首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alterations in the regulation of CD44 expression play a critical role in modulating cell adhesion, migration, and inflammation. LPS, a bacterial cell wall component, regulates CD44 expression and may modulate CD44-mediated biological effects in monocytic cells during inflammation and immune responses. In this study, we show that in normal human monocytes, LPS and LPS-induced cytokines IL-10 and TNF-alpha enhance CD44 expression. To delineate the mechanism underlying LPS-induced CD44 expression, we investigated the role of the mitogen-activated protein kinases (MAPKs), p38, p42/44 extracellular signal-regulated kinase, and c-Jun N-terminal kinase (JNK) by using their specific inhibitors. We demonstrate the involvement, at least in part, of p38 MAPK in TNF-alpha-induced CD44 expression in both monocytes and promonocytic THP-1 cells. However, neither p38 nor p42/44 MAPKs were involved in IL-10-induced CD44 expression in monocytes. To further dissect the TNF-alpha and LPS-induced signaling pathways regulating CD44 expression independent of IL-10-mediated effects, we used IL-10 refractory THP-1 cells as a model system. Herein, we show that CD44 expression induced by the LPS-mediated pathway predominantly involved JNK activation. This conclusion was based on results derived by transfection of THP-1 cells with a dominant-negative mutant of stress-activated protein/extracellular signal-regulated kinase kinase 1, and by exposure of cells to JNK inhibitors dexamethasone and SP600125. All these treatments prevented CD44 induction in LPS-stimulated, but not in TNF-alpha-stimulated, THP-1 cells. Furthermore, we show that CD44 induction may involve JNK-dependent early growth response gene activation in LPS-stimulated monocytic cells. Taken together, these results suggest a predominant role of JNK in LPS-induced CD44 expression in monocytic cells.  相似文献   

2.
This study was to determine the mechanism of tumor necrosis factor-alpha (TNF-alpha)-enhanced cyclooxygenase (COX)-2 expression associated with prostaglandin E2 (PGE2) synthesis in human tracheal smooth muscle cells (HTSMCs). TNF-alpha markedly increased COX-2 expression and PGE2 synthesis in a time- and concentration-dependent manner, whereas COX-1 remained unaltered. Tyrosine kinase inhibitor (genistein), phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor (D-609) and PKC inhibitor (GF109203X) attenuated TNF-alpha-induced COX-2 expression and PGE2 synthesis in HTSMCs. TNF-alpha-induced COX-2 expression and PGE2 synthesis were also inhibited by PD98059 (an inhibitor of MEK1/2) and SB203580 and SB202190 (inhibitors of p38 MAPK), respectively, suggesting the involvement of p42/p44 and p38 MAPKs in these responses. This hypothesis was further supported by that TNF-alpha induced a transient activation of p42/p44 and p38 MAPKs in a time-and concentration-dependent manner. Furthermore, TNF-alpha-induced activation of nuclear factor-kappaB (NF-kappaB) reversely correlated with the degradation of IkappaB-alpha in HTSMCs. TNF-alpha-induced COX-2 expression and PGE2 synthesis was also inhibited by NF-kappaB inhibitor pyrrolidinedithiocarbamate (PDTC). These findings suggest that the increased expression of COX-2 correlates with the release of PGE2 from TNF-alpha-challenged HTSMCs, at least in part, mediated through p42/p44 and p38 MAPKs as well as NF-kappaB signaling pathways in HTSMCs.  相似文献   

