首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The speckled peacock bass Cichla temensis is a popular sport and food fish that generates substantial angling tourism and utilitarian harvest within its range. Its popularity and value make this species important for management and a potential aquaculture candidate for both fisheries enhancement and food fish production. However, little is known of optimal physiochemical conditions in natural habitats, which also are important for the development of hatchery protocols for handling, spawning and grow-out. Speckled peacock bass have been documented to have high sensitivity to extreme temperatures, but the metabolic underpinnings have not been evaluated. In this study, the effects of temperature (25, 30 and 35°C) on the standard metabolic rate (SMR) and lower dissolved oxygen tolerance (LDOT) of juvenile speckled peacock bass (mean ± standard error total length 153 ± 2 mm and wet weight 39.09 ± 1.37 g) were evaluated using intermittent respirometers after an acclimation period of 2 weeks. Speckled peacock bass had the highest SMR at 35°C (345.56 ± 19.89 mgO2 kg−1 h−1), followed by 30°C (208.16 ± 12.45 mgO2 kg−1 h−1) and 25°C (144.09 ± 10.43 mgO2 kg−1 h−1). Correspondingly, the Q10, or rate of increase in aerobic metabolic rate (MO2) relative to 10°C, for 30–35°C was also greater (2.76) than from 25 to 30°C (2.08). Similarly, speckled peacock bass were the most sensitive to hypoxia at the warmest temperature, with an LDOT at pO2 of 90 mmHg (4.13 mg l−1) at 35°C compared to pO2 values of 45 mmHg (2.22 mg l−1) and 30 mmHg (1.61 mg l−1) at 30 and 25°C, respectively. These results indicate that speckled peacock bass are sensitive to temperatures near 35°C, therefore we recommend managing and rearing this species at 25–30°C.  相似文献   

2.
Measurements of bimodal oxygen uptake have been made in a freshwater air-breathing fish,Notopterus chitala at 29.0±1(S.D.)°C. xhe mean oxygen uptake from continuously flowing water without any access to air, was found to be 3.58±0.37 (S.E.) ml O2 · h?1 and 56.84+4.29 (S.E.) ml O2 · kg?1 · h?1 for a fish weighing 66.92 + 11.27 (S.E.) g body weight. In still water with access to air, the mean oxygen uptake through the gills were recorded to be 2.49 ± 0.31 (S.E.) ml O2 · h?1 and 38.78 ± 1.92 (S.E.) ml O2 · kg?1 · h?1 and through the accessory respiratory organs (swim-bladder) 6.04±0.87 (S.E.) ml O2 · h?1 and 92.32±2.91 (S.E.) ml O2 · kg?1 · h?1 for a fish averaging 66.92±11.27 (S.E.) g. Out of the total oxygen uptake (131.10 ml O2 · kg?1 · h?1), about 70% was obtained through the aerial route and the remainder 30% through the gills.  相似文献   

3.
Water temperature is known to be a particularly important environmental factor that affects fish swimming performance, but it is unknow how acute temperature changes affect the fish performance of Ptychobarbus kaznakovi. P. kaznakovi in the Lancang River have declined quickly in recent years, and this species was used to examine the effects of acute temperature changes on swimming abilities and oxygen consumption in a Brett‐type swimming tunnel respirometer. The standard metabolic rate (SMR) and routine metabolic rate (RMR) showed 216% and 134% increases, respectively, at 22°C (an acute increase from 17 to 22°C) compared to those at 12°C (an acute decrease from 17 to 12°C). Moreover, the RMR was approximately 1.7, 1.6 and 1.3 times the value of the SMR at 12°C, 17°C and 22°C, respectively. The critical swimming speed (Ucrit) of P. kaznakovi at 22°C was 5.45 ± 0.45BL/S, which was 45% higher than that at 12°C (3.77 ± 0.92BL/S). The oxygen consumption rates (MO2) reached their maximum values at swimming speeds near the Ucrit for all the temperature treatments. The maximum metabolic rate (MMR) values at 12°C, 17°C and 22°C were 274.53 ± 142.60 (mgO2 kg?1 hr?1), 412.85 ± 216.34 (mgO2 kg?1 hr?1) and 1,095.73 ± 52.50 (mgO2 kg?1 hr?1), respectively. Moreover, there was a narrow aerobic scope at 12°C compared to that at 17°C and 22°C. The effect of acute temperature changes on the swimming abilities and oxygen consumption of P. kaznakovi indicated that water temperature changes caused by dam construction could directly affect energy consumption during the upstream migration of fish.  相似文献   

