首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Eleven regions of mouse brain and twelve layers of monkey retina were assayed for choline acetyl transferase (ChAT), acetylcholine esterase (AChE), and 4 enzymes that synthesize acetyl CoA. The purpose was to seek evidence concerning the source of acetyl CoA for acetylcholine generation. In brain ATP citrate lyase was strongly correlated with ChAT as well as AChE (r=0.914 in both cases). Weak, but statistically significant correlation, was observed between ChAT and both cytoplasmic and mitochondrial thiolase, whereas there was a significant negative correlation between ChAT and acetyl thiokinase. In retina ChAT was essentially limited to the inner plexiform and ganglion cell layers, whereas substantial AChE activity extended as well into inner nuclear, outer plexiform and fiber layers, but no further. ATP citrate lyase activity was also highest in the inner four retinal layers, but was not strongly correlated with either ChAT or AChE (r=0.724 and 0.761, respectively). Correlation between ChAT and acetyl thiokinase was at least as strong (r=0.757), and in the six inner layers of retina, the correlation between ChAT and acetylthiokinase was very strong (r=0.932).Special issue dedicated to Dr. Lawrence Austin  相似文献   

2.
Highly cholinergic synaptosomes from the optic lobes of Sepia officinalis retain their ability to concentrate K+ and extrude Na+ and to synthesise acetylcholien in vitro. Choline uptake is hemicholinium-3 and Na+ sensitive but is not obligatorily coupled to choline metabolism, or an energy supply as shown by the action of metabolic and ion pump inhibitors. The influx and efflux and/or steady-state distributions of choline in the presence of Na+, Li+, Rb+, Cs+ and mannitol were studied. The influx studies at different cis-choline concentrations revealed two systems for choline influx with different monovalent cation sensitivity and suggested a 1 : 1 interaction of choline with both mechanisms. Choline efflux was stimulated by trans-choline. Calculations of the internal/external concentration ratio expected if choline transport were coupled to the Na+ gradient gave a maximal value of about 102. A secondary active transport of choline, where Na+ is the driver solute provides an explanation for the cation sensitivity of the mechanism as well as for the method of coupling of choline transport to the varying demands of the nervous system for acetylcholine.  相似文献   

3.
The objectives of the present study were to validate the presence of cytoplasmic and membrane-associated pools of choline acetyltransferase (ChAT) in rat brain synaptosomes, and to evaluate inhibition of these different forms of the enzyme by the nitrogen mustard analogue of choline, choline mustard aziridinium ion (ChM Az). The relative distribution of ChAT and lactate dehydrogenase (LDH) was followed in subfractions of synaptosomes to establish whether ChAT activity associated with salt-washed presynaptic membranes represents membrane-bound protein rather than cytosolic enzyme trapped within undisrupted synaptosomes or revesiculated membrane fragments. The percentage of total synaptosomal ChAT activity (14%) recovered in the final membrane pellet always exceeded that of LDH (6%), lending support to the hypothesis that much of the ChAT associated with the membranes was a membrane bound form of the enzyme. Incubation of purified synaptosomes with ChM Az led to irreversible inhibition of ChAT activity; this loss of enzyme activity could not be accounted for by lysis of nerve terminals during incubation in the presence of the mustard analogue. Subfractionation of the ChM Az-treated nerve terminals revealed that the membrane-bound form of ChAT was inhibited to the greatest extent, followed by the ionically membrane-associated enzyme, with the activity of the water-solubilized enzyme not differing significantly from control. Preparation of the synaptosomal ChAT subfractions from untreated nerve terminals prior to incubation with varying concentrations of ChM Az or naphthylvinylpyridine revealed that under these conditions water-solubilized, ionically membrane-associated, and detergent-solubilized membrane-bound pools of ChAT were not differentially inhibited by either compound.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of intraperitoneally administered 4-(1-naphthylvinyl)pyridine (NVP; 200 mg/kg) on the concentrations of acetylcholine (ACh), choline (Ch), and acetyl-CoA (AcCoA) in rat striatum, cortex, hippocampus, and cerebellum were investigated. Twenty minutes after treatment, the content of ACh was significantly diminished, whereas that of Ch was increased. In response to stress (swimming for 20 min), these changes were enhanced. However, the AcCoA content did not change in any of the brain regions. It is thus very likely that the decrease of brain ACh concentration induced by NVP is due to the drug's effect on choline acetyltransferase (ChAT) and/or the reduction of the high-affinity Ch uptake, and not on the availability of AcCoA. Presumably, the pharmacologically diminished activity of ChAT may become the rate-limiting factor in the maintenance of ACh levels in cholinergic neurons.  相似文献   