3.
Lin WN  Luo SF  Lee CW  Wang CC  Wang JS  Yang CM 《Cellular signalling》2007,19(6):1258-1267
Lipopolysaccharide (LPS) has been shown to induce the expression of adhesion molecules on airway epithelial and smooth cells and contributes to inflammatory responses. Here, the roles of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-kappaB) pathways for LPS-induced vascular cell adhesion molecule (VCAM)-1 expression were investigated in HTSMCs. LPS-induced expression of VCAM-1 protein and mRNA in a time-dependent manner, was significantly inhibited by inhibitors of MEK1/2 (U0126), p38 (SB202190), and c-Jun-N-terminal kinase (JNK; SP600125). The involvement of p42/p44 MAPK and p38 in these responses was further confirmed by that transfection with small interference RNAs (siRNA) direct against MEK, p42, and p38 significantly attenuated LPS-induced VCAM-1 expression. Consistently, LPS-stimulated phosphorylation of p42/p44 MAPK and p38 was attenuated by pretreatment with U0126 or SB202190, and transfection with these siRNAs, respectively. In addition, LPS-induced VCAM-1 expression was significantly blocked by a specific NF-kappaB inhibitor helenalin. LPS-stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha was blocked by helenalin, U0126, SB202190, or SP600125. Moreover, the resultant enhancement of VCAM-1 expression increased the adhesion of polymorphonuclear cells to monolayer of HTSMCs which was blocked by pretreatment with helenalin, U0126, or SP600125 prior to LPS exposure. Taken together, these results suggest that in HTSMCs, activation of p42/p44 MAPK, p38, and JNK pathways, at least in part, mediated through NF-kappaB, is essential for LPS-induced VCAM-1 gene expression. These results provide new insight into the mechanisms of LPS action that bacterial toxins may promote inflammatory responses in the airway disease.  相似文献   

4.
We examined the hypothesis that the potent vasoconstrictor endothelin (ET)-1 regulates both its own production and production of the vasodilator prostaglandins PGE(2) and prostacyclin in sheep peripheral lung vascular smooth muscle cells (PLVSMC). Confluent layers of PLVSMC were exposed to 10 nM ET-1; expression of the prepro (pp)-ET-1, cyclooxygenase (COX)-1, and COX-2 genes was examined by RT-PCR and Western analysis. Intracellular levels of ET-1 were measured by ELISA with and without addition of the protein synthesis inhibitor brefeldin A (50 microg/ml). Prostaglandin levels were measured by gas chromatography-mass spectrometry. Through use of ET(A) and ET(B) antagonists (BQ-610 and BQ-788, respectively), the contribution of the ET receptors to COX-1 and -2 expression and ppET-1 gene expression was examined. The contribution of phosphorylated p38 and p44/42 MAPK on COX-1 and COX-2 expression was also examined with MAPK inhibitors (p38, SB-203580 and p44/42, PD-98056). ET-1 resulted in transient increases in ppET-1, COX-1, and COX-2 gene and protein expression and release of 6-keto-PGF(1alpha) and PGE(2) (P < 0.05). Both internalization of ET-1 and synthesis of new peptide contributed to an increase in intracellular ET-1 (P < 0.05). Although increased ppET-1 was regulated by both ET(A) and ET(B), COX-2 expression was upregulated only by ET(A); COX-1 expression was unaffected by either antagonist. ET-1 treatment resulted in transient phosphorylation of p38 and p44/42 MAPK; inhibitors of these MAPKs suppressed expression of COX-2 but not COX-1. Our data indicate that local production of ET-1 regulates COX-2 by activation of the ET(A) receptor and phosphorylation of p38 and p44/42 MAPK in PLVSMC.  相似文献   

5.
Lipopolysaccharide (LPS) has been shown to up-regulate the expression of vascular cell adhesion molecule (VCAM)-1 which contributes to the occurrence of airway inflammatory diseases. Genetic analysis reveals the existence of activator protein-1 (AP-1) binding site on VCAM-1 promoter region. However, the role of AP-1 in LPS-induced VCAM-1 expression in human tracheal smooth muscle cells (HTSMCs) is not known. Here, we show that LPS increased VCAM-1 expression and adhesiveness of HTSMCs through AP-1, since pretreatment with an AP-1 inhibitor tanshinone attenuated LPS-induced VCAM-1 expression and leukocytes adhesion. The implication of AP-1 in LPS-induced VCAM-1 expression was confirmed by animal studies showing that pretreatment of mice with tanshinone attenuated LPS-induced VCAM-1 mRNA expression in airway tissues and accumulation of leukocytes in bronchoalveolar lavage. By using the pharmacological inhibitors and transfection with siRNA of PKC, p42, p38, or JNK2, LPS-induced expression of c-Fos was mediated through protein kinase C (PKC), p42/p44 MAPK and p38 MAPK. While, c-Jun expression was mediated through PKC and mitogen-activated protein kinases (MAPKs, p42/p44 MAPK, p38 MAPK and JNK) in HTSMCs. Pretreatment with the inhibitors of PKCs or MAPKs attenuated LPS-stimulated nuclear translocation and VCAM-1 promoter binding abilities of AP-1, which attenuated promoter activity and gene expression of VCAM-1 and the adhesiveness between HTSMCs and leukocytes. These results indicated that differential regulation of AP-1 through PKCs-dependent MAPKs activation plays central roles in LPS-induced VCAM-1 expression. The altered modulation of this axis with inhibitors or siRNAs may contribute to the improvement of airway inflammatory diseases.  相似文献   