4.
Oxygen consumption rates of adult spring chinook salmon Oncorhynchus tshawytscha increased with swim speed and, depending on temperature and fish mass, ranged from 609 mg O2 h?1 at 30 cm s?1 (c. 0·5 BL s?1) to 3347 mg O2 h?1 at 170 cm s?1 (c. 2·3 BL s?1). Corrected for fish mass, these values ranged from 122 to 670 mg O2 kg?1 h?1, and were similar to other Oncorhynchus species. At all temperatures (8, 12·5 and 17° C), maximum oxygen consumption values levelled off and slightly declined with increasing swim speed >170 cm s?1, and a third‐order polynomial regression model fitted the data best. The upper critical swim speed (Ucrit) of fish tested at two laboratories averaged 155 cm s?1 (2·1 BL s?1), but Ucrit of fish tested at the Pacific Northwest National Laboratory were significantly higher (mean 165 cm s?1) than those from fish tested at the Columbia River Research Laboratory (mean 140 cm s?1). Swim trials using fish that had electromyogram (EMG) transmitters implanted in them suggested that at a swim speed of c. 135 cm s?1, red muscle EMG pulse rates slowed and white muscle EMG pulse rates increased. Although there was significant variation between individual fish, this swim speed was c. 80% of the Ucrit for the fish used in the EMG trials (mean Ucrit 168·2 cm s?1). Bioenergetic modelling of the upstream migration of adult chinook salmon should consider incorporating an anaerobic fraction of the energy budget when swim speeds are ≥80% of the Ucrit.  相似文献   

5.
This study establishes the bioenergetics budget of juvenile whitespotted bamboo shark Chiloscyllium plagiosum by estimating the standard metabolic rate (RS), measuring the effect of body size and temperature on the RS, and identifying the specific dynamic action (RSDA) magnitude and duration of that action in juvenile whitespotted bamboo sharks. The mean ±s .d . (RS) of six fish (500–620 g) measured in a circular closed respirometry system was 30·21 ± 5·68 mg O2 kg?1 h?1 at 18° C and 70·38 ± 14·81 mg O2 kg?1 h?1 at 28° C, respectively. There were no significant differences in RS between day and night at either 18 or 28° C (t‐test, P > 0·05). The mean ±s .d . Q10 for 18–28° C was 2·32 ± 0·06 (n = 6). The amount of oxygen consumed per hour changed predictably with body mass (M; 295–750 g) following the relationship: (n = 40, r2= 0·92, P < 0·05). The mean magnitude of RSDA was 95·28 ± 17·55 mg O2 kg?1 h?1. The amount of gross ingested energy (EI) expended as RSDA ranged from 6·32 to 12·78% with a mean ±s .d . of 8·01 ± 0·03%. The duration of the RSDA effect was 122 h. The energy content of juvenile whitespotted bamboo shark, squid and faeces determined by bomb calorimeter were 19·51, 20·3 and 18·62 kJ g dry mass?1. A mean bioenergetic budget for juvenile whitespotted bamboo sharks fed with squid at 18° C was 100C = 29·5G + 31·9RS+ 28·2RSDA+ 6·7F + 2·1E + 1·6U, where C = consumption, G = growth, F = egestion, E = excretion and U = unaccounted energy.  相似文献   

