首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
recA protein, in the presence of ATP, polymerizes on single-stranded DNA (plus strand) to form a presynaptic nucleoprotein filament that pairs with linear duplex DNA and actively displaces the plus strand from the recipient molecule in a polarized fashion to form a new heteroduplex molecule. The interaction between recA protein and DNA during strand exchange was studied by labeling different strands and probing the intermediate with pancreatic deoxyribonuclease I (DNase I) or restriction endonuclease. The incoming single strand was resistant to DNase I in the original nucleoprotein filament and remained resistant even after extensive strand exchange had occurred. Both strands of the parental duplex molecule were sensitive to DNase I in the absence of joint molecule formation; but as strand exchange progressed following homologous pairing, increasing stretches of the parental plus strand became resistant, whereas the complementary parental minus strand remained sensitive to DNase I throughout the reaction. Except for a region of 50-100 base pairs at the end of the newly formed heteroduplex DNA where strand exchange was initiated, the rest of the heteroduplex region was resistant to cleavage by restriction endonucleases. The data suggest that recA protein promotes strand exchange by binding both the incoming and outgoing strands of the same polarity, whereas the complementary strand, which must switch pairing partners, is unhindered by direct contact with the protein.  相似文献   

2.
When recA protein promotes homologous pairing and strand exchange involving circular single strands and linear duplex DNA, the protein first polymerizes on the single-stranded DNA to form a nucleoprotein filament which then binds naked duplex DNA to form nucleoprotein networks, the existence of which is independent of homology, but requires the continued presence of recA protein (Tsang, S. S., Chow, S. A., and Radding, C. M. (1985) Biochemistry 24, 3226-3232). Further experiments revealed that within a few minutes after the beginning of homologous pairing and strand exchange, these networks began to be replaced by a distinct set of networks with inverse properties: their formation depended upon homology, but they survived removal of recA protein by a variety of treatments. Formation of this second kind of network required that homology be present specifically at the end of the linear duplex molecule from which strand exchange begins. Escherichia coli single-stranded DNA-binding protein or phage T4 gene 32 protein largely suppressed the formation of this second population of networks by inactivating the newly formed heteroduplex DNA, which, however, could be reactivated when recA protein was dissociated by incubation at 0 degrees C. We interpret these observations as evidence of reinitiation of strand invasion when recA protein acts in the absence of auxiliary helix-destabilizing proteins. These observations indicate that the nature of the nucleoprotein products of strand exchange determines whether pairing and strand exchange are reversible or not, and they further suggest a new explanation for the way in which E. coli single-stranded DNA-binding protein and gene 32 protein accelerate the apparent forward rate of strand exchange promoted by recA protein, namely by suppressing initiation of the reverse reaction.  相似文献   

3.
Efficient homologous pairing de novo of linear duplex DNA with a circular single strand (plus strand) coated with RecA protein requires saturation and extension of the single strand by the protein. However, strand exchange, the transfer of a strand from duplex DNA to the nucleoprotein filament, which follows homologous pairing, does not require the stable binding of RecA protein to single-stranded DNA. When RecA protein was added back to isolated protein-free DNA intermediates in the presence of sufficient ADP to inhibit strongly the binding of RecA protein to single-stranded DNA, strand exchange nonetheless resumed at the original rate and went to completion. Characterization of the protein-free DNA intermediate suggested that it has a special site or region to which RecA protein binds. Part of the nascent displaced plus strand of the deproteinized intermediate was unavailable as a cofactor for the ATPase activity of RecA protein, and about 30% resisted digestion by P1 endonuclease, which acts preferentially on single-stranded DNA. At the completion of strand exchange, when the distal 5' end of the linear minus strand had been fully incorporated into heteroduplex DNA, a nucleoprotein complex remained that contained all three strands of DNA from which the nascent displaced strand dissociated only over the next 50 to 60 minutes. Deproteinization of this intermediate yielded a complex that also contained three strands of DNA in which the nascent displaced strand was partially resistant to both Escherichia coli exonuclease I and P1 endonuclease. The deproteinized complex showed a broad melting transition between 37 degrees C and temperatures high enough to melt duplex DNA. These results show that strand exchange can be subdivided into two stages: (1) the exchange of base-pairs, which creates a new heteroduplex pair in place of a parental pair; and (2) strand separation, which is the physical displacement of the unpaired strand from the nucleoprotein filament. Between the creation of new heteroduplex DNA and the eventual separation of a third strand, there exists an unusual DNA intermediate that may contain three-stranded regions of natural DNA that are several thousand bases in length.  相似文献   