5.
Tyrosine hydroxylase (TH), glutamic acid decarboxylase (GAD), and choline acetyl transferase (CAT) were used as markers for catecholamine, gamma-aminobutyric acid, and acetylcholine containing neurons in human mesencephalon. Their rostrocaudal, mediolateral, and dorsoventral distribution was investigated within the substantia nigra pars compacta (SNC) and pars reticulata (SNR) and in the ventral tegmental area (VTA). TH activity was highest in the caudal, medial, and ventral SNC and in the middle of VTA medio-ventrally. The enzyme activity in SNR was low and uniformly distributed. In SNC as well as SNR, GAD activity was high and greater laterally and in the middle of the rostro-caudal extent. No particular pattern of distribution was observed in VTA. an area with low GAD content. In the substantia nigra, CAT activity was low. A characteristic medio-ventral distribution with a peak of high enzyme activity in the middle of the rostrocaudal extent was observed. In VTA, enzyme levels were high and also concentrated medio-ventrally and in the middle of the area. In parkinsonian brains, the distribution of TH was uniformly affected throughout the rostro-caudal extent. In VTA the enzyme activity was not as reduced as in SNC and SNR; the CAT pattern was only disrupted in a very localized part of SNC but not in SNR and VTA. In all three areas, GAD activity was reduced to a uniformly low distribution.  相似文献   

6.
We have stabilized and studied choline acetyltransferase from the nematode Caenorhabditis elegans. The enzyme is soluble, and two discrete forms were resolved by gel filtration. The larger of these two forms (MW approximately 154,000) was somewhat unstable and in the presence of 0.5 M NaI was converted to a form indistinguishable from the "native" small form (MW approximately 71,000). We have purified the small form of the enzyme greater than 3,300-fold by a combination of gel filtration, ion-exchange chromatography, and nucleotide affinity chromatography. The purified preparation has a measured specific activity of 3.74 mumol/min/mg protein, and is free of acetylcholinesterase and acetyl-CoA hydrolase activities. The Vmax of the purified enzyme is stimulated by NaCl, with half-maximal stimulation at 80 mM NaCl. The Km for each substrate is also affected by salt, but in different manners from each other and the Vmax; the kinetic parameter Vmax/Km thus changes significantly as a function of the salt concentration.  相似文献   

7.
Objectives The influence of testosterone on the prostate and corpus cavernosum have been studied extensively. However, the influence of testosterone on the lower urinary tract (bladder and urethra) have not been investigated to any great extent. The aim of this study was to determine whether androgen deprivation alters lower urinary tract metabolism. Methods A total of 16 rabbits were divided into four groups of four rabbits each. Each rabbit in groups 1–3 underwent surgical bilateral castration for duration of 1, 2 , and 4 weeks, and group 4 underwent sham operations. Sections of bladder body and base wall and mucosa, urethra and corpora were isolated, frozen, and stored under liquid nitrogen. The activities of citrate synthase-thapsigargin sensitive Ca2+ ATPase (Sarco/Endoplasmic Reticulum Ca2+ ATPase [SERCA]), and choline acetyl-transferase were examined as markers for mitochondrial function, sarcoplasmic reticular calcium storage and release, and cholinergic nerve function, respectively. Results The activity of SR function indicator, Ca2+ ATPase was significantly higher in the control corpora than in the control bladder or urethra. Castration resulted in decreased activity in the mitochondria specific enzyme, citrate synthase, the activity of which was greatest in the urethra and lowest in the corpora. Cholinergic nerve density indicator, choline acetyl-transferase activity was greatest in the bladder body and lowest in the urethra. Conclusions Our data indicate that (1) significant differences exist in the activities of all three enzymes in the various organs associated with the lower urinary tract; and (2) that castration results in significant alterations in the activities of all three enzymes in the bladder body, base, urethra, and corpora.  相似文献   