6.
A fish respirometer-metabolism chamber was used to obtain in vivo respiratory-cardiovascular and chloroethane gill flux data on transected channel catfish (Ictalurus punctatus). Methods used for spinal transection, attachment of an oral membrane (respiratory mast), placement and attachment of blood cannulas and urine catheters are described. Respiratory physiology, cardiac output and chemical extraction efficiencies for 1,1,2,2-tetrachloroethane (TCE), pentachloroethane (PCE), and hexachloroethane (HCE) were determined on 419–990 g catfish. The overall mean values (± s.d.) for ventilation volume (Qv), effective respiratory volume (Qw), oxygen consumption (Vo2 and percentage utilization of oxygen (U) were 17-3 ±4–71 h?1 kg?1, 9·8±l·71 h?1 kg?1, 71·6±12·5mg h?1 kg?1, and 49± 10%, respectively, while cardiac output calculated via the Fick Method was 2·4±0·61 h?1 kg?1. Additional measurements were made on ventilation rate (Vr), total plasma protein, haematocrit (Hct), and urine volume; while both arterial and venous blood were analysed for pH, oxygen partial pressure (P02), carbon dioxide partial pressure (Pco2), total oxygen (To2), total carbon dioxide (Tco2) and total ammonia (TAMM). Physiological measurements taken at 24 h were not significantly different from those taken at 48 h and indicated no deterioration of the in vivo preparation. All of these values agreed well with literature values on UTitransected channel catfish, except for Hct which was lower for cannulated animals used in this study. Overall, these data provide strong support for the use of transected channel catfish for in vivo collection of physiological and chemical gill flux data. The mean initial chemical extraction efficiencies for TCE, PCE and HCE were 41, 61 and 73%, respectively. Chemical clearances (ClX) for these same three chemicals were 5·9, 9·3 and 10·8 1 h?1 kg?1, respectively. The approximate 1: 1 relationship between effective respiratory volume (Qw) and chemical clearance (Clx) indicated that branchial uptake of PCE and HCE was water flow-limited. Chemical gill flux observed for channel catfish and chloroethanes was similar to that observed for rainbow trout in previous studies and provided further support for the flow-limited model of chemical flux across fish gills.  相似文献   

7.
Maximum sustained swimming speeds, swimming energetics and swimming kinematics were measured in the green jack Caranx caballus (Teleostei: Carangidae) using a 41 l temperature‐controlled, Brett‐type swimming‐tunnel respirometer. In individual C. caballus [mean ±s.d. of 22·1 ± 2·2 cm fork length (LF), 190 ± 61 g, n = 11] at 27·2 ± 0·7° C, mean critical speed (Ucrit) was 102·5 ± 13·7 cm s?1 or 4·6 ± 0·9 LF s?1. The maximum speed that was maintained for a 30 min period while swimming steadily using the slow, oxidative locomotor muscle (Umax,c) was 99·4 ± 14·4 cm s?1 or 4·5 ± 0·9 LF s?1. Oxygen consumption rate (M in mg O2 min?1) increased with swimming speed and with fish mass, but mass‐specific M (mg O2 kg?1 h?1) as a function of relative speed (LF s?1) did not vary significantly with fish size. Mean standard metabolic rate (RS) was 170 ± 38 mg O2 kg?1 h?1, and the mean ratio of M at Umax,c to RS, an estimate of factorial aerobic scope, was 3·6 ± 1·0. The optimal speed (Uopt), at which the gross cost of transport was a minimum of 2·14 J kg?1 m?1, was 3·8 LF s?1. In a subset of the fish studied (19·7–22·7 cm LF, 106–164 g, n = 5), the swimming kinematic variables of tailbeat frequency, yaw and stride length all increased significantly with swimming speed but not fish size, whereas tailbeat amplitude varied significantly with speed, fish mass and LF. The mean propulsive wavelength was 86·7 ± 5·6 %LF or 73·7 ± 5·2 %LT. Mean ±s.d . yaw and tailbeat amplitude values, calculated from lateral displacement of each intervertebral joint during a complete tailbeat cycle in three C. caballus (19·7, 21·6 and 22·7 cm LF; 23·4, 25·3 and 26·4 cm LT), were 4·6 ± 0·1 and 17·1 ± 2·2 %LT, respectively. Overall, the sustained swimming performance, energetics, kinematics, lateral displacement and intervertebral bending angles measured in C. caballus were similar to those of other active ectothermic fishes that have been studied, and C. caballus was more similar to the chub mackerel Scomber japonicus than to the kawakawa tuna Euthynnus affinis.  相似文献   

