首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ex vivo treatment of bone marrow-derived dendritic cells (DCs) with TNF-alpha has been previously shown to induce partial maturation of DCs that are able to suppress autoimmunity. In this study, we demonstrate that i.v. administration of TNF-alpha-treated, semimature DCs pulsed with thyrogloblin (Tg), but not with OVA Ag, inhibits the subsequent development of Tg-induced experimental autoimmune thyroiditis (EAT) in CBA/J mice. This protocol activates CD4(+)CD25(+) T cells in vivo, which secrete IL-10 upon specific recognition of Tg in vitro and express regulatory T cell (Treg)-associated markers such as glucocorticoid-induced TNFR, CTLA-4, and Foxp3. These CD4(+)CD25(+) Treg cells suppressed the proliferation and cytokine release of Tg-specific, CD4(+)CD25(-) effector cells in vitro, in an IL-10-independent, cell contact-dependent manner. Prior adoptive transfer of the same CD4(+)CD25(+) Treg cells into CBA/J hosts suppressed Tg-induced EAT. These results demonstrate that the tolerogenic potential of Tg-pulsed, semimature DCs in EAT is likely to be mediated through the selective activation of Tg-specific CD4(+)CD25(+) Treg cells and provide new insights for the study of Ag-specific immunoregulation of autoimmune diseases.  相似文献   

2.
Recently we reported on a novel H2E transgenic, IA-negative model of experimental autoimmune thyroiditis (EAT) that excludes reactivity to self in its susceptibility pattern to heterologous thyroglobulin (Tg). In conventional, susceptible mouse strains, EAT is inducible with both homologous and heterologous Tg; e.g., human (h)Tg shares conserved thyroiditogenic epitopes with mouse (m)Tg. However, when an H2Ea(k) transgene is introduced into class II-negative B10.Ab(0) mice, which express neither surface IA (mutant Abeta-chain) nor surface IE (nonfunctional Ea gene), the resultant H2E(b) molecules are permissive for EAT induction by hTg, but not self mTg. Also, the hTg-primed cells do not cross-react with mTg. To explore this unique capacity of E+B10.Ab(0) mice to distinguish self from nonself Tg, we have developed T cell lines to examine the T cell receptor repertoire and observed a consistent Vbeta8+ component after repeated hTg stimulation. Enrichment and activation of Vbeta8+ T cells by either superantigen staphylococcal entertoxin B or anti-Vbeta8 in vitro enabled thyroiditis transfer to untreated A-E+ recipients, similar to hTg activation. Vbeta8+ T cells isolated by FACS from hTg-immunized mice also proliferated to hTg in vitro. These studies support the contribution of Vbeta8 genes to the pathogenicity of hTg in this H2A-E+ transgenic model.  相似文献   

3.
Our earlier study showed that GM-CSF has the potential not only to prevent, but also to suppress, experimental autoimmune thyroiditis (EAT). GM-CSF-induced EAT suppression in mice was accompanied by an increase in the frequency of CD4(+)CD25(+) regulatory T cells that could suppress mouse thyroglobulin (mTg)-specific T cell responses in vitro, but the underlying mechanism of this suppression was not elucidated. In this study we show that GM-CSF can induce dendritic cells (DCs) with a semimature phenotype, an important characteristic of DCs, which are known to play a critical role in the induction and maintenance of regulatory T cells. Adoptive transfer of CD4(+)CD25(+) T cells from GM-CSF-treated and mTg-primed donors into untreated, but mTg-primed, recipients resulted in decreased mTg-specific T cell responses. Furthermore, lymphocytes obtained from these donors and recipients after adoptive transfer produced significantly higher levels of IL-10 compared with mTg-primed, untreated, control mice. Administration of anti-IL-10R Ab into GM-CSF-treated mice abrogated GM-CSF-induced suppression of EAT, as indicated by increased mTg-specific T cell responses, thyroid lymphocyte infiltration, and follicular destruction. Interestingly, in vivo blockade of IL-10R did not affect GM-CSF-induced expansion of CD4(+)CD25(+) T cells. However, IL-10-induced immunosuppression was due to its direct effects on mTg-specific effector T cells. Taken together, these results indicated that IL-10, produced by CD4(+)CD25(+) T cells that were probably induced by semimature DCs, is essential for disease suppression in GM-CSF-treated mice.  相似文献   