4.
B C Schutte  M M Cox 《Biochemistry》1987,26(18):5616-5625
As a first step in DNA strand exchange, recA protein forms a filamentous complex on single-stranded DNA (ssDNA), which contains stoichiometric (one recA monomer per four nucleotides) amounts of recA protein. recA protein monomers within this complex hydrolyze ATP with a turnover number of 25 min-1. Upon introduction of linear homologous duplex DNA to initiate strand exchange, this rate of ATP hydrolysis drops by 33%. The decrease in rate is complete in less than 2 min, and the rate of ATP hydrolysis then remains constant during and subsequent to the strand exchange reaction. This drop is completely dependent upon homology in the duplex DNA. In addition, the magnitude of the drop is linearly dependent upon the length of the homologous region in the linear duplex DNA. Linear DNA substrates in which pairing is topologically restricted to a paranemic joint also follow this relationship. Taken together, these properties imply that all of the available homology in the incoming duplex DNA is detected very early in the DNA strand exchange reaction, with the linear duplex DNA paired paranemically with the homologous ssDNA in the complex throughout its length. The results indicate that paranemic joints can extend over thousands of base pairs. We note elsewhere [Pugh, B. F., & Cox, M. M. (1987b) J. Biol. Chem. 262, 1337-1343] that this duplex acquires resistance to digestion by DNase with a much slower time course (30 min), which parallels the progress of strand exchange. Together these results imply that the duplex DNA is paired with the ssDNA but remains outside the nucleoprotein filament. Finally, the results also support the notion that ATP hydrolysis occurs throughout the recA nucleoprotein filament.  相似文献   

5.
RecA protein promotes two distinct types of synaptic structures between circular single strands and duplex DNA; paranemic joints, where true intertwining of paired strands is prohibited and the classically intertwined plectonemic form of heteroduplex DNA. Paranemic joints are less stable than plectonemic joints and are believed to be the precursors for the formation of plectonemic joints. We present evidence that under strand exchange conditions the binding of HU protein, from Escherichia coli, to duplex DNA differentially affects homologous pairing in vitro. This conclusion is based on the observation that the formation of paranemic joint molecules was not affected, whereas the formation of plectonemic joint molecules was inhibited from the start of the reaction. Furthermore, introduction of HU protein into an ongoing reaction stalls further increase in the rate of the reaction. By contrast, binding of HU protein to circular single strands has neither stimulatory nor inhibitory effect. Since the formation of paranemic joint molecules is believed to generate positive supercoiling in the duplex DNA, we have examined the ability of positive superhelical DNA to serve as a template in the formation of paranemic joint molecules. The inert positively supercoiled DNA could be converted into an active substrate, in situ, by the action of wheat germ topoisomerase I. Taken collectively, these results indicate that the structural features of the bacterial chromosome which include DNA supercoiling and organization of DNA into nucleosome-like structures by HU protein modulate homologous pairing promoted by the nucleoprotein filaments of recA protein single-stranded DNA.  相似文献   

6.
RecA protein primarily associates with and dissociates from opposite ends of nucleoprotein filaments formed on linear duplex DNA. RecA nucleoprotein filaments that are hydrolyzing ATP therefore engage in a dynamic process under some conditions that has some of the properties of treadmilling. We have also investigated whether the net polymerization of recA protein at one end of the filament and/or a net depolymerization at the other end drives unidirectional strand exchange. There is no demonstrable correlation between recA protein association/dissociation and the strand exchange reaction. RecA protein-mediated DNA strand exchange is affected minimally by changes in reaction conditions (dilution, pH shift, or addition of small amounts of adenosine-5'-O-(3-thiotriphosphate) that have large and demonstrable effects on recA protein association, dissociation, or both. Rather than driving strand exchange, these assembly and disassembly processes may simply represent the mechanism by which recA nucleoprotein filaments are recycled in the cell.  相似文献   

7.
RecA protein features two distinct DNA-binding sites. During DNA strand exchange, the primary site binds to single-stranded DNA (ssDNA), forming the helical RecA nucleoprotein filament. The weaker secondary site binds double-stranded DNA (dsDNA) during the homology search process. Here we demonstrate that this site has a second important function. It binds the ssDNA strand that is displaced from homologous duplex DNA during DNA strand exchange, stabilizing the initial heteroduplex DNA product. Although the high affinity of the secondary site for ssDNA is essential for DNA strand exchange, it renders DNA strand exchange sensitive to an excess of ssDNA which competes with dsDNA for binding. We further demonstrate that single-stranded DNA-binding protein can sequester ssDNA, preventing its binding to the secondary site and thereby assisting at two levels: it averts the inhibition caused by an excess of ssDNA and prevents the reversal of DNA strand exchange by removing the displaced strand from the secondary site.  相似文献   

8.
As an early step in DNA strand exchange reactions, the recA protein aligns homologous sequences within two DNA molecules to form a putative triple-stranded intermediate. In virtually all models for three-stranded DNA proposed to date, hydrogen bonds involving the N-7 position of guanine have played a prominent structural role. To determine whether the N-7 position of guanine is required for triple helix and heteroduplex formation in the recA protein-mediated DNA pairing reaction, guanine was completely replaced by the base analog 7-deazaguanine in both strands of the duplex DNA substrate using polymerase chain reaction. This modified double-strand DNA was reacted with unmodified single-strand DNA in vitro. The 7-deazaguanine-substituted DNA functioned as well as the unsubstituted DNA in recA protein-mediated DNA three-strand exchange reactions. Strand exchange reactions involving four strands also proceeded normally when three of the four strands contained 7-deazaguanine rather than guanine. In fact, the rate of strand exchange improved somewhat when the modified DNA substrates were used. This indicates either that the N-7 position of guanine is not essential for the formation of the putative triple-stranded DNA pairing intermediate, or that a three-stranded (or four-stranded) structure is not an obligate intermediate in recA protein-mediated DNA strand exchange.  相似文献   

9.
Stable binding of recA protein to duplex DNA. Unraveling a paradox   总被引:9,自引:0,他引:9  
recA protein binding to duplex DNA is a complicated, multistep process. The final product of this process is a stably bound complex of recA protein and extensively unwound double-stranded DNA. recA monomers within the complex hydrolyze ATP with an apparent kcat of approximately 19-22 min-1. Once the final binding state is achieved, binding and ATP hydrolysis by this complex becomes pH independent. The weak binding of recA protein to duplex DNA reported in previous studies does not, therefore, reflect an intrinsically unfavorable binding equilibrium. Instead, this apparent weak binding reflects a slow step in the association pathway. The rate-limiting step in this process involves the initiation rather than the propagation of DNA binding and unwinding. This step exhibits no dependence on recA protein concentration at pH 7.5. Extension or propagation of the recA filament is fast relative to the overall process. Initiation of binding is pH dependent and represents a prominent kinetic barrier at pH 7.5. ATP hydrolysis occurs only after the duplex DNA is unwound. The binding density of recA protein on double-stranded DNA is approximately one monomer/4 base pairs. A model for this process is presented. These results provide an explanation for several paradoxical observations about recA protein-promoted DNA strand exchange. In particular, they demonstrate that there is no thermodynamic requirement for dissociation of recA protein from the heteroduplex DNA product of strand exchange.  相似文献   

10.
When recA protein pairs linear duplex DNA with a homologous duplex molecule that has a single-stranded tail, it produces a recombination intermediate called the Holliday structure and causes reciprocal or symmetric strand exchange, whereas the pairing of a linear duplex molecule with fully single-stranded DNA leads to an asymmetric exchange. To study the location of recA protein on DNA molecules undergoing symmetric exchange, we labeled individually each end of the four strands involved and looked for protection against DNase I or restriction endonucleases. As expected, because of its preferred binding to single-stranded DNA, recA protein protected the single-stranded tails of either substrates, or products. In addition however, strong protection extended into the newly formed heteroduplex DNA along the strand to which recA protein was initially bound. Experiments with uniformly labeled DNA showed a corresponding homology-dependent asymmetry in the protection of the tailed substrate versus its fully duplex partner. Restriction experiments showed that protection extended 50-75 base pairs beyond the point where strand exchange was blocked by a long region of heterology. When compared with earlier observations (Chow, S. A., Honigberg, S. M., Bainton, R. J., and Radding, C. M. (1986) J. Biol. Chem. 261, 6961-6971), the present experiments reveal a pattern of association of recA protein with DNA that suggests a common mechanism of asymmetric and symmetric strand exchange.  相似文献   

11.
The helical filament formed by RecA protein on single-stranded DNA plays an important role in homologous recombination and pairs with a complementary single strand or homologous duplex DNA. The RecA nucleoprotein filament also recognizes an identical single strand. The chimeric protein, RecAc38, forms a nucleoprotein filament that recognizes a complementary strand but is defective in recognition of duplex DNA, and is associated with phenotypic defects in repair and recombination. As described here, RecAc38 nucleoprotein filament is also defective in recognition of an identical strand, either when the filament has within it a single strand or duplex DNA. A model that postulates three DNA binding sites rationalizes these observations and suggests that the third binding site mediates non-Watson-Crick interactions that are instrumental in recognition of homology in duplex DNA.  相似文献   

12.
recA protein forms stable filaments on duplex DNA at low pH. When the pH is shifted above 6.8, recA protein remains stably bound to nicked circular DNA, but not to linear DNA. Dissociation of recA protein from linear duplex DNA proceeds to a non-zero endpoint. The kinetics and final extent of dissociation vary with several experimental parameters. The instability on linear DNA is most readily explained by a progressive unidirectional dissociation of recA protein from one end of the filament. Dissociation of recA protein from random points in the filament is eliminated as a possible mechanism by several observations: (1) the requirement for a free end; (2) the inverse and linear dependence of the rate of dissociation on DNA length (at constant DNA base-pair concentration); and (3) the kinetics of exposure of a restriction endonuclease site in the middle of the DNA. Evidence against another possible mechanism, ATP-mediated translocation of the filament along the DNA, is provided by a novel effect of the non-hydrolyzable ATP analog, ATP gamma S, which generally induces recA protein to bind any DNA tightly and completely inhibits ATP hydrolysis. We find that very low, sub-saturating levels of ATP gamma S completely stabilize the filament, while most of the ATP hydrolysis continues. If these levels of ATP gamma S are introduced after dissociation has commenced, further dissociation is blocked, but re-association does not occur. These observations are inconsistent with movement of recA protein along DNA that is tightly coupled to ATP hydrolysis. The recA nucleoprotein filament is polar and the protein binds the two strands asymmetrically, polymerizing mainly in the 5' to 3' direction on the initiating strand of a single-stranded DNA tailed duplex molecule. A model consistent with these results is presented.  相似文献   

13.
The recA protein from Escherichia coli can homologously align two duplex DNA molecules; however, this interaction is much less efficient than the alignment of a single strand and a duplex. Three strand paranemic joints are readily detected. In contrast, duplex-duplex pairing is detected only when the incoming (second) duplex is negatively supercoiled, and even here the pairing is inefficient. The recA protein-promoted four strand exchange reaction is initiated in a three strand region, with efficiency increasing with the length of potential three strand pairing available for initiation. This indicates that a paranemic joint involving three DNA strands may be an important intermediate in all recA protein-mediated DNA strand exchange reactions and that the presence of three strands rather than four is a fundamental structural parameter of paranemic joints.  相似文献   

14.
The RecA protein of Escherichia coli plays essential roles in homologous recombination and restarting stalled DNA replication forks. In vitro, the protein mediates DNA strand exchange between single-stranded (ssDNA) and homologous double-stranded DNA (dsDNA) molecules that serves as a model system for the in vivo processes. To date, no high-resolution structure of the key intermediate, comprised of three DNA strands simultaneously bound to a RecA filament (RecA-tsDNA complex), has been reported. We present a systematic characterization of the helical geometries of the three DNA strands of the RecA-tsDNA complex using fluorescence resonance energy transfer (FRET) under physiologically relevant solution conditions. FRET donor and acceptor dyes were used to label different DNA strands, and the interfluorophore distances were inferred from energy transfer efficiencies measured as a function of the base-pair separation between the two dyes. The energy transfer efficiencies were first measured on a control RecA-dsDNA complex, and the calculated helical parameters (h approximately 5 A, Omega(h) approximately 20 degrees ) were consistent with structural conclusions derived from electron microscopy (EM) and other classic biochemical methods. Measurements of the helical parameters for the RecA-tsDNA complex revealed that all three DNA strands adopt extended and unwound conformations similar to those of RecA-bound dsDNA. The structural data are consistent with the hypothesis that this complex is a late, post-strand-exchange intermediate with the outgoing strand shifted by about three base-pairs with respect to its registry with the incoming and complementary strands. Furthermore, the bases of the incoming and complementary strands are displaced away from the helix axis toward the minor groove of the heteroduplex, and the bases of the outgoing strand lie in the major groove of the heteroduplex. We present a model for the strand exchange intermediate in which homologous contacts preceding strand exchange arise in the minor groove of the substrate dsDNA.  相似文献   

15.
Formation of nascent heteroduplex structures by RecA protein and DNA   总被引:13,自引:0,他引:13  
A M Wu  R Kahn  C DasGupta  C M Radding 《Cell》1982,30(1):37-44
E. coli RecA protein promotes homologous pairing in two distinguishable phases: synapsis and strand exchange. With circular single strands (plus strand only) and linear duplex DNA, polarized or unidirectional strand exchange appeared to cause heteroduplex joints to form and grow from a unique end of the duplex DNA. However, a variety of other pairs of substrates appeared to form joint molecules without regard to the polarity of the strands involved. This paradox has been resolved by observations that show that synapsis is fast, nonpolar and sensitive to inhibition by ADP, whereas strand exchange is slow, directional and relatively insensitive to inhibition by ADP. Thus a heteroduplex joint initiated at one end of the duplex DNA grows by continued strand exchange, whereas a joint initiated at the other end dissociates and is unable to start again because accumulating ADP inhibits synapsis. RecA protein appears to form a nascent protein-DNA structure, the RecA synaptic structure, in which at least 100-300 bp in the duplex molecule are held in an unwound configuration and in which the incoming strand is aligned with its complement.  相似文献   

16.
Homologous pairing of single strands with duplex DNA promoted by recA protein occurred without a lag only when the protein was preincubated with ATP and single-stranded DNA. The rate-limiting presynaptic interaction of recA protein and single strands showed a high temperature coefficient: it proceeded 30 times more slowly at 30 degrees C than at 37 degrees C, whereas synapsis showed a normal temperature coefficient. Thus, the presynaptic phase could be separated experimentally from the rest of the reaction by preincubation of single strands with recA protein and ATP at 37 degrees C, followed by a shift to 30 degrees C before double-stranded DNA was added. The presynaptic phase was an order of magnitude more sensitive to inhibition by ADP than was subsequent strand exchange. Presynaptic complexes that were formed at 37 degrees C decayed only slowly at 30 degrees C, but Escherichia coli single strand binding protein caused complexes to form rapidly at 30 degrees C which indicates that single strand binding protein accelerated the rate of formation of complexes. Preincubation synchronized the initial pairing reaction, and further revealed the rapid formation of nascent heteroduplex DNA 250-300 base pairs in length.  相似文献   

17.
Under conditions that diminish secondary structure in single-stranded DNA, stable presynaptic filaments can be formed by recA protein in the presence of the nonhydrolyzable analog ATP gamma S, without the need for Escherichia coli single strand binding protein. Such stable presynaptic filaments resemble those formed in the presence of ATP and pair efficiently with homologous duplex DNA. Since this kind of stable filament does not displace a strand from the duplex molecule, it provides a model substrate to study synapsis independent of the earlier and later stages of the recA reaction. Even though detectable strand displacement did not occur in the presence of ATP gamma S, both single strand and double strand breaks in duplex DNA stimulated homologous pairing. These and related observations support the view that the presynaptic nucleoprotein filament and naked duplex DNA intertwine to form a nascent joint in which the duplex DNA is partially unwound, i.e. in which the pitch of the involved duplex segment is reduced.  相似文献   

18.
In the pairing reaction between circular gapped and fully duplex DNA, RecA protein first polymerizes on the gapped DNA to form a nucleoprotein filament. Conditions that removed the formation of secondary structure in the gapped DNA, such as addition of Escherichia coli single-stranded DNA binding protein or preincubation in 1 mM-MgCl2, optimized the binding of RecA protein and increased the formation of joint molecules. The gapped duplex formed stable joints with fully duplex DNA that had a 5' or 3' terminus complementary to the single-stranded region of the gapped molecule. However, the joints formed had distinct properties and structures depending on whether the complementary terminus was at the 5' or 3' end. Pairing between gapped DNA and fully duplex linear DNA with a 3' complementary terminus resulted in strand displacement, symmetric strand exchange and formation of complete strand exchange products. By contrast, pairing between gapped and fully duplex DNA with a 5' complementary terminus produced a joint that was restricted to the gapped region; there was no strand displacement or symmetric strand exchange. The joint formed in the latter reaction was likely a three-stranded intermediate rather than a heteroduplex with the classical Watson-Crick structure. We conclude that, as in the three-strand reaction, the process of strand exchange in the four-strand reaction is polar and progresses in a 5' to 3' direction with respect to the initiating strand. The present study provides further evidence that in both three-strand and four-strand systems the pairing and strand exchange reactions share a common mechanism.  相似文献   

19.
Holthausen JT  Wyman C  Kanaar R 《DNA Repair》2010,9(12):1264-1272
Homologous recombination, the exchange of DNA strands between homologous DNA molecules, is involved in repair of many structural diverse DNA lesions. This versatility stems from multiple ways in which homologous DNA strands can be rearranged. At the core of homologous recombination are recombinase proteins such as RecA and RAD51 that mediate homology recognition and DNA strand exchange through formation of a dynamic nucleoprotein filament. Four stages in the life cycle of nucleoprotein filaments are filament nucleation, filament growth, homologous DNA pairing and strand exchange, and filament dissociation. Progression through this cycle requires a sequence of recombinase-DNA and recombinase protein-protein interactions coupled to ATP binding and hydrolysis. The function of recombinases is controlled by accessory proteins that allow coordination of strand exchange with other steps of homologous recombination and that tailor to the needs of specific aberrant DNA structures undergoing recombination. Accessory proteins are also able to reverse filament formation thereby guarding against inappropriate DNA rearrangements. The dynamic instability of the recombinase-DNA interactions allows both positive and negative action of accessory proteins thereby ensuring that genome maintenance by homologous recombination is not only flexible and versatile, but also accurate.  相似文献   

20.
recA protein promoted DNA strand exchange   总被引:9,自引:0,他引:9  
recA protein and circular single-stranded DNA form a stable complex in the presence of single-stranded DNA binding protein (SSB), in which one recA protein monomer is bound per two nucleotides of DNA. These complexes are kinetically significant intermediates in the exchange of strands between the single-stranded DNA and an homologous linear duplex. After completion of strand exchange, the recA protein remains tightly associated with the circular duplex product of the reaction and the SSB is bound to the displaced linear single strand. Upon addition of ADP, the recA protein-duplex DNA complex dissociates. RecA protein also interacts with single-stranded DNA in the absence of SSB; however, the amount of recA protein bound is substantially reduced. These findings provide direct physical evidence for the participation of SSB in the formation of the recA protein-single-stranded DNA complexes inferred earlier from kinetic analysis. Moreover, they confirm the ability of recA protein to equilibrate between bound and free forms in the absence of SSB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号