determined. From these a stoichiometry of 1:1.7 +/- 0.2:1.4 +/- 0.3 (chi +/- SEM of 12 experiments with three different preparations) was calculated for the 165-kDa, 55-kDa and 32-kDa peptides. The relative amount of the 130/28-kDa peptide varied with different preparations. Tryptic, chymotryptic and V-8 protease peptides of the isolated proteins suggested that the 130/28-kDa peptide was not related to the 165-kDa peptide. The dihydropyridine photoaffinity analog (+/-)-azidopine was specifically incorporated only into the 165-kDa peptide with an efficiency of about 2.4%. The azido analog of desmethoxyverapamil, LU 49888, was specifically incorporated into the same peptide with an efficiency of 1.5%. These results suggest that only the 165-kDa peptide contains the regulatory sites detected so far in the voltage-operated L-type calcium channel. They suggest further that the 130/28-kDa peptide, which migrates as a 165-kDa peptide under nonreducing conditions, does not contain high-affinity binding sites for the calcium channel blockers.  相似文献   

17.
We have established that treatment of cultured human skin fibroblasts with tropoelastin or with heterogenic peptides, obtained after organo-alkaline or leukocyte elastase hydrolysis of insoluble elastin, induces a high expression of pro-collagenase-1 (pro-matrix metalloproteinase-1 (pro-MMP-1)). The identical effect was achieved after stimulation with a VGVAPG synthetic peptide, reflecting the elastin-derived domain known to bind to the 67-kDa elastin-binding protein. This clearly indicated involvement of this receptor in the described phenomenon. This notion was further reinforced by the fact that elastin peptides-dependent MMP-1 up-regulation has not been demonstrated in cultures preincubated with 1 mm lactose, which causes shedding of the elastin-binding protein and with pertussis toxin, which blocks the elastin-binding protein-dependent signaling pathway involving G protein, phospholipase C, and protein kinase C. Moreover, we demonstrated that diverse peptides maintaining GXXPG sequences can also induce similar cellular effects as a "principal" VGVAPG ligand of the elastin receptor. Results of our biophysical studies suggest that this peculiar consensus sequence stabilizes a type VIII beta-turn in several similar, but not identical, peptides that maintain a sufficient conformation to be recognized by the elastin receptor. We have also established that GXXPG elastin-derived peptides, in addition to pro-MMP-1, cause up-regulation of pro-matrix metalloproteinase-3 (pro-stromelysin 1). Furthermore, we found that the presence of plasmin in the culture medium activated these MMP proenzymes, leading to a consequent degradation of collagen substrate. Our results may be, therefore, relevant to pathobiology of inflammation, in which elastin-derived peptides bearing the GXXPG conformation (created after leukocyte-dependent proteolysis) bind to the elastin receptor of local fibroblasts and trigger signals leading to expression and activation of MMP-1 and MMP-3, which in turn exacerbate local connective tissue damage.  相似文献   

18.
3H-Labelled kappa-elastin peptides (kE:75 kDa molecular weight) were shown to bind to confluent human skin fibroblast (HSF) cultures in a time-dependent and saturable manner. Scatchard analysis indicated the presence of high affinity binding sites with kD = 2.7 x 10(-10) M and 19,000 sites per cell. Binding of kE to its receptor on HSF accelerates and intensifies the adhesion of insoluble elastin fibres (iE) to confluent HSF. Optimal effect was attained for a kE concentration of 0.3 x 10(-9) M close to kD. This stimulatory effect of kE on the binding of iE to HSF could be inhibited by neomycin, retinal and pertussis toxin, substances which act at different levels of the transduction mechanism following the activation of the receptor and the subsequent triggering of cell biological events (chemotaxis, modification of calcium fluxes). The stimulation of iE adhesion to HSF induced by kE as well as kE binding to the cells could be inhibited by lactose and laminin but not by Arg-Gly-Asp-Ser(RGDS) peptides. This indicates that the elastin peptide receptor on HSF possesses lectin-like properties and shares homology with the laminin receptor as also shown for other cell types. None of the substances tested, that is inhibitors of the transduction mechanism, lactose, laminin and Arg-Gly-Asp-Ser(RGDS) peptides were shown to interfere significantly with the binding of iE (in the absence of added kE) to confluent HSF. The proteins adhering strongly to elastin fibres were isolated by a sequential extraction procedure and the final hydrochloride guanidinium-DTT extract was analysed by SDS-PAGE under reducing conditions, Western blots using specific antibodies against several connective tissue proteins and affinity for [3H]-kE following nitrocellulose electro-transfer of proteins. Fibronectin, vitronectin, tropoelastin(s), and a 120 kDa cysteine rich glycoprotein previously designated as elastonectin were identified. Among these proteins, [3H]-kE was found to bind exclusively to a 65 kDa protein that could be eluted selectively from elastin fibres with a neutral buffer containing 100 mM lactose. Therefore the elastin peptide receptor on human skin fibroblasts shares properties with the elastin receptor characterized from other cell types. Conformational differences between elastin peptides and elastin fibres could explain the differences in the mechanisms of interactions between elastin fibres and elastin peptides with HSF in culture. The stimulatory effect of elastin-derived peptides on the adhesion of elastin fibres to HSF could have implications in the oriented biosynthesis of elastin fibres.  相似文献   