8.
9.
Vesicular stomatitis virus is known to mature at HeLa cell plasma membranes. To study the process, cells, infected with vesicular stomatitis virus, were fractionated after short term labeling studies (1 min pulse, 1 min chase) to determine the assembly kinetics of G protein and M protein into plasma membranes. Newly synthesized M protein was found released in the supernatant from which free polysomes were sedimented during sucrose gradient analysis of these polysomes. If this M protein is particle bound, it must have a density of less than 1.08 g/ml. About 40% of this M protein so labeled was not sedimentable at 165,000 X g for 16 h. This newly synthesized M protein had not yet assembled into plasma membrane and thus must represent an internal pool. This and previous studies show that it has a subsequent transit time to the plasma membrane of about 2 min. Once associated with plasma membranes, M protein decayed in an approximately logarithmic fashion indicating that newly synthesized M randomly mixes (and turns over) with preexisting M protein. G protein was particle bound in a 1 min pulse, 1 min chase, and was never found released in a soluble form. At the later time when fucose is added to G protein, the oligosaccharide moiety is near to complete, and on completion is about 2,000 in molecular weight. Evidence is presented showing that fucose is probably attached to the N-acetylglucosamine of the protein carbohydrate linkage. G protein to which fucose had just been added was located internally on a membranous fraction of density 1.14 g/ml in sucrose; its subsequent transit time from this pool (which in uninfected cells is between 1–2% of the total cell fucosyl glycoprotein) was about 15 min. Because their densities were different and their transit times were different, internal newly synthesized M and fucosyl G protein which assemble into plasma membranes were not on the same internal membranous component. Association of M protein with the plasma membranes may thus occur from a nonsedimentable soluble cytoplasmic pool by a process of direct adsorption.  相似文献   

10.
Summary Cultured carrot cells (Daucus carota L.) reduced nitrate to nitrite at a slow rate (0.4 moles/g dry wt · h) without any additions to the reaction medium. This rate was doubled or tripled in presence of 100 M NADH. Ethanol and other alcohols stimulated the basal rate 8–10-fold. Isolated carrot plasma membranes also reduced nitrate to nitrite at a rate of 80 nmoles/mg protein · h. This plasma membrane-bound nitrate reductase activity was estimated to be 1.7% of the total activity. Nitrate reduction by carrot cells was inhibited 56% by sodium tungstate, 57% by potassium cyanide, and 87% by gold chloride. It was stimulated by plasma membrane electron transport inhibitors (retinoic acid and chloroquine) and ATPase inhibitors (diethylstilbestrol). From differential effects of some stimulators or inhibitors in the presence or absence of NADH, it can be implied that the nitrate reductase activity of cultured carrot cells was due to a transmembrane enzyme exhibiting an exogenous nitrate reductase activity when NADH was added.Abbreviation DMSO dimethyl sulfoxide - SHAM salicyl hydroxamic acid  相似文献   

11.
12.
Monoclonal antibodies were raised against the synaptosomal plasma membranes (SPMs) purified from the electric organ of the Torpedo. One antibody that reacts preferentially with SPMs rather than with other membrane fractions isolated from this tissue was previously found to inhibit hydrophilic and amphiphilic choline-O-acetyltransferase (ChAT) activity. On immunoblots of SPMs, this antibody recognizes two polypeptides of 135 and 66 kilodaltons that are related; the 66-kilodalton polypeptide appears to exist as a monomer and as a dimer in SPMs. The antibody was also able to inhibit the calcium-dependent release of acetylcholine in Torpedo synaptosomes without affecting the total neurotransmitter content. This inhibition was dependent on the antibody concentration and was observed when the release was elicited by either KCl depolarization or the calcium ionophore A23187; this suggests that inhibition was not mediated by a blockage of the depolarization-activated calcium influx. The inhibition could not be prevented by atropine, a result indicating that the antibody does not block release by mimicking the action of acetylcholine on presynaptic muscarinic autoreceptors. Thus, the antigen recognized by this antibody appeared to be involved in acetylcholine release; this antigen could be membrane-bound ChAT, another protein of the SPMs, or both.  相似文献   