6.
Cannabinoids induce the expression of the cyclooxygenase-2 (COX-2) isoenzyme in H4 human neuroglioma cells via a pathway independent of cannabinoid- or vanilloid receptor activation. The underlying mechanism was recently shown to involve increased synthesis of ceramide, which in turn leads to activation of p38 and p42/44 mitogen-activated protein kinases (MAPKs). The present study investigates a possible contribution of membrane lipid rafts to cannabinoid-induced COX-2 expression. To address this issue, we tested the influence of methyl-beta-cyclodextrin (MCD), a membrane cholesterol depletor, on COX-2 expression by the endocannabinoid analogue R(+)-methanandamide (R(+)-MA). Incubation of H4 cells with MCD was associated with a loss of lipid raft integrity and a substantial inhibition of R(+)-MA-induced COX-2 expression and subsequent formation of prostaglandin E2. Moreover, MCD was shown to suppress signal transduction steps upstream to COX-2 induction by R(+)-MA. Accordingly, the cholesterol depletor suppressed R(+)-MA-induced formation of ceramide as well as phosphorylation of p38 and p42/44 MAPKs. Together, our results suggest that R(+)-MA induces COX-2 expression in human neuroglioma cells via a pathway linked to lipid raft microdomains.  相似文献   

7.
We have previously reported that murine peritoneal macrophages exposed to ultraviolet B (UV-B; 100 mJ/cm2) undergo apoptosis, as indicated by alterations in cell morphology, caspase-3 activation, poly (ADP-ribose) polymerase (PARP) cleavage, DNA fragmentation, sustained activation of p38/c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) and inactivation of p42/44 MAPKs. It is now reported that macrophages undergoing UV-B-induced apoptosis show enhanced expression of protein kinase Cdelta (PKCdelta) in a time-dependent manner. Pretreatment of macrophages with PKCdelta-specific inhibitor rottlerin prior to the UV-B irradiation inhibits activation of caspase-3, PARP cleavage, DNA fragmentation and release of intracellular Ca2+. Inhibition of PKCdelta also blocks the sustained activation of p38 and JNK MAPKs as well as inactivation of p42/44 MAPKs. PKCalpha and PKCbeta1 expression also increases during UV-B-induced apoptosis in macrophages. Inhibition of these two isoforms with Go6976 slightly suppresses caspase-3 activation, PARP cleavage, DNA fragmentation and release of intracellular Ca2+, but has no effect on the sustained activation of p38/JNK MAPKs or inactivation of p42/44 MAPKs. It is, therefore, suggested that activation of PKCdelta might play an important role in the UV-B-induced apoptosis and that specific activated isoforms of PKC may have distinct functions in cell death.  相似文献   

8.
In RAW 264.7 macrophages lipopolysaccharide (LPS) stimulated the activation of p42 and p44 MAP kinases and their upstream activator mitogen-activated protein (MAP) kinase kinase (MAPKK), and induced the 69-kDa isoform of cyclo-oxygenase-2 (COX-2) and the 130-kDa isoform of nitric oxide synthase (iNOS). PD 098059, a specific inhibitor of the activation of MAPKK, prevented LPS-mediated activation of MAPKK (IC50 = 3.0 +/- 0.1 microM, n = 3) and p42/44 MAP kinases and substantially reduced the induction of COX-2 by approximately 40%-70%, but was without effect upon the induction of iNOS. In parallel, LPS also stimulated the activation of p38 MAP kinase and the MAPKAP kinase-2, a downstream target of p38 MAP kinase. SB 203580, a specific inhibitor of p38 MAP kinase prevented the activation of p38 MAP kinase (IC50 = 3.3 +/- 1.4 microM, n = 3) and MAPKAP kinase-2 by LPS and reduced the induction of COX-2 by approximately 50-90%, with no significant effect upon iNOS expression. These studies indicate the involvement of both the classical p42/44 MAP kinases and p38 MAP kinase in the regulation of COX-2 but not iNOS induction following exposure to LPS.  相似文献   