8.
The relationship between body mass (M) and metabolic rate was investigated through the assessment of active (RA) and standard (RS) metabolic rate at different life stages in zebrafish Danio rerio (5 day‐old larvae, 2 month‐old juveniles and 6 month‐old adults). Scaling exponents and constants were assessed for standard (RS = 0·273M0·965 in mgO2 g?1 h?1) and active metabolic rate (RA = 0·799M0·926 in mgO2 g?1 h?1). These data provide the basis for further experiments regarding the effects of environmental factors on aerobic metabolism throughout the life cycle of this species.  相似文献   

9.
This is the first study investigating the plant–herbivore interaction between Sarpa salpa, which has overgrazed seagrass transplants in Portugal, and the seagrasses Cymodocea nodosa, Zostera marina and Zostera noltii, which have been considered for restoration. When offered the choice between the three seagrasses in outdoor tanks, adult S. salpa clearly preferred Z. noltii. Testing the seagrasses separately, mean ± s.d. feeding rates ranged from 21 ± 11 g seagrass fresh mass kg?1 fish mass day?1 for Z. marina to 32 ± 9 g seagrass fresh mass kg?1 fish mass day?1 for C. nodosa and 40 ± 11 g seagrass fresh mass kg?1 fish mass day?1 for Z. noltii (temperature = 16° C). Food‐processing rate in S. salpa did not differ between seagrasses, and there was no evidence of a regulation of processing rate according to food intake. Seagrasses differed substantially in nitrogen content and C:N, with C. nodosa containing the highest nitrogen content and lowest C:N (2·5 ± 0·1% and 14·0 ± 1·0), followed by Z. noltii (2·1 ± 0·1% and 17·0 ± 1·0) and Z. marina (1·4 ± 0·1% and 26·0 ± 2·0). Food‐processing rate in S. salpa and the nutritional value of the seagrasses were not correlated with the observed feeding preference and rate. The study suggests that C. nodosa and Z. marina are less at risk of overgrazing by S. salpa and might thus be preferable to Z. noltii for seagrass restoration in areas with noticeable abundances of this fish.  相似文献   

10.
Metabolic scope and its utilization in relation to feeding and activity were measured in individual and grouped zebrafish (weight range, 430–551 mg) at 24° C by respirometry. Mean maximum metabolic rate, induced by swimming to exhaustion, Rmax(i), was 1223 (s.d. , 157) mg O2, kg?1 h?1 for individuals. Standard metabolic rate, Rs. was 364 mg O2 kg?1 h?1, as estimated by extrapolating to zero activity from measurements of unfed, spontaneously active individuals. Mean routine metabolic rate, Rrout, of individuals was 421 (s.d. , 58) mg O2, kg-1 h-1. The mean voluntary maximum metabolic rate, Rmax(v), following transfer of minimally exercised fish to the respirometer, was 1110 (s.d. , 83) mg O2 kg ?1 h?1 for groups of six fish, and was not significantly different from the value measured for individuals, 1066 (s.d. , 122) mg O2, kg?1 h?1. Grouped fish acclimated to the respirometer more slowly than individual fish and exhibited significantly higher Rrout, apparently a result of greater social interaction and activity in groups. Mean Rrout for groups was 560 (s.d. , 78) mg O2, kg?1 h?1. While groups of zebrafish fed a ration of 5% wet body weight day?1 exhibited consistently higher metabolic rates than fish fed rations of 2.5% wet body weight day?1 the high ration group still used only a maximum of 77% of the metabolic scope. Zebrafish of the size studied do not appear to demonstrate a high degree of conflict in utilization of metabolic scope by different respiratory components. The metabolic rates measured for zebrafish are among the highest yet measured for fish of similar size and at similar temperatures.  相似文献   

