首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Spread pachytene nuclei of codling moth Cydia pomonella (Linnaeus) (Lep., Tortricidae) females of a Syrian strain (SY) were used to investigate chromomere patterns of chromosome bivalents and determine their length. The karyotype of female codling moths consists of 28 chromosome bivalents, of which seven are clearly distinguishable using chromosome length and the number and size of the chromomeres in the pachytene stage. One autosome bivalent has two nucleolar organizing regions (NORs) that are located at the opposite ends of the chromosome and appear as distinct structural landmarks. In female codling moths, the WZ sex chromosome bivalent was easily identified in pachytene oocytes according to the heterochromatic thread of the W chromosome. This study contributed to the knowledge and identification of pachytene chromosomes of female codling moths.  相似文献   

2.
The whole-mount SC preparations from males of three species of the genus Ellobius (Ellobius fuscocapillus, Ellobius lutescens), and Ellobius tancrei were studied by electron microscopy. In the males of Ellobius fuscocapillus, behavioral peculiarities of the sex bivalent (viz. the normal male heterozygosity) are characterized by early complete desynapsis of sex chromosomes (X, Y), occurring at late pachytene-early diplotene. The karyotype of species Ellobius lutescens is unique for mammals. In both sexes it is characterized by an odd number of chromosomes (2n=17). At prophase I the unpaired chromosome 9 is not involved in synapsis with other chromosomes and forms a sex body at the end of pachytene.The complete Robertsonian fan has been described for superspecies Ellobius tancrei. As shown on the basis of G-band patterns the male and female sex chromosomes are cytologically indistinguishable.Analysis of whole-mount SC preparations revealed the formation of a closed sex SC bivalent and showed some morphological differences in the axes of sex chromosomes at meiotic prophase I. A number of assumptions are made about the relationship between the behavior of sex chromosomes, their evolution and the sex determination system in the studied species of genus Ellobius.
  相似文献   

3.
This work includes the cytological studies of three species of Heilipodus (Coleoptera, Curculionidae, Molytinae, Hylobiini) that live on plants of the genus Eryngium (Umbelliferae). The three have the same chromosome number (2n=30), but differ in the morphology of their autosomes and in their sex chromosomes.All specimens of Heilipodus erythropus (Klug) showed a typical parachute-like sex bivalent, some individuals of Heilipodus sp. possessed either a simple Xyp or a sex multivalent involving a telocentric autosomal pair and the parachute bivalent. Finally, Heilipodus scabripennis (Klug) has multiple sex chromosomes neoXpneoX-neoYyp.  相似文献   

4.
The origin of neo-XY sex systems in Acrididae is usually explained through an X-autosome centric fusion, and the behaviour of the neo-sex chromosomes has been solely studied in males. In this paper we analysed male and female Dichroplus vittatus. The karyotype comprises 2n = 20 chromosomes including 9 pairs of autosomes and a sex chromosome pair that includes a large metacentric neo-X and a small telocentric neo-Y. We compared the meiotic behaviour of the sex bivalent between both sexes. Mean cell autosomal chiasma frequency was low in both sexes and slightly but significantly higher in males than in females. Chiasma frequency of females increased significantly when the sex-bivalent was included. Chiasma distribution was basically distal in both sexes. Behaviour of the neo-XY pair is complex as a priori suggested by its structure, which was analysed in mitosis and meiosis of diploid and polyploid cells. During meiosis, orientation of the neo-XY is highly irregular; only 21% of the metaphase I spermatocytes show standard orientation. In the rest of cells, the alternate or simultaneous activity of an extra kinetochore in the distal end of the short arm (XL) of the neo-X, determined unusual MI orientations and a high frequency of non-disjunction and lagging of the sex-chromosomes. In females, the neo-XX bivalent had a more regular behaviour but showed 17% asynapsis in the XL arm which, in those cases orientated its distal ends towards opposite spindle poles suggesting, again, the activity of a second kinetochore. The dicentric nature and the unstable meiotic behaviour of the sex neo-chromosomes of D. vittatus suggest a recent origin of the sex determination mechanism, with presumable adaptive advantages which could compensate their potential negative heterosis. Our observations suggest that the origin of the neo-sex system was a tandem fusion of two original telocentric X-chromosomes followed by another tandem fusion with the small megameric bivalent and a further pericentric inversion of the neo-X. The remaining autosomal homolog resulted in the neo-Y chromosome. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Nucleolar-organizer region, nucleolus and mode of association of the sex bivalent were analyzed in spermatecytes of Chelymorpha variabilis Boheman. This species (2n=10II+Xyp) shows the typical sex chromosome system of the group Polyphaga. The results of silver staining techniques showed the nucleolar organizer region localized in a subterminal position of an autosomal bivalent. During meiotic prophase the nucleolus was distinguished with the silver staining and acridine orange fluorescence technique up to diakinesis. The independence of nucleolus and sex bivalent Xyp during meiosis is demonstrated. The positively silver staining but negatively orange-red material found within the parachute could be involved in the regular co-orientation of both sex chromosomes. After a longer hypotonic treatment, sex bivalents were observed elongated and paired only at one end during the pachytene stage. Along these sex chromosomes, C-bands showed positive blocks located in the pericentromeric and telomeric regions. Heterochromatic association of both sex chromosomes was suggested.  相似文献   