4.
Susceptibility and resistance to experimental autoimmune thyroiditis is encoded by MHC H2A genes. We reported that traditionally resistant B10 (H2(b)) mice permit thyroiditis induction with mouse thyroglobulin (mTg) after depleting regulatory T cells (Tregs), supporting A(b) presentation to thyroiditogenic T cells. Yet, Ea(k) transgenic mice, expressing A(b) and normally absent E(b) molecules (E(+)B10 mice), are susceptible to thyroiditis induction without Treg depletion. To explore the effect of E(b) expression on mTg presentation by A(b), seven putative A(b)-binding, 15-16-mer peptides were synthesized. Five were immunogenic for both B10 and E(+)B10 mice. The effect of E(b) expression was tested by competition with an Ealpha52-68 peptide, because Ealpha52-68 occupies approximately 15% of A(b) molecules in E(+)B10 mice, binding with high affinity. Ealpha52-68 competitively reduced the proliferative response to mTg, mTg1677, and mTg2342 of lymph node cells primed to each Ag. Moreover, mTg1677 induced mild thyroiditis in Treg-depleted B10 mice, and in E(+)B10 mice without the need for Treg depletion. Ealpha52-68 competition with mTg-derived peptides may impede clonal deletion of pathogenic, mTg-specific T cells in the thymus.  相似文献   

5.
Regulation of lymphocyte survival is essential for the maintenance of lymphoid homeostasis preventing the development of autoimmune diseases. Recently, we described a systemic lupus erythematosus associated with an IgA nephropathy in autoimmune-prone (NZW x C57BL/6)F(1) overexpressing human Bcl-2 (hBcl-2) in B cells (transgenic (Tg) 1). In the present study, we analyze in detail a second line of hBcl-2 Tg mice overexpressing the transgene in all B cells and in a fraction of CD4(+) and CD8(+) T cells (Tg2). We demonstrate here that the overexpression of hBcl-2 in T cells observed in Tg2 mice is associated with a resistance to the development of lupus disease and collagen type II-induced arthritis in both (NZW x C57BL/6)F(1) and (DBA/1 x C57BL/6)F(1) Tg2 mice, respectively. The disease-protective effect observed in autoimmune-prone Tg2 mice is accompanied by an increase of peripheral CD4(+)CD25(+) hBcl-2(+) regulatory T cells (T(regs)), expressing glucocorticoid-induced TNFR, CTLA-4, and FoxP3. Furthermore, the in vivo depletion of CD4(+)CD25(+) T(regs) in (DBA/1 x C57BL/6)F(1) Tg2 mice promotes the development of a severe collagen type II-induced arthritis. Taken together, our results indicate that the overexpression of hBcl-2 in CD4(+) T cells alters the homeostatic mechanisms controlling the number of CD4(+)CD25(+) T(regs) resulting in the inhibition of autoimmune diseases.  相似文献   

6.
Experimental autoimmune thyroiditis (EAT), a model for Hashimoto's thyroiditis, is a T cell-mediated disease inducible with mouse thyroglobulin (mTg). Pretreatment with mTg, however, can induce CD4+ T cell-mediated tolerance to EAT. We demonstrate that CD4+CD25+ regulatory cells are critical for the tolerance induction, as in vivo depletion of CD25+ cells abrogated established tolerance, and CD4+CD25+ cells from tolerized mice suppressed mTg-responsive cells in vitro. Importantly, administration of an agonistic CD137 monoclonal antibody (mAb) inhibited tolerance development, and the mediation of established tolerance. CD137 mAb also inhibited the suppression of mTg-responsive cells by CD4+CD25+ cells in vitro. Signaling through CD137 likely resulted in enhancement of the responding inflammatory T cells, as anti-CD137 did not enable CD4+CD25+ T cells to proliferate in response to mTg in vitro.  相似文献   