11.
Antarctic marine organisms are considered to have extremely limited ability to respond to environmental temperature change. However, here we show that the Antarctic notothenioid fish Pagothenia borchgrevinki is an exception to this theory. P. borchgrevinki was able to acclimate its resting metabolic rate and resting ventilation frequency after a 5°C rise in temperature. Acute exposure to 4°C resulted in an elevation in metabolic rate (57.8 ± 4.79 mg O2 kg−1 h−1) and resting ventilation rate (40.38 ± 1.61 breaths min−1) compared with fish at −1°C (metabolic rate 34.45 ± 3.12 mg O2 kg−1 h−1; ventilation rate 29.88 ± 3.72 breaths min−1). However, after a 1-month acclimation period, there was no significant difference in the metabolic rate (cold fish 29.52 ± 3.01; warm fish 31.13 ± 2.30 mg O2 kg−1 h−1), or the resting ventilation rate (cold fish 28.75 ± 0.98; warm fish 34.25 ± 2.28 breaths min−1) of cold and warm acclimated fish. Acclimation changes to the rate of oxygen consumption following exhaustive exercise were complex. The pattern of oxygen consumption during recovery from exhaustive exercise was not significantly different in either cold or warm acclimated fish.  相似文献   

12.
Routine metabolic rate (RMR, mgO2 g?1 h?1) and critical oxygen concentration (Pc, a hypoxia tolerance indicator, mgO2 L?1) were determined in larvae and juveniles of round crucian carp, Carassius auratus grandoculis Temminck & Schlegel 1846, by measuring oxygen consumption at 15°C, 20°C, and 30°C. In addition, the dependence of RMR and Pc on fish body weight (W, g) and temperature (T, °C) was examined to construct minimal mathematical models. RMR depended on W and showed smaller values in larger individuals. RMR was different among the three temperature conditions and showed higher values at higher temperatures. Pc was significantly related to W and was low in larger individuals; that is, larger individuals had a higher hypoxia tolerance. In contrast, Pc was independent of temperature, implying that seasonal temperature fluctuations do not cause seasonal disequilibrium of hypoxia tolerance in round crucian carp. The RMR and Pc models were RMR = 0.0674W?0.193e0.0562T and Pc = 1.35W?0.107, respectively. The metabolic information clarified in this study is essential for habitat quality assessments and aquaculture management of this species.  相似文献   

13.
Streamside measurements of critical thermal maxima (Tcrit), swimming performance (Ucrit), and routine (Rr) and maximum (Rmax) metabolic rates were performed on three populations of genetically distinct redband trout Oncorhynchus mykiss in the high‐desert region of south‐eastern Oregon. The Tcrit values (29·4 ± 0·1° C) for small (40–140 g) redband trout from the three streams, and large (400–1400 g) redband trout at Bridge Creek were not different, and were comparable to published values for other salmonids. At high water temperatures (24–28° C), large fish incurred higher metabolic costs and were more thermally sensitive than small fish. Ucrit(3·6 ± 0·1 LF s?1), Rr(200 ± 13 mg O2 kg?0·830 h?1) and metabolic power (533 ± 22 mg O2 kg?0·882 h?1) were not significantly different between populations of small redband trout at 24° C. Rmax and metabolic power, however, were higher than previous measurements for rainbow trout at these temperatures. Fish from Bridge Creek had a 30% lower minimum total cost of transport (Cmin), exhibited a lower refusal rate, and had smaller hearts than fish at 12‐mile or Rock Creeks. In contrast, no differences in Ucrit or metabolism were observed between the two size classes of redband trout, although Cmin was significantly lower for large fish at all swimming speeds. Biochemical analyses revealed that fish from 12‐mile Creek, which had the highest refusal rate (36%), were moderately hyperkalemic and had substantially lower circulating levels of free fatty acids, triglycerides and albumin. Aerobic and anaerobic enzyme activities in axial white muscle, however, were not different between populations, and morphological features were similar. Results of this study: 1) suggest that the physiological mechanisms that determine Tcrit in salmonids are highly conserved; 2) show that adult (large) redband trout are more susceptible to the negative affects of elevated temperatures than small redband trout; 3) demonstrate that swimming efficiency can vary considerably between redband trout populations; 4) suggest that metabolic energy stores correlate positively with swimming behaviour of redband trout at high water temperatures; 5) question the use of Tcrit for assessing physiological function and defining thermal habitat requirements of stream‐dwelling salmonids like the redband trout.  相似文献   