6.
N. Kawamura 《Genetica》1990,81(3):205-210
The presence of the egg size-determining (Esd) gene, which acts as a quantitative gene, on the W chromosome of the silkworm was revealed in a previous study by using two types of triploid females, ZZW and ZWW, (Kawamura, Genetica 76: 195–201). The females with the sex-linked giant egg (Ge) gene deposit eggs as large as those laid by tetraploids. If the Ge mutant is induced by translocation of a fragment of the W carrying Esd onto the Z by chance, the egg size increase in the Ge strain and in tetraploids may be easily explained by the double dose of Esd. The measurement of the length of the Z-W bivalent in oocytes showed that the Z of the Ge strain was much longer than that of the other strains which do not carry the Ge gene. The result suggests that the Ge gene is identical with the Esd on the W chromosome of the silkworm.  相似文献   

7.
The mitotic chromosomes of the neotenic (sensu Gould, 1977, and Alberch et al., 1979) salamander Necturus maculosus (Rafinesque) have been examined using a C-band technique to demonstrate the distribution of heterochromatin. The C-banded mitotic chromosomes provide evidence of a highly differentiated XY male/XX female sex chromosome heteromorphism, in which the X and Y chromosomes differ greatly in size and morphology, and in the amount and distribution of C-band heterochromatin. The X chromosome represents one of the largest biarmed chromosomes in the karyotype and is indistinguishable from similar sized autosomes on the basis of C-band heterochromatin. The Y chromosome, on the other hand, is diminutive, morphologically distinct from all other chromosomes of the karyotype, and is composed almost entirely of C-band heterochromatin. The discovery of an X/Y chromosome heteromorphism in this species is consistent with the observation by King (1912) of a heteromorphic spermatogenic bivalent. Karyological and phylogenetic implications are discussed.  相似文献   

8.
Sex chromosome pairing during male meiosis in marsupials   总被引:9,自引:0,他引:9  
Peter Sharp 《Chromosoma》1982,86(1):27-47
The pairing of the sex chromosomes at pachytene has been examined in twenty-two species of Australian marsupials, including four with complex sex chromosome systems. The axial elements of the sex chromosomes associate in all but one species. However, no synaptonemal complex has been observed between the axes of the X and Y chromosome in any of the examined species. Both the type of association between the sex chromosome axes, and the structural modifications of these axes are conserved within taxonomic groupings. In three species with complex sex chromosome systems, the t(XA), Y, A trivalents do not have a favoured relative orientation of the axes of the Y and A chromosomes, whereas in a fourth species with a t(XA1), t(A2YA2), A2 system the t(XA1) and A2 axes are in a cis arrangement with each other.  相似文献   

9.
In four of the moth species investigated, viz. Witlesia murana, Scoparia arundinata (Pyraloidea), Bactra furfurana and B. lacteana (Tortricoidea) the metaphase plates of the first meiotic division of their oocytes show a trivalent in addition to the normal bivalents. It evidently has its rise in a transverse break in one of the conjugated chromosomes. Two sex chromatin bodies can be seen in the female somatic cells of three of these species, whereas other species with a normal XY bivalent have only one. These two sex chromatin bodies are unequal in size, and their sizes bear approximately the same relation to each other as do those of the two smaller chromosomes of the trivalent. The broken chromosome is evidently the Y chromosome. The sex chromosome designation for the four above-mentioned species is thus XY1Y2 for the females and XX for the males. The sex chromosomes of the four species are among the biggest of the respective complements. This supports the view that the big chromosome to be found in several Lepidoptera species is the sex chromosome. It seems that in animals with holokinetic chromosomes an excessive fragmentation is hindered, at least in the case of the sex chromosomes, by its deleterious effect on the balance of sex-determining genes.Dedicated to Doctor Sally Hughes-Schrader on the occasion of her seventy-fifth birthday.  相似文献   