7.
CD4+CD25high regulatory cells in human peripheral blood   总被引:90,自引:0,他引:90  
Thymectomy in mice on neonatal day 3 leads to the development of multiorgan autoimmune disease due to loss of a CD(+)CD25(+) T cell regulatory population in their peripheral lymphoid tissues. Here, we report the identification of a CD4(+) population of regulatory T cells in the circulation of humans expressing high levels of CD25 that exhibit in vitro characteristics identical with those of the CD4(+)CD25(+) regulatory cells isolated in mice. With TCR cross-linking, CD4(+)CD25(high) cells did not proliferate but instead totally inhibited proliferation and cytokine secretion by activated CD4(+)CD25(-) responder T cells in a contact-dependent manner. The CD4(+)CD25(high) regulatory T cells expressed high levels of CD45RO but not CD45RA, akin to the expression of CD45RB(low) on murine CD4(+)CD25(+) regulatory cells. Increasing the strength of signal by providing either costimulation with CD28 cross-linking or the addition of IL-2 to a maximal anti-CD3 stimulus resulted in a modest induction of proliferation and the loss of observable suppression in cocultures of CD4(+)CD25(high) regulatory cells and CD4(+)CD25(-) responder cells. Whereas higher ratios of CD4(+)CD25(high) T cells are required to suppress proliferation if the PD-L1 receptor is blocked, regulatory cell function is shown to persist in the absence of the PD-1/PD-L1 or CTLA-4/B7 pathway. Thus, regulatory CD4 T cells expressing high levels of the IL-2 receptor are present in humans, providing the opportunity to determine whether alterations of these populations of T cells are involved in the induction of human autoimmune disorders.  相似文献   

8.
The repeated injection of low doses of bacterial superantigens (SAg) is known to induce specific T cell unresponsiveness. We show in this study that the spleen of BALB/c mice receiving chronically, staphylococcal enterotoxin B (SEB) contains SEB-specific CD4(+) TCRBV8(+) T cells exerting an immune regulatory function on SEB-specific primary T cell responses. Suppression affects IL-2 and IFN-gamma secretion as well as proliferation of T cells. However, the suppressor cells differ from the natural CD4(+) T regulatory cells, described recently in human and mouse, because they do not express cell surface CD25. They are CD152 (CTLA-4)-negative and their regulatory activity is not associated with expression of the NF Foxp3. By contrast, after repeated SEB injection, CD4(+)CD25(+) splenocytes were heterogenous and contained both effector as well as regulatory cells. In vivo, CD4(+)CD25(-) T regulatory cells prevented SEB-induced death independently of CD4(+)CD25(+) T cells. Nevertheless, SEB-induced tolerance could not be achieved in thymectomized CD25(+) cell-depleted mice because repeated injection of SEB did not avert lethal toxic shock in these animals. Collectively, these data demonstrate that, whereas CD4(+)CD25(+) T regulatory cells are required for the induction of SAg-induced tolerance, CD4(+)CD25(-) T cells exert their regulatory activity at the maintenance stage of SAg-specific unresponsiveness.  相似文献   

9.
10.
Using transgenic mice that express a constitutively active version of STAT5b, we demonstrate that STAT5 plays a key role in governing B cell development and T cell homeostasis. STAT5 activation leads to a 10-fold increase in pro-B, but not pro-T, cells. Conversely, STAT5 signaling promotes the expansion of mature alphabeta T cells (6-fold increase) and gammadelta and NK T cells (3- to 4-fold increase), but not of mature B cells. In addition, STAT5 activation has dramatically divergent effects on CD8(+) vs CD4(+) T cells, leading to the selective expansion of CD8(+) memory-like T cells and CD4(+)CD25(+) regulatory T cells. These results establish that activation of STAT5 is the primary mechanism underlying both IL-7/IL-15-dependent homeostatic proliferation of naive and memory CD8(+) T cells and IL-2-dependent development of CD4(+)CD25(+) regulatory T cells.  相似文献   