9.
The purpose of this study was to investigate the role of endothelial nitric-oxide synthase (eNOS), cAMP, and p38 MAPK in tumor necrosis factor-alpha (TNF-alpha) expression induced by lipopolysaccharide (LPS). LPS dose- and time-dependently induced phosphorylation of p38 MAPK and TNF-alpha expression in neonatal mouse cardiomyocytes. TNF-alpha expression was preceded by p38 MAPK phosphorylation, and selective inhibition of p38 MAPK abrogated LPS-induced TNF-alpha expression. Deficiency in eNOS decreased basal and LPS-stimulated TNF-alpha expression in cardiomyocytes. NOS inhibitor l-NAME attenuated LPS-induced p38 MAPK phosphorylation and TNF-alpha production in wild-type cardiomyocytes, whereas NO donor 2,2'-(hydroxynitrosohydrazono)bis-ethanamine (DETA-NO) (2 microm) or overexpression of eNOS by adenoviral gene transfer restored the response of eNOS(-/-) cardiomyocytes to LPS. These effects of NO were mediated through cAMP-dependent pathway based on the following facts. First, deficiency in eNOS decreased basal levels of intracellular cAMP, and DETA-NO elevated intracellular cAMP levels in eNOS(-/-) cardiomyocytes. Second, a cAMP analogue 8-Br-cAMP mimicked the effect of NO in eNOS(-/-) cardiomyocytes. Third, either inhibition of cAMP or cAMP-dependent protein kinase attenuated LPS-stimulated p38 MAPK phosphorylation and TNF-alpha production in wild-type cardiomyocytes. In conclusion, eNOS enhances LPS-stimulated TNF-alpha expression in cardiomyocytes. Activation of p38 MAPK is essential in LPS-stimulated TNF-alpha expression. Moreover, the effects of NO on LPS-stimulated TNF-alpha expression are mediated through cAMP/cAMP-dependent protein kinase-dependent p38 MAPK pathway in neonatal cardiomyocytes.  相似文献   

10.
Prostaglandins (PGs) have been implicated in lowering intraocular pressure (IOP). A possible role of cyclooxygenase-2 (COX-2) in this process was emphasized by findings showing impaired COX-2 expression in the non-pigmented ciliary epithelium (NPE) of patients with primary open-angle glaucoma. The present study investigates the effect of the major COX-2 product, PGE(2), on the expression of its synthesizing enzyme in human NPE cells (ODM-2). PGE(2) led to an increase of COX-2 mRNA and protein expression, whereas the expression of COX-1 remained unchanged. Upregulation of COX-2 expression by PGE(2) was accompanied by time-dependent phosphorylations of p38 mitogen-activated protein kinase (MAPK) and p42/44 MAPK, and was abrogated by inhibitors of both pathways. Moreover, PGE(2)-induced COX-2 expression was suppressed by the intracellular calcium chelator, BAPTA/AM, and the protein kinase C inhibitor bisindolylmaleimide II, whereas the protein kinase A inhibitor H-89 was inactive in this respect. Induction of COX-2 expression was also elicited by butaprost (EP(2) receptor agonist) and 11-deoxy PGE(1) (EP(2)/EP(4) receptor agonist), but not by EP(1)/EP(3) receptor agonists (17-phenyl-omega-trinor PGE(2), sulprostone). Consistent with these findings, the EP(1)/EP(2) receptor antagonist, AH-6809, and the selective EP(4) receptor antagonist, ONO-AE3-208, significantly reduced PGE(2)-induced COX-2 expression. Collectively, our results demonstrate that PGE(2) at physiologically relevant concentrations induces COX-2 expression in human NPE cells via activation of EP(2)- and EP(4) receptors and phosphorylation of p38 and p42/44 MAPKs. Positive feedback regulation of COX-2 may contribute to the production of outflow-facilitating PGs and consequently to regulation of IOP.  相似文献   