14.
The recovery of oxygen uptake to the standard metabolic rate (SMR) following exhaustive chasing exercise in Atlantic salmon Salmo salar parr occurred in three phases (rapid, plateau and slow). The initial recovery phase lasted 0·7 h and contributed 16% to the total excess post‐exercise oxygen consumption (EPOC). It was followed by a longer plateau phase that contributed 53% to the total EPOC. The slow recovery phase that completed recovery of SMR, which has not been reported previously, made a 31% contribution to the total EPOC. The plasticity of EPOC was demonstrated in exercise‐trained fish. Exercise training increased EPOC by 39% when compared with control fish (mean ± S.E., 877·7 ± 73·1 v . 629·2 ± 53·4 mg O2 kg?1, d.f. = 9, P <  0·05), with the duration of the plateau phase increasing by 38% (4·7 ± 0·58 v . 3·4 ± 0·16 h, d.f. = 9, P <  0·05) and the contribution of the slow phase to the total EPOC increasing by 80% (173·9 ± 23·9 v . 312·5 ± 50·4 mg O2 kg?1, d.f. = 9, P  < 0·05). As a result, the combination of the plateau and slow phases of exercise‐trained fish increased by 47% compared with control fish (756·6 ± 71·4 v . 513·6 ± 43·1 mg O2 kg?1; d.f. = 9, P  = 0·01). To substantiate the hypothesis that the plateau and slow recovery phase of EPOC was related to general metabolic recovery following exhaustive exercise, the time‐course for recovery of SMR was compared with previously published metabolite recovery profiles. The final phase of metabolic recovery was temporally associated with the final phases of gluconeogenesis, lactate oxidation and muscle intracellular pH regulation. Therefore, the plasticity of the latter phase of EPOC agreed with the known effects of exercise training in fishes.  相似文献   

15.
The net carbon uptake rate and net production rate of mycosporine‐like amino acids (MAAs) were measured in phytoplankton from 2 different melt ponds (MPs; closed and open type pond) in the western Arctic Ocean using a 13C stable isotope tracer technique. The Research Vessel Araon visited ice‐covered western‐central basins situated at 82°N and 173°E in the summer of 2012, when Arctic sea ice declined to a record minimum. The average net carbon uptake rate of the phytoplankton in polycarbonate (PC) bottles in the closed MP was 3.24 mg C · m?3 · h?1 (SD = ±1.12 mg C · m?3 · h?1), while that in the open MP was 1.3 mg C · m?3 · h?1 (SD = ±0.05 mg C · m?3 · h?1). The net production rate of total MAAs in incubated PC bottles was highest (1.44 (SD = ±0.24) ng C · L?1 · h?1) in the open MP and lowest (0.05 (SD = ±0.003) ng C · L?1 · h?1) in the closed MP. The net production rate of shinorine and palythine in incubated PC bottles at the open MP presented significantly high values 0.76 (SD = ±0.12) ng C · L?1 · h?1and 0.53 (SD = ±0.06) ng C · L?1 · h?1. Our results showed that high net production rate of MAAs in the open MP was enhanced by a combination of osmotic and UVR stress and that in situ net production rates of individual MAA can be determined using 13C tracer in MPs in Arctic sea ice.  相似文献   