10.
Ann C. Chandley 《Chromosoma》1982,85(1):127-135
Meiotic studies have been made at pachytene on two paracentric inversions in chromosome 1 of the mouse. Surface-spread preparations of primary spermatocytes have been analysed at the light microscope level in males heterozygous for the inversions In(1)1Rk and In(1)12Rk and in the double heterozygote In(1)1RK/In(1)12Rk. In singly heterozygous form, neither inversion produces any serious effect on male fertility. In the double heterozygote, spermatogenesis is arrested in the majority of cells at the spermatocyte stage and males are rendered totally sterile by azoospermia. In the double heterozygote, a complex loop, indicating the inversion bivalent, is found in 90% of pachytene cells analysed. In the In(1)1Rk/+ heterozygote, a looped bivalent was seen in 47 per cent of pachytene cells but in In(1)12Rk/+ no cells containing loops could be found. -80% of pachytene spermatocytes from the In(1)1Rk/In (1)12Rk double heterozygote showed apposition of the inversion bivalent to the sex bivalent. Such an association was rarely seen in pachytene cells of either of the fertile single heterozygotes. Spermatogenic failure in the double heterozygote may be related to interference, by the inversion bivalent, with X chromosome inactivation at meiotic prophase.  相似文献   

11.
Surface-spread, silver-stained primary spermatocytes from individuals of the Sitka deer mouse (Peromyscus sitkensis) were analyzed by electron microscopy. Pairing of the X and Y chromosomes is initiated at early pachynema and is complete by mid pachynema. The pattern of sex chromosome pairing is unique in that it is initiated at an interstitial position, with subsequent synapsis proceeding in a unidirectional fashion towards the telomeres of the homologous segments. One-third the length of the X and two-thirds the length of the Y are involved in the synaptonemal complex of the sex bivalent. Various morphological complexities develop in the heteropycnotic (unpaired) segments as pachynema progresses, but desynapsis is not initiated until diplonema. Analysis of C-banded diakinetic nuclei indicated that sex chromosome pairing involves the heterochromatic short arm of the X and the long arm of the heterochromatic Y. An interstitial chiasma between the X and Y was observed in the majority of the diakinetic nuclei. The observation of a substantial pairing region and chiasma formation between the sex chromosomes of these deer mice is interpreted as indicating homology between the short arm of the X and the long arm of the Y.  相似文献   

12.
Comparative genomic hybridization (CGH) was used to identify and probe sex chromosomes in several XY and WZ systems. Chromosomes were hybridized simultaneously with FluorX-labelled DNA of females and Cy3-labelled DNA of males in the presence of an excess of Cot-1 DNA or unlabelled DNA of the homogametic sex. CGH visualized the molecular differentiation of the X and Y in the house mouse, Mus musculus, and in Drosophila melanogaster: while autosomes were stained equally by both probes, the X and Y chromosomes were stained preferentially by the female-derived or the male-derived probe, respectively. There was no differential staining of the X and Y chromosomes in the fly Megaselia scalaris, indicating an early stage of sex chromosome differentiation in this species. In the human and the house mouse, labelled DNA of males in the presence of unlabelled DNA of females was sufficient to highlight Y chromosomes in mitosis and interphase. In WZ sex chromosome systems, the silkworm Bombyx mori, the flour moth Ephestia kuehniella, and the wax moth Galleria mellonella, the W chromosomes were identified by CGH in mitosis and meiosis. They were conspicuously stained by both female- and male-derived probes, unlike the Z chromosomes, which were preferentially stained by the male-derived probe in E. kuehniella only but were otherwise inconspicuous. The ratio of female:male staining and the pattern of staining along the W chromosomes was species specific. CGH shows that W chromosomes in these species are molecularly well differentiated from the Z chromosomes. The conspicuous binding of the male-derived probe to the W chromosomes is presumably due to an accumulation of common interspersed repetitive sequences. Received: 6 January 1999; in revised form: 28 January 1999 / Accepted: 11 February 1999  相似文献   