11.
Female sex is associated with improved outcome in experimental brain injury models, such as traumatic brain injury, ischemic stroke, and intracerebral hemorrhage. This implies female gonadal steroids may be neuroprotective. A mechanism for this may involve modulation of post-injury neuroinflammation. As the resident immunomodulatory cells in central nervous system, microglia are activated during acute brain injury and produce inflammatory mediators which contribute to secondary injury including proinflammatory cytokines, and nitric oxide (NO) and prostaglandin E2 (PGE2), mediated by inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively. We hypothesized that female gonadal steroids reduce microglia mediated neuroinflammation. In this study, the progesterone’s effects on tumor necrosis factor alpha (TNF-α), iNOS, and COX-2 expression were investigated in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Further, investigation included nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK) pathways. LPS (30 ng/ml) upregulated TNF-α, iNOS, and COX-2 protein expression in BV-2 cells. Progesterone pretreatment attenuated LPS-stimulated TNF-α, iNOS, and COX-2 expression in a dose-dependent fashion. Progesterone suppressed LPS-induced NF-κB activation by decreasing inhibitory κBα and NF-κB p65 phosphorylation and p65 nuclear translocation. Progesterone decreased LPS-mediated phosphorylation of p38, c-Jun N-terminal kinase and extracellular regulated kinase MAPKs. These progesterone effects were inhibited by its antagonist mifepristone. In conclusion, progesterone exhibits pleiotropic anti-inflammatory effects in LPS-stimulated BV-2 microglia by down-regulating proinflammatory mediators corresponding to suppression of NF-κB and MAPK activation. This suggests progesterone may be used as a potential neurotherapeutic to treat inflammatory components of acute brain injury.  相似文献   

12.
13.
14.
Cytosolic phospholipase A2 (cPLA2) plays a pivotal role in mediating agonist-induced arachidonic acid (AA) release for prostaglandins (PG) synthesis induced by bacterial lipopolysaccharide (LPS) and cytokines. However, the intracellular signaling pathways mediating LPS-induced cPLA2 expression and PGE2 synthesis in canine tracheal smooth muscle cells (TSMCs) remains unknown. LPS-induced expression of cPLA2 and release of PGE2 was attenuated by inhibitors of tyrosine kinase (genistein), phosphatidylcholine-phospholipase C (D609), phosphatidylinositol-phospholipase C (U73122), PKC (GF109203X and staurosporine), removal of Ca2+ by BAPTA/AM plus EDTA, MEK1/2 (PD98059), p38 (SB202190), JNK (SP600125), and phosphatidylinositol 3-kinase (PI3-K; LY294002 and wortmannin). The involvement of MPAKs in LPS-induced responses was further confirmed by transfection of TSMCs with dominant negative mutants of ERK2 and p38. LPS-induced cPLA2 expression and PGE2 synthesis was inhibited by a selective NF-kappaB inhibitor (helenalin) and transfection with dominant negative mutants of NF-kappaB inducing kinase (NIK), IkappaB kinase (IKK)-alpha, and IKK-beta, consistent with that LPS-stimulated both IkappaB-alpha degradation and NF-kappaB translocation into nucleus in these cells. LPS-stimulated cPLA2 phosphorylation was inhibited by PD98059, GF109203X, and staurosporine, indicating the regulation by p42/p44 MAPK and PKC. Moreover, LPS-induced up-regulation of cPLA2 and COX-2 linked to PGE2 synthesis was inhibited by AACOCF3 (a selective cPLA2 inhibitor), implying the involvement of cPLA2 in these responses. These findings suggest that phosphorylation and expression of cPLA2 correlates with the release of PGE2 from LPS-challenged TSMCs, at least in part, mediated through MAPKs and NF-kappaB signaling pathways. LPS-mediated responses were modulated by PLC, Ca2+, PKC, tyrosine kinase, and PI3-K in TSMCs.  相似文献   

