首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alpha(1)-proteinase inhibitor (alpha(1)-PI) of the domestic cat (Felis catus) was purified from serum and a radioimmunoassay (RIA) for the measurement of feline alpha(1)-PI concentration in serum was developed and validated. Feline alpha(1)-PI (falpha(1)-PI) was isolated using ammonium sulfate precipitation, anion-exchange, size-exclusion, ceramic hydroxyapatite, and hydrophobic interaction chromatography. The molecular weight of falpha(1)-PI was estimated at 57,000 and the relative molecular mass (M(r)) was determined to be approximately 54.5 kDa. Isoelectric focusing revealed four bands with isoelectric points (pI) between 4.3 and 4.5. The N-terminal amino acid sequence of the first 19 residues was Glu-Gly-Leu-Gln-Gly-Ala-Ala-Val-Gln-Glu-Thr-Val-Ala-Ser-Gln-His-Asp-Gln-Glu. Antiserum against feline alpha(1)-PI was raised in rabbits. Tracer was produced by iodination ((125)I) of feline alpha(1)-PI using the chloramine T method. A radioimmunoassay was established and validated by determination of sensitivity, dilutional parallelism, spiking recovery, intra-assay variability, and inter-assay variability. A control range for serum feline alpha(1)-PI concentration was established from 50 healthy cats using the central 95th percentile. The sensitivity of the assay was 0.042 mg/ml. Observed to expected ratios for serial dilutions ranged from 105% to 141.18% for four different serum samples at dilutions of 1 in 35,000, 1 in 70,000, 1 in 140,000 and 1 in 280,000. Observed to expected ratios for spiking recovery ranged from 88.14% to 152.17% for four different serum samples and five different spiking concentrations. Coefficients of variation for four different serum samples were 4.57%, 6.45%, 8.52%, and 4.27% for intra-assay variability and 6.88%, 9.57%, 7.44%, and 9.94% for inter-assay variability. The reference range was established as 0.25-0.6 mg/ml. In summary, feline alpha(1)-PI was successfully purified from serum using a rapid and efficient method. The radioimmunoassay described here is sensitive, linear, accurate, precise, and reproducible and will facilitate further studies of the physiological or potential pathological role of alpha(1)-PI in cats.  相似文献   

2.
The carboxy terminal residue of human α-1-proteinase inhibitor (α-1-PI) was found to be lysine by three independent techniques. These included digestion with carboxypeptidases B and A, hydrazinolysis, and sequence determination of the carboxy terminal peptide obtained from cyanogen bromide fragmentation. This structure was found to be GLY-LYS-VAL-VAL-ASN-PRO-THR-GLN-LYS. Carboxypeptidase C digestion indicated substantial degradation of α-1-PI by endopeptidases in the enzyme preparation. These results do not support the proposal of Cohen et al (Biochemistry (1978) 17 392) that H2O18 incorporation into lysine in dissociating α-1-PI:proteinase complexes is indicative of a critical role of this residue in the reactive site of the inhibitor. We suggest that free trypsin, released from complexes, could readily activate the carboxy terminal lysine of α-1-PI, resulting in oxygen exchange with H2O18 in the medium.  相似文献   

3.
Isolation and properties of human plasma alpha-1-proteinase inhibitor   总被引:17,自引:0,他引:17  
R Pannell  D Johnson  J Travis 《Biochemistry》1974,13(26):5439-5445
  相似文献   

4.
5.
A Guzdek  J Potempa  A Dubin  J Travis 《FEBS letters》1990,272(1-2):125-127
Variant forms of human alpha-1-proteinase inhibitor (alpha-1-PI), obtained by the treatment of human Hep G2 cells with specific inhibitors of glycosylation were tested for both inhibitory activity and heat stability. All were found to have the same second-order association rate with human neutrophil elastase, indicating a lack of importance of the carbohydrate moiety. In contrast, incompletely glycosylated forms of alpha-1-PI were found to be heat sensitive relative to the mature protein, suggesting a role for carbohydrate in protein stabilization.  相似文献   

6.
The stoichiometry of interaction of human alpha-1-proteinase inhibitor with porcine trypsin has been determined using a highly purified preparation of inhibitor. In contrast to the reports of others, one mole of alpha-1-proteinase inhibitor was found to inhibit two moles of trypsin. Disc gel electrophoresis indicates that the 2:1 complex is preferentially formed even when free alpha-1-proteinase inhibitor is still present.  相似文献   

7.
Aqueous cigarette tar extracts damage human alpha-1-proteinase inhibitor   总被引:3,自引:0,他引:3  
The elastase inhibitory capacity (EIC) of human alpha-1-proteinase inhibitor (alpha 1PI) is severely compromised by aqueous cigarette tar extract (ACTE). An aqueous extract of the tar from two cigarettes causes a loss of EIC of at least 60% in 24 h at 37 degrees C (pH 7.4) and the damaging capability of the ACTE is retained for many hours. Hydrogen peroxide appears to be an essential component of the mechanism by which ACTE damages alpha 1 PI, since catalase substantially protects alpha 1PI from ACTE-mediated damage. Only mild protection is offered by 10 mM diethylenetriamine pentaacetic acid, indicating only a minor role for transition metal ions in the alpha 1PI-damaging process. Hydroxyl radicals are unlikely agents of