11.
A deficiency of CD4+CD25+ regulatory T cells (CD25+ Tregs) in lymphopenic mice can result in the onset of autoimmune gastritis. The gastric H/K ATPase alpha (H/Kalpha) and beta (H/Kbeta) subunits are the immunodominant autoantigens recognized by effector CD4+ T cells in autoimmune gastritis. The mechanism by which CD25+ Tregs suppress autoimmune gastritis in lymphopenic mice is poorly understood. To investigate the antigenic requirements for the genesis and survival of gastritis-protecting CD25+ Tregs, we analyzed mice deficient in H/Kbeta and H/Kalpha, as well as a transgenic mouse line (H/Kbeta-tsA58 Tg line 224) that lacks differentiated gastric epithelial cells. By adoptive transfer of purified T cell populations to athymic mice, we show that the CD25+ Treg population from mice deficient in either one or both of H/Kalpha and H/Kbeta, or from the H/Kbeta-tsA58 Tg line 224 mice, is equally effective in suppressing the ability of polyclonal populations of effector CD4+ T cells to induce autoimmune gastritis. Furthermore, CD25+ Tregs, from either wild-type or H/Kalpha-deficient mice, dramatically reduced the expansion of pathogenic H/Kalpha-specific TCR transgenic T cells and the induction of autoimmune gastritis in athymic recipient mice. Proliferation of H/Kalpha-specific T cells in lymphopenic hosts occurs predominantly in the paragastric lymph node and was dependent on the presence of the cognate H/Kalpha Ag. Collectively, these studies demonstrate that the gastritis-protecting CD25+ Tregs do not depend on the major gastric Ags for their thymic development or their survival in the periphery, and that CD25+ Tregs inhibit the Ag-specific expansion of pathogenic T cells in vivo.  相似文献   

12.
Recent studies have emphasized the importance of T cells with regulatory/suppressor properties in controlling autoimmune diseases. A number of different types of regulatory T cells have been described with the best characterized being the CD25(+) population. In addition, it has been shown that regulatory T cells can be induced by specific Ag administration. In this study, we investigate the relationship between peptide-induced, CD4(+) regulatory T cells and naturally occurring CD4(+)CD25(+) cells derived from the Tg4 TCR-transgenic mouse. Peptide-induced cells were FoxP3(-) and responded to Ag by secreting IL-10, whereas CD25(+) cells failed to secrete this cytokine. Both cell types were able to suppress the proliferation of naive lymphocytes in vitro although with distinct activation sensitivities. Depletion of CD25(+) cells did not affect the suppressive properties of peptide-induced regulators. Furthermore, peptide-induced regulatory/suppressor T cells could be generated in RAG(-/-), TCR-transgenic mice that do not spontaneously generate CD25(+) regulatory cells. These results demonstrate that these natural and induced regulatory cells fall into distinct subsets.  相似文献   

13.
Fms-like tyrosine kinase receptor 3-ligand (Flt3-L) and GM-CSF cause expansion of different subsets of dendritic cells and skew the immune response toward predominantly Th1 and Th2 type, respectively. In the present study, we investigated their effects on experimental autoimmune thyroiditis in CBA/J mice. Relative to mouse thyroglobulin (mTg) immunized controls, mTg-immunized mice treated with Flt3-L showed more severe thyroiditis characterized by enhanced lymphocytic infiltration of the thyroid, and IFN-gamma and IL-2 production. In contrast, mice treated with GM-CSF, either before or after immunization with mTg, showed suppressed T cell response to mTg and failed to develop thyroiditis. Lymphocytes from these mice, upon activation with mTg in vitro, produced higher levels of IL-4 and IL-10. Additionally, GM-CSF-treated mice showed an increase in the frequency of CD4(+)/CD25(+) T cells, which suppressed the mTg-specific T cell response. Neutralization of IL-10, but not IL-4, or depletion of CD4(+)/CD25(+) cells resulted in increased mTg-specific in vitro T cell proliferation suggesting that IL-10 produced by the Ag-specific CD4(+)/CD25(+) regulatory T cells might be critical for disease suppression. These results indicate that skewing immune response toward Th2, through selective activation of dendritic cells using GM-CSF, may have therapeutic potential in Th1 dominant autoimmune diseases including Hashimoto's thyroiditis.  相似文献   