13.
Calmodulin copurifies with platelet plasma membranes isolated by glycerol-induced lysis and density gradient centrifugation. These membranes also bind 125I-labeled calmodulin in vitro in the presence of Ca2+. Binding is largely reduced by replacing Ca2+ by Mg2+ or by addition of an excess unlabeled calmodulin. The specific component of binding is saturable, with an apparent Kd of 27 nM and a maximum of 15.9 pmol binding sites per mg of membrane protein. This is equivalent to approx. 4100 binding sites per platelet. Binding was inhibited by addition of phenothiazines, a group of calmodulin antagonists. Half-maximal inhibition was attained with approx. 20 μM trifluoperazine or 50 μM chlorpromazine. In contrast, chlorpromazine-sulfoxide which is inactive towards calmodulin, did not affect the binding. Calmodulin binding polypeptides of the plasma membrane were identified by a gel-overlay technique. A major calmodulin-binding component of molecular weight 149 000 was detected. Binding to this band was Ca2+-dependent and inhibited by chlorpromazine. The molecular weight of this polypeptide is similar to that of glycoprotein I and also that of the red cell (Ca2+ + Mg2+)-stimulated ATPase, which is known to bind calmodulin. The possible role of calmodulin in platelet activation is analysed.  相似文献   

14.
Two protein kinase activities were found in plasma membrane-enriched preparations from red beet ( Beta vulgarix L.). The kinases in these preparations produced the phosphorylation of several membrane polypeptides. These kinases also phosphorylated histone III-S and casein. The activities of two different kinases could be distinguished: one was half-maximally stimulated by 1 μ M free Ca2+ phosphorylated histone III-S better than casein, showed half-maximal activity at an ATP concentration of 0.071 m M . had an optimum pH of 7, and was poorly inhibited by GTP, CTP or UTP. Another, much lower, kinase activity that phosphorylated casein was also observed; it was Ca2+ independent, showed half-maximal activity at ATP concentrations of 0.017 and 0.287 m M , exhibited a broad pH optimum about pH 7 and was inhibited by GTP, CTP, UTP or GDP to a greater extent than the calcium-stimulated activity. When plasma membrane proteins were solubilized with lysophosphatidyicholine and treated with [γ-32P]ATP at several dilutions, a 125-kDa polypeptide was autophosphorylated in the absence of Ca2+, while 77-, 71- and 65-kDa polypeptides were autophosphorylated in its presence. Autophosphorylation in gels after electrophoresis showed a Ca2+-stimulated phosphoprotein band at 64 kDa.  相似文献   

15.
Abstract: Primary rat fibroblasts genetically modified to express Drosophila choline acetyltransferase (dChAT) synthesize and release acetylcholine (ACh) in vitro. The ACh produced from the transduced fibroblasts was found to be enhanced by increasing amounts of choline chloride in the culture media. These dChAT-expressing cells were then implanted into the intact hippocampus of adult rats and in vivo microdialysis was performed 7–10 days after grafting to assess the ability of the cells to produce ACh and respond to exogenous choline in vivo. Samples collected from anesthetized rats revealed fourfold higher levels of ACh around dChAT grafts than from either non-grafted or control-grafted hippocampi. Localized choline infusion (200 μ) through the dialysis probes was found to induce a selective twofold increase in ACh release only from the dChAT-expressing fibroblasts. These results indicate not only that dChAT-expressing fibroblasts continue to synthesize and secrete ACh for at least 10 days after intracerebral grafting, but that the levels of ACh can be manipulated in vivo. The ability to regulate products within genetically modified cells in vivo may provide a powerful avenue for exploring the role of discrete substances within the CNS.  相似文献   

16.
The effect of regucalcin, a regulatory protein of Ca2+ signaling, on guanosine-5-triphosphatase (GTPase) activity in isolated rat liver plasma membranes was investigated. GTPase activity was significantly increased by the addition of Ca2+ (25–100 M) in the enzyme reaction mixture. Such an increase was not seen by other metals (Mg, Co, Zn, Cu, Ni, and Mn) with 50 M. The activatory effect of calcium (50 M) was significantly decreased by calmodulin (2.5 and 5 g/ml), indicating that it does not depend on calmodulin. The presence of regucalcin (0.1–0.5 M) in the enzyme reaction mixture caused a significant increase in GTPase activity. This increase was not significantly enhanced by calcium (50 M). GTPase activity was significantly increased by dithiothreitol (DTT; 5 mM), a protecting reagent of thiol (SH)-groups, while it was decreased by N-ethylmaleimide (NEM; 5 mM), a modifying reagent of SH-groups. The effect of calcium or regucalcin in increasing GTPase activity was not seen in the presence of NEM. Also, the activatory effect of calcium or regucalcin on GTPase was not seen in the presence of vanadate, an inhibitor of protein phosphorylation, which could inhibit GTPase activity. Moreover, the effect of regucalcin was not seen in the presence of digitonin (0.01%), a solubilizing reagent of membranous lipids, while the effect of calcium was not inhibited by digitonin. The present study demonstrates that regucalcin has an activatory effect on GTPase activity independently of Ca2+ in rat liver plasma membranes.  相似文献   