19.
Antibody responses to the 18-kDa protein of Mycobacterium leprae have been analyzed in different strains of mice. High, intermediate, and low responder strains have been identified and these response patterns show clear linkage to genes encoded in the H-2 complex. Three peptides, residues 1-50, 51-100, and 101-148 have been synthesized, as well as a series of 20-mer peptides, which span the entire 18-kDa protein. Repeated immunization of different strains of mice with the 18-kDa protein resulted in IgG responses to epitopes found on all three synthetic peptides. Immunization of BALB/cJ and B10.BR mice, two high responder strains, with 18-kDa protein resulted in high levels of IgG antibody to epitopes found on peptides 1-20, 16-35, 31-50, 46-65, and 76-95. B10.BR mice also contained IgG that bound peptide 61-80 and BALB/cJ mice produced IgG that bound peptide 91-110. Although B10.BR mice produced IgG that bound the 50-mer peptide 101-148, this IgG was not detected by binding to peptides 91-110, 106-125, 121-140, and 131-148. Immunization of B10.BR mice with individual overlapping 20-mer peptides as Ag revealed that peptides 1-20, 16-35, 31-50, and 76-95 elicited high titers of IgG that bound both the immunizing peptide as well as 18-kDa protein. As these peptides induce antibody synthesis they must contain both B cell and T cell epitopes. By contrast, immunization of BALB/cJ mice with the same 20-mer peptides, all of which contain B cell epitopes for this strain, failed to elicit IgG responses with one exception. Peptide 91-110 induced IgG that bound peptide 91-110, but not the intact 18-kDa protein. We conclude that peptides 1-20, 16-35, 31-50, and 76-95 either lack T cell epitopes for BALB/cJ mice, or activate different T cell subpopulations in the two strains. We suggest that the induction of IgG responses to small peptide Ag is an in vivo assay of the activity of Th2 cell subpopulations.  相似文献   

20.
Five major polypeptides are found in immunoaffinity-purified calf thymus DNA polymerase-DNA primase complex: 185, 160, 68, 55, and 48 kDa. Individual polypeptides purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were used to produce antibodies in rabbits to aid in identifying the relationships between these polypeptides by immunoblotting and enzyme neutralization procedures. Immunoblot analyses showed that the 160-kDa peptide is derived from the 185-kDa peptide and the 48-kDa peptide is derived from the 68-kDa peptide while antibodies to the 55-kDa peptide do not cross-react with other peptides found in the complex. Direct enzyme neutralization studies demonstrated that antibodies to 185- and 160-kDa peptides inhibit DNA polymerase activity in the complex, confirming earlier suggestions that these peptides are the catalytic peptides for DNA polymerase. DNA primase activity in the complex is inhibited by antibodies to 68-, 55-, and 48-kDa peptides and to a lesser extent by antibodies to the 160-kDa peptide. Free DNA primase isolated from the complex was estimated to have a native molecular weight of about 110,000. The 55- and 48-kDa peptides are found to be associated with the free primase activity. Rabbit antibodies to both 55- and 48-kDa peptides are inhibitory to this primase activity. From these results we suggest that the native calf thymus DNA polymerase-DNA primase complex contains only three unique peptides with the 185-kDa peptide as the catalytic peptide of DNA polymerase and the 55- and 68-kDa peptides constituting the primase peptides. A model illustrating the roles of these peptides in initiation and replication of DNA is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号