14.
CTLA-4 is a critical negative regulator of T cell response and is instrumental in maintaining immunological tolerance. In this article, we report that enhanced selective engagement of CTLA-4 on T cells by Ag-presenting dendritic cells resulted in the induction of Ag-specific CD4(+)CD25(+)Foxp3(+) and CD4(+)CD25(-)TGF-beta1(+) adaptive Tregs. These cells were CD62L(low) and hyporesponsive to stimulation with cognate Ag but demonstrated a superior ability to suppress Ag-specific effector T cell response compared with their CD62L(high) counterparts. Importantly, treatment of mice with autoimmune thyroiditis using mouse thyroglobulin (mTg)-pulsed anti-CTLA-4 agonistic Ab-coated DCs, which results in a dominant engagement of CTLA-4 upon self-Ag presentation, not only suppressed thyroiditis but also prevented reemergence of the disease upon rechallenge with mTg. Further, the disease suppression was associated with significantly reduced mTg-specific T cell and Ab responses. Collectively, our results showed an important role for selective CTLA-4 signaling in the induction of adaptive Tregs and suggested that approaches that allow dominant CTLA-4 engagement concomitant with Ag-specific TCR ligation can be used for targeted therapy.  相似文献   

15.
T cell clonal anergy induction in lymphopenic nu/nu mice was found to be ineffective. Exposure to a tolerizing peptide Ag regimen instead induced aggressive CD4(+) cell cycle progression and increased Ag responsiveness (priming). Reconstitution of T cell-deficient mice by an adoptive transfer of mature peripheral lymphocytes was accompanied by the development of a CD25(+)Foxp3(+)CTLA-4(+)CD4(+) regulatory T cell population that acted to dampen Ag-driven cell cycle progression and facilitate the induction of clonal anergy in nearby responder CD25(-)CD4(+) T cells. Thus, an early recovery of CD25(+) regulatory T cells following a lymphopenic event can prevent exuberant Ag-stimulated CD4(+) cell cycle progression and promote the development of clonal anergy.  相似文献   

16.
Thymectomy of BALB/c mice on day 3 of life results in the development of autoimmune gastritis (AIG) due to the absence of CD4(+)CD25(+) regulatory T cells. However, depletion of CD4(+)CD25(+) T cells by treatment with anti-CD25 rarely resulted in AIG. Depletion was efficient, as transfer of splenocytes from depleted mice induced AIG in nu/nu mice. One explanation for this result is that CD4(+)CD25(-) T cells upon transfer to nude recipients undergo lymphopenia-induced proliferation, providing a signal for T cell activation. Cotransfer of CD25(+) T cells did not inhibit initial proliferation but did suppress AIG. Surprisingly, immunization with the AIG target Ag, H/K ATPase, in IFA failed to induce disease in normal animals but induced severe AIG in CD25-depleted mice. These results demonstrate that second signals (nonspecific proliferation, TCR activation, or inflammation) are needed for induction of autoimmunity in the absence of CD25(+) regulatory T cells.  相似文献   

17.
The transmembrane protein CD83 has been initially described as a maturation marker for dendritic cells. Moreover, there is increasing evidence that CD83 also regulates B cell function, thymic T cell maturation, and peripheral T cell activation. Herein, we show that CD83 expression confers immunosuppressive function to CD4(+) T cells. CD83 mRNA is differentially expressed in naturally occurring CD4(+)CD25(+) regulatory T cells, and upon activation these cells rapidly express large amounts of surface CD83. Transduction of naive CD4(+)CD25(-) T cells with CD83 encoding retroviruses induces a regulatory phenotype in vitro, which is accompanied by the induction of Foxp3. Functional analysis of CD83-transduced T cells in vivo demonstrates that these CD83(+)Foxp3(+) T cells are able to interfere with the effector phase of severe contact hypersensitivity reaction of the skin. Moreover, adoptive transfer of these cells prevents the paralysis associated with experimental autoimmune encephalomyelitis, suppresses proinflammatory cytokines IFN-gamma and IL-17, and increases antiinflammatory IL-10 in recipient mice. Taken together, our data provide the first evidence that CD83 expression can contribute to the immunosuppressive function of CD4(+) T cells in vivo.  相似文献   