16.
A series of experiments were carried out to construct an energy budget for juvenile thick lipped mullet, Crenimugil labrosus Risso. A partial factorial experimental design was used to examine the effects of temperature, fish size and meal size on growth. The maximum ration that the fish were able to ingest completely per day was found to be 0·8, 1·4 and 2·3% wet body weight (b.w.) at 13,18 and 23°C, respectively. Ingested maintenance requirements (M.R.) were estimated to be 137, 205 and 288 cal fish-1 day-1 at 13, 18 and 23°C, respectively. At 18deg; C, M.R. varied as 25 W1.04 cal day-1, where W= fish weight (g). Growth rate increased with increasing temperature. Maximal conversion efficiency was 21–24% and was achieved closer to the maximum ingested ration with increasing temperature. The relationship between respiration rate and W at 18deg; C for 3-20 g fish is described by: respiration rate (ml O2 h-1) = 0·128 W0.976 The energy cost of apparent specific dynamic action at 18deg; C was found to vary between 5·1% and 23·6% of the calorific value of the ingested meal (1% wet b.w.) , mean (± S.E.)=10·2 ± 2·0%. Post mortem analyses of groups of fish fed 0·2, 0·8 and 1·5% wet b.w. meals showed a significant increase in total lipid and a significant decrease in water content with increasing ratio size. A negative correlation was found between body water content and total lipid (and calories). The mean assimilation efficiency (±s.e.) for 5–10 g mullet at 18deg; C was 73·9 ± 3·6%. The observations reported in this study were brought together to construct an energy budget for juvenile C. labrosus which was found to give a reliable prediction (within 10%) of energy demand and growth under the prevailing experimental conditions. Both gross (K1) and net (K2) growth efficiencies, based on energy values, increased with increasing ratio size up to satiation and were independent of temperature. The maximum values of K1 and K2 observed were 0·33 and 0·46, respectively. The third order efficiency (K3) appeared to be independent of temperature and ration size; mean values ranged between 0·66 and 0·84.  相似文献   

17.
Biomass, akinete numbers, net photosynthesis, and respiration of Pithophora oedogonia were monitored over two growing seasons in shallow Surrey Lake, Indiana. Low rates of photosynthesis occurred from late fall to early spring and increased to maximum levels in late spring to summer (29–39 mgO2·g?1 dry wt·h?1). Areal biomass increased following the rise in photosynthesis and peaked in autumn (163–206g dry wt·m?2). Photosynthetic rates were directly correlated with temperature, nitrogen, and phosphorus over the entire annual cycle and during the growing season. Differences in photosynthetic activity and biomass between the two growing seasons (1980 and 1981) were apparently related to higher, early spring temperatures and higher levels of NO3-N and PO4-P in 1981. Laboratory investigations of temperature and light effects on Pithophora photosynthesis and respiration indicated that these processes were severely inhibited below 15°C. The highest Pmax value occurred at 35°C (0.602 μmol O2·mg?1 chl a·min?1). Rates of dark respiration did not increase above 25°C thus contributing to a favorable balance of photosynthetic production to respiratory utilization at high temperatures. Light was most efficiently utilized at 15°C as indicated by minimum values of Ik(47 μE·m?2·s?1) and Ic (6 μE·m?2·s?1). Comparison of P. oedogonia and Cladophora glomerata indicated that the former was more tolerant of temperatures above 30°C. Pithophora's tolerance of high temperature and efficient use of low light intensity appear to be adaptive to conditions found within the dense, floating algal mats and the shallow littoral areas inhabited by this filamentous alga.  相似文献   