17.
In Pseudomonas aeruginosa, choline or betaine employed as the sole carbon and nitrogen source in a high phosphate medium induced a phospholipase C and an acid phosphatase activity but not an alkaline phosphatase activity. The P. aeruginosa strain utilized in this work does not possess a constitutive phospholipase C, since under culture conditions identical to those utilized by other authors (J. Bacteriol. 93, 670-674 (1967) and J. Bacteriol. 150, 730-738 (1982), our phospholipase C proved to be an inorganic phosphate-repressible enzyme. These findings enable us to conclude that although the phosphate control for the synthesis of phospholipase C may exist, it is expressed only under certain favorable culture conditions.  相似文献   

18.
Three hybridomas producing monoclonal antibodies to bovine brain choline acetyltransferase (ChAT) have been established by fusion of the spleen cells from a mouse immunized with purified enzyme with myeloma NS-1 cells. All three clones produced IgGl antibodies that reacted with enzyme protein denatured with sodium dodecyl sulfate. By using one of the monoclonal antibodies, a rapid and efficient immunoaffinity purification procedure of bovine ChAT has been established. Immunoblot analysis and immunoaffinity purification indicated that bovine ChAT is a single 68-kilodalton protein. The monoclonal antibodies will offer us a good tool to isolate the cDNA clones encoding ChAT.  相似文献   

19.
Some properties of a peptidasic activity degrading the decapeptide luteinizing-hormone-releasing hormone and bound to the anterior pituitary membranes of male rats have been investigated. Degradation of the peptide was evaluated by radioimmunoassay using an antibody specific for the whole molecule. The peptidasic activity was abolished by dialysis against EDTA and completely restored in presence of Ca2+ but not of other divalent cations. It was markedly enhanced when monovalent cations were introduced in a concentration range from 6mM to 160mM. Optimal pH was 7.2 – 7.6. Degradation rate increased linearly for concentrations of the substrate ranging from 1μM to 100μM and then remained constant. Apparent Km of 20.7 ± 3μM and Vmax of 3.5 ± 0.58ng luteinizing hormone-releasing hormone min. × μg proteins were calculated. Among different protease and peptidase inhibitors tested, only bacitracin induced a completely non-competitive inhibition, with a Ki = 2μM. The reaction was also blocked by the thiol blocking reagents NEM and Mersalyl, as well as by di and triphosphate nucleosides, ATP being the most active with an ED50 of 60μM. Analogs of ATP with methylene or imido group between phosphates β and γ were partially active, suggesting that the inhibition is not mediated by a kinase system. Insulin B chain, leucine-enkephalin and somatostatin also inhibited luteinizing hormone-releasing hormone degradation, whereas thyrotropin releasing hormone and methionine-enkephalin were ineffective.  相似文献   

20.
Abstract— Choline acetyltransferase catalyzes the formation of acetylcholine from choline and acetyl-CoA in cholin-ergic neurons. The present study examined conditions for modulation of kinase-mediated phosphorylation of this enzyme. By using a monospecific polyclonal rabbit anti-human choline acetyltransferase antibody to immunoprecipi-tate cytosolic and membrane-associated subcellular pools of enzyme from rat hippocampal synaptosomes, we determined that only the cytosolic fraction of the enzyme (67,000 ± 730 daltons) was phosphorylated under basal, unstimulated conditions. The quantity of this endogenous phosphoprotein was dependent, in part, upon the level of intracellular calcium, with 32Pi incorporation into the enzyme in nerve terminals incubated in nominally calcium-free medium only 43 ± 7% of control. The corresponding enzymatic activity of cytosolic choline acetyltransferase did not appear to be altered by lowered cytosolic calcium, whereas membrane-associated choline acetyltransferase activity was decreased to 58 ± 11 % of control. Depolarization of synaptosomes with 50 μ M veratridine neither altered the extent of phosphorylation or specific activity of cytosolic choline acetyltransferase, nor induced detectable phosphorylation of membrane-associated choline acetyltransferase, although the specific activity of the membrane-associated enzyme was increased to 132 ± 5% of control. In summary, phosphorylation of choline acetyltransferase does not appear to regulate cholinergic neurotransmission by a direct action on catalytic activity of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号