18.
Tago, F., Tsukimoto, M., Nakatsukasa, H. and Kojima. S. Repeated 0.5 Gy Gamma Irradiation Attenuates Autoimmune Disease in MRL-lpr/lpr Mice with Suppression of CD3(+)CD4(-)CD8(-)B220(+) T-Cell Proliferation and with Up-regulation of CD4(+)CD25(+)Foxp3(+) Regulatory T Cells. Radiat. Res. 169, 59-66 (2008). MRL-lpr/lpr mice are used as a model of systemic lupus erythematosus. We previously reported attenuation of autoimmune disease in MRL-lpr/lpr mice by repeated gamma irradiation (0.5 Gy each time). In this study, we investigated the mechanisms of this attenuation by measuring the weight of the spleen and the population of highly activated CD3(+)CD4(-)CD8(-)B220(+) T cells, which are characteristically involved in autoimmune pathology in these mice. Splenomegaly and an increase in the percentage of CD3(+)CD4(-)CD8(-)B220(+) T cells, which occur with aging in nonirradiated mice, were suppressed in irradiated mice. The high proliferation rate of CD3(+)CD4(-)CD8(-)B220(+) T cells was suppressed in the irradiated animals. The production of autoantibodies and the level of IL6, which activates B cells, were also lowered by radiation exposure. These results indicate that progression of pathology is suppressed by repeated 0.5-Gy gamma irradiation. To uncover the mechanism of the immune suppression, we measured the regulatory T cells, which suppress activated T cells and excessive autoimmune responses. We found that regulatory T cells were significantly increased in irradiated mice. We therefore conclude that repeated 0.5-Gy gamma irradiation suppresses the proliferation rate of CD3(+)CD4(-)CD8(-)B220(+) T cells and the production of IL6 and autoantibodies and up-regulates regulatory T cells.  相似文献   

19.
Coxsackievirus B3 infection causes significant cardiac inflammation in male, but not female, B1.Tg.Ealpha mice. This gender difference in disease susceptibility correlates with selective induction of CD4(+) Th1 (gamma interferon-positive) cell responses in animals with testosterone, whereas estradiol promotes preferential CD4(+) Th2 (interleukin-4 positive [IL-4(+)]) cell responses. Differences in immune deviation of CD4(+) T cells cannot be explained by variation in B7-1 or B7-2 expression. Infection significantly upregulated both molecules, but no differences were detected between estradiol- and testosterone-treated groups. Significantly increased numbers of activated (CD69(+)) T cells expressing the gammadelta T-cell receptor were found in male and testosterone-treated male and female mice. In vivo depletion of gammadelta+ cells by using monoclonal antibodies inhibited myocarditis and resulted in a shift from a Th1 to Th2 response phenotype. Taken together, our results indicate that testosterone promotes a CD4(+) Th1 cell response and myocarditis by promoting increased gammadelta+ cell activation.  相似文献   

20.
Chicken CD4(+)CD25(+) cells were characterized for mammalian regulatory T cells' suppressive and cytokine production properties. Anti-chicken CD25 mAb was produced in mice and conjugated with a fluorescent tag. The specificity of the Ab against chicken CD25 was confirmed by evaluating Con A-induced CD25 upregulation in thymocytes and by quantifying the CD25 mRNA content of positive and negative cells identified by anti-chicken CD25 Ab. The percentage of CD4(+)CD25(+) cells, expressed as a percentage of CD4(+) cells, in thymus and blood was ~3-7%, in spleen was 10%, and in cecal tonsil, lung, and bone marrow was ~15%. Bursa had no detectable CD4(+)CD25(+) cells. CD25(+) cells were mostly CD4(+) in the thymus, whereas in every other organ studied, CD25(+) cells were distributed between CD4(+) and CD4(-) cells. Chicken thymic CD4(+)CD25(+) cells did not proliferate in vitro in the absence of recombinant chicken IL-2 (rCIL-2). In the presence of rCIL-2, PMA plus ionomycin or Con A stimulated CD4(+)CD25(+) cell proliferation, whereas anti-CD3 plus CD28 did not stimulate CD4(+)CD25(+) cell proliferation. Naive CD4(+)CD25(+) cells had 29-fold more IL-10 mRNA and 15-fold more TGF-β mRNA than the naive CD4(+)CD25(-) cells. Naive CD4(+)CD25(+) had no detectable IL-2 mRNA. Both naive and PMA plus ionomycin-stimulated thymic CD4(+)CD25(+) cells suppressed naive T cell proliferation. The suppressive properties were partially contact dependent. Supplementing CD4(+)CD25(+) cell coculture with rCIL-2 reversed the suppressive properties of CD4(+)CD25(+) cells. Chicken CD4(+)CD25(+) cells have suppressive properties similar to that of mammalian regulatory T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号