13.
Yoshido A  Marec F  Sahara K 《Chromosoma》2005,114(3):193-202
We have developed a simple method to resolve the sex chromosome constitution in females of Lepidoptera by using a combination of genomic in situ hybridization (GISH) and fluorescence in situ hybridization with (TTAGG) n telomeric probe (telomere-FISH). In pachytene configurations of sex chromosomes, GISH differentiated W heterochromatin and telomere-FISH detected the chromosome ends. With this method we showed that Antheraea yamamai has a standard system with a fully differentiated W–Z sex chromosome pair. In Orgyia antiqua, we confirmed the presence of neo-W and neo-Z chromosomes, which most probably originated by fusion of the ancestral W and Z with an autosome pair. In contrast to earlier data, Orgyia thyellina females displayed a neo-ZW1W2 sex chromosome constitution. A neo-WZ1Z2 trivalent was found in females of Samia cynthia subsp. indet., originating from a population in Nagano, Japan. Whereas another subspecies collected in Sapporo, Japan, and determined as S. cynthia walkeri, showed a neo-W/neo-Z bivalent similar to O. antiqua, and the subspecies S. cynthia ricini showed a Z univalent (a Z/ZZ system). The combination of GISH and telomere-FISH enabled us to acquire not only reliable information about sex chromosome constitution but also an insight into sex chromosome evolution in Lepidoptera.  相似文献   

14.
Although ferns have been developed by hybridization and chromosome doubling, no natural polyploidy has yet been recorded in Osmundaceae. So, we produced hybrids artificially by crosses between Osmunda banksiifolia (2n = 2x = 44) and Osmunda lancea (2n = 2x = 44), and investigated their sporogenesis. From the O. banksiifolia × O. lancea hybrid with 44 univalent chromosomes, allotetraploids with 44 bivalent chromosomes were produced by chromosome doubling, and allotriploids with 22 univalent chromosomes and 22 bivalent chromosomes were then produced by back crosses. The results show when and how chromosome doubling occurs in hybrids. The success of artificial hybridization between O. banksiifolia and O. lancea, did not, however, reflect any product of natural hybridization between the two species.  相似文献   

15.
A chromosome complement formed by 16 autosomes and an Xyp sex chromosome system was found in Epilachna paenulata Germar (Coleoptera: Coccinellidae). All autosomes were metacentric except pair 1 which was submetacentric. The X and the Y chromosomes were also submetacentric but the Y was minute. The whole chromosome set carried large paracentric heterochromatic C-segments representing about 15% of the haploid complement length. Heterochromatic segments associated progressively during early meiotic stages forming a large single chromocenter. After C-banding, chromocenters revealed an inner networklike filamentous structure. Starlike chromosome configurations resulted from the attachment of bivalents to the chromocenters. These associations were followed until early diakinesis. Thin remnant filaments were also observed connecting metaphase I chromosomes. Evidence is presented that, in this species, the Xyp bivalent resulted from an end-to-end association of the long arms of the sex chromosomes. The parachute Xyp bivalent appeared to be composed of three distinct segments: two intensely heterochromatic C-banded corpuscles formed the canopy and a V-shaped euchromatic filament connecting them represented the parachutist component. The triple constitution of the sex bivalent was interpreted as follows: each heterochromatic corpuscle corresponded to the paracentric C-segment of the X and Y chromosomes; the euchromatic filament represented mainly the long arm of the X chromosome terminally associated with the long arm of the Y chromosome. The complete sequence of the formation of the Xyp bivalent starting from nonassociated sex chromosomes in early meiotic stages, and progressing through pairing of heterochromatic segments, coiling of the euchromatic filament, and movement of the heterochromatic corpuscles to opposite poles is described. These findings suggest that in E. paenulata the Xyp sex bivalent formation is different than in other coleopteran species and that constitutive heterochromatic segments play an important role not only in chromosome associations but also in the Xyp formation.  相似文献   

16.
Silene latifolia is a key plant model in the study of sex determination and sex chromosome evolution. Current studies have been based on genetic mapping of the sequences linked to sex chromosomes with analysis of their characters and relative positions on the X and Y chromosomes. Until recently, very few DNA sequences have been physically mapped to the sex chromosomes of S. latifolia. We have carried out multicolor fluorescent in situ hybridization (FISH) analysis of S. latifolia chromosomes based on the presence and intensity of FISH signals on individual chromosomes. We have generated new markers by constructing and screening a sample bacterial artificial chromosome (BAC) library for appropriate FISH probes. Five newly isolated BAC clones yielded discrete signals on the chromosomes: two were specific for one autosome pair and three hybridized preferentially to the sex chromosomes. We present the FISH hybridization patterns of these five BAC inserts together with previously described repetitive sequences (X-43.1, 25S rDNA and 5S rDNA) and use them to analyze the S. latifolia karyotype. The autosomes of S. latifolia are difficult to distinguish based on their relative arm lengths. Using one BAC insert and the three repetitive sequences, we have constructed a standard FISH karyotype that can be used to distinguish all autosome pairs. We also analyze the hybridization patterns of these sequences on the sex chromosomes and discuss the utility of the karyotype mapping strategy presented to study sex chromosome evolution and Y chromosome degeneration.Communicated by J.S. Heslop-Harrison  相似文献   

17.
18.
Prophase chromosomes of growing oocytes from thelytokous, viviparous females of Amphorophora tuberculata Brown and Blackman (n=2) were studied using a modified propionic acid squash technique with Feulgen staining. In early prophase, prior to the growth phase of the oocyte, the X chromosomes are partially condensed and looped together so that all four ends appear to be associated. Later in prophase the X chromosomes separate in oocytes destined to be female, but remain associated in presumptive male oocytes. The autosomes condense gradually throughout prophase. The nucleus of the presumptive male oocyte is further characterised by the formation of a spherical Feulgen-positive body, which attains a large size (7 m diameter) in late prophase. At this stage, the X chromosomes are no longer visible as separate entities, and are apparently included in the spherical body. At metaphase this disappears, leaving the X chromosomes still united as a condensed bivalent. The spherical body seems to have nucleolar as well as chromatin constituents; nucleolar organisers are present at the ends of the X chromosomes where it first arises. It may function in maintaining the cohesion between the X chromosomes through prophase, and could also facilitate correct orientation of the X bivalent on the spindle of the maturation division. As sex determination in aphids is controlled by juvenile hormone concentration, it appears that the hormone may interact with the X chromosomes during prophase, bringing about their separation in female oocytes, perhaps by inhibiting the formation of the spherical body.  相似文献   

19.
While it is known that all chromosomes are susceptible to meiotic nondisjunction, it is not clear whether all chromosomes display the same frequency of nondisjunction. By use of multicolor FISH and chromosome-specific probes, the frequency of disomy in human sperm was determined for chromosomes 1, 2, 4, 9, 12, 15, 16, 18, 20, and 21, and the sex chromosomes. A minimum of 10,000 sperm nuclei were scored from each of five healthy, chromosomally normal donors for every chromosome studied, giving a total of 418,931 sperm nuclei. The mean frequencies of disomy obtained were 0.09% for chromosome 1; 0.08% for chromosome 2; 0.11% for chromosome 4; 0.14% for chromosome 9; 0.16% for chromosome 12; 0.11% for chromosomes 15, 16, and 18; 0.12% for chromosome 20; 0.29% for chromosome 21; and 0.43% for the sex chromosomes. Data for chromosomes 1, 12, 15, and 18, and the sex chromosomes have been published elsewhere. When the mean frequencies of disomy were compared, the sex chromosomes and chromosome 21 had significantly higher frequencies of disomy than that of any other autosome studied. These results corroborate the pooled data obtained from human sperm karyotypes and suggest that the sex chromosome bivalent and the chromosome 21 bivalent are more susceptible to nondisjunction during spermatogenesis. From these findings, theories proposed to explain the variable incidence of nondisjunction can be supported or discarded as improbable.  相似文献   

20.
A DM-domain gene on the Y chromosome was identified as the sex-determining gene in the medaka, Oryzias latipes, and named DMY (also known as dmrt1bY). However, this gene is absent in most Oryzias fishes, suggesting that closely related species have another sex-determining gene. In fact, it has been demonstrated that the Y chromosome in O. dancena is not homologous to that in O. latipes, whereas both species have an XX/XY sex-determination system. Through a progeny test of sex-reversed fish and a linkage analysis of isolated sex-linked DNA markers, we show that O. hubbsi, which is one of the most closely related species to O. dancena, has a ZZ/ZW system. In addition, genetic and fluorescence in situ hybridization mapping of the sex-linked markers revealed that sex chromosomes in O. hubbsi and O. dancena are not homologous, indicating different origins of these ZW and XY sex chromosomes. Furthermore, we found that O. hubbsi has morphologically heteromorphic sex chromosomes, in which the W chromosome has 4,6-diamidino-2-phenylindole (DAPI)-positive heterochromatin blocks and is larger than the Z chromosome, although such differentiated sex chromosomes have not been observed in other Oryzias species. These findings suggest that a variety of sex-determining mechanisms and sex chromosomes have evolved in Oryzias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号