18.
Two axenic, in vitro liquid suspension cultures were established for Agardhiella subulata (C. Agardh) Kraft et Wynne, and their growth characteristics were compared. This study illustrated how reliable routes for the development of suspension cultures of macrophytic red algae of terete thallus morphology can be achieved for biotechnology applications. Undifferentiated filament clumps of 2–8 mm diameter were established by induction of callus-like tissue from thallus explants, and lightly branched microplantlets of 2–10 mm length were established by regeneration of filament clumps. The filament clumps were susceptible to regeneration. Adventitious shoot formation was reliably induced from 40% to 70% of the filament clumps by gentle mixing at 100 rev min?1 on an orbital shaker. The specific growth rate of the microplantlets was higher than the filament clumps in nonagitated well plate culture (4%–6% per day for microplantlets vs. 2%–3% per day for filament clumps) at 24° C and 8–36 μmol photons·m?2·s?1 irradiance (10:14 h LD cycle) when grown on ASP12 artificial seawater medium at pH 8.6–8.9 with 20%–25% per day medium replacement. Oxygen evolution rate vs. irradiance measurements showed that relative to the filament clumps, microplantlets had a higher maximum specific oxygen evolution rate (Po,max= 0.181 ± 0.035 vs. 0.130 ± 0.023 mmol O2·g?1 dry cell mass·h?1), but comparable respiration rate (Qo= 0.040 ± 0.013 vs. 0.033 ± 0.017 mmol O2·g?1 dry cell mass·h?1), compensation point (Ic= 3.8 ± 2.4 vs. 5.7 ± 1.2 μmol photons·m?2·s?1), and light intensity at 63.2% of saturation (Ik= 17.5 ± 3.9 vs. 14.9 ± 2.6 μmol photons·m?2·s?1). The microplantlet culture was more suitable for suspension culture development than the filament clump culture because it was morphologically stable and exhibited higher growth rates.  相似文献   

19.
The median lethal copper (Cu) concentration (96 hr-LC50) values for acute Cu toxicity for Tilapia sparrmanii (live mass: 30 ± 8g) in Mooi River hard water of dolomitic origin at 20 °C, pH 7.9, was 68.1 μmol l?1. At this 96 hr-LC50 value the specific oxygen consumption rate (∈ O2) decreased by 44.2 (± 2.1) % from a non-exposed value of 6.6 (±0.32) mmol O2 kg?1 hr?1 to 3.63 (±0.23) mmol O2 kg ?1 hr?1. At 46.4 μmol Cu l?1, 100% of the exposed T. sparrmanii were still alive after 96 hours, but the ∈ O2 decreased by a mean value of 1.65 (± 0.16) mmol O2 kg?1 fish hr?1 or 25% (± 2.4). Contrary to Pb and Cd, Cu as CuCl2 2H2O was not precipitated in hard water four days after it was dissolved. Thus T. sparrmanii and other cichlids are shown to be more than an order of magnitude more resistant to Cu as a toxicant than most salmonids.  相似文献   

20.
Using particulate methane monooxygenase (pMMO) encoding gene, pmoA-based terminal-restrict fragment length polymorphism (T-RFLP), the methanotrophic communities between rhizospheric soils (RSs) and non-rhizospheric soil (NRSs) of landfill cover (LC), riparian wetland (RW) and rice paddy (RP) were compared before and after pre-incubation of 90 days. The ultimate potential of methane oxidation rate (UPMOR) and gene copy number of pmoA were evaluated in the soil samples after pre-incubation. Compared to the methanotrophic community in the soil samples before pre-incubation, type II methanotrophs, the Methylocystis-Methylosinus group, was mostly increased after pre-incubation, regardless of the soil type. The UPMOR (11.82 ± 0.27 μmol-CH4· g?1 soil-DW·h?1) in the LC-RS was significantly higher than that (9.57 ± 0.14 μmol-CH4· g?1 soil-DW·h?1) in the LC-NRS. However, no significant difference was found between RSs and NRSs in the RW (15.28 ± 0.91 and 13.23 ± 0.69 μmol-CH4· g?1 soil-DW·h?1, respectively) and RP (13.81 ± 1.04 and 12.81 ± 2.40 μmol-CH4· g?1 soil-DW·h?1, respectively) soils. There was no significantly difference in the gene copy numbers of pmoA in the RSs compared with those in the NRSs at all of the sampling sites. This study provides basic metagenomic information about both rhizospheric and non-rhizospheric methanotrophs, which will be helpful in developing a better strategy of biological methane removal from both natural and anthropogenic major methane sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号