15.
Lipopolysaccharide (LPS) was found to induce inflammatory responses in the airways and exerted as a potent stimulus for PG synthesis. This study was to determine the mechanisms of LPS-enhanced cyclooxygenase (COX)-2 expression associated with PGE(2) synthesis in tracheal smooth muscle cells (TSMCs). LPS markedly increased the expression of COX-2 and release of PGE(2) in a time- and concentration-dependent manner, whereas COX-1 remained unaltered. Both the expression of COX-2 and the generation of PGE(2) in response to LPS were attenuated by a tyrosine kinase inhibitor genistein, a phosphatidylcholine-phospholipase C inhibitor D609, a phosphatidylinositol-phospholipase C inhibitor U73122, protein kinase C inhibitors, GF109203X and staurosporine, removal of Ca(2+) by addition of BAPTA/AM plus EGTA, and phosphatidylinositol 3-kinase (PI3-K) inhibitors, LY294002 and wortmannin. Furthermore, LPS-induced NF-kappaB activation correlated with the degradation of IkappaB-alpha, COX-2 expression, and PGE(2) synthesis, was inhibited by transfection with dominant negative mutants of NIK and IKK-alpha, but not by IKK-beta. LPS-induced COX-2 expression and PGE(2) synthesis were completely inhibited by PD98059 (an inhibitor of MEK1/2) and SB203580 (an inhibitor of p38 MAPK inhibitor), but these two inhibitors had no effect on LPS-induced NF-kappaB activation, indicating that NF-kappaB is activated by LPS independently of activation of p42/p44 MAPK and p38 MAPK pathways in TSMCs. Taken together, these findings suggest that the increased expression of COX-2 correlates with the release of PGE(2) from LPS-challenged TSMCs, at least in part, independently mediated through MAPKs and NF-kappaB signalling pathways. LPS-mediated responses were modulated by PLC, Ca(2+), PKC, tyrosine kinase, and PI3-K in these cells.  相似文献   

16.
17.
18.
19.
Cytokines generated from macrophages contribute to pathogenesis of inflammation-associated diseases. Here we show that γ-tocotrienol (γ-TE), a natural vitamin E form, inhibits lipopolysaccharide (LPS)-induced interleukin (IL)-6 production without affecting tumor necrosis factor α (TNF-α), IL-10 or cyclooxygenase-2 (COX-2) up-regulation in murine RAW264.7 macrophages. Mechanistic studies indicate that nuclear factor κB (NF-κB), but not c-Jun NH(2)-terminal protein kinase, p38 or extracellular signal-regulated kinase mitogen-activated protein kinases (MAPKs), is important to IL-6 production and that γ-TE treatment blocks NF-κB activation. In contrast, COX-2 appears to be regulated by p38 MAPK in RAW cells, but γ-TE has no effect on LPS-stimulated p38 phosphorylation. Despite necessary for IL-6, NF-κB activation by TNF-α or other cytokines is not sufficient for IL-6 induction with exception of LPS. CCAAT/enhancer-binding protein (C/EBP) β appears to be involved in IL-6 formation because LPS induces C/EBPβ up-regulation, which parallels IL-6 production, and knockdown of C/EBPβ with small interfering RNA results in diminished IL-6. LPS but not individual cytokines is capable of stimulating C/EBPβ and IL-6 in macrophages. Consistent with its dampening effect on IL-6, γ-TE blunts LPS-induced up-regulation of C/EBPβ without affecting C/EBPδ. γ-TE also decreases LPS-stimulated granulocyte colony-stimulating factor (G-CSF), a C/EBPβ target gene. Compared with RAW264.7 cells, γ-TE shows similar or stronger inhibitory effects on LPS-triggered activation of NF-κB, C/EPBβ and C/EBPδ and more potently suppresses IL-6 and G-CSF in bone marrow-derived macrophages. Our study demonstrates that γ-TE has antiinflammatory activities by inhibition of NF-κB and C/EBPs activation in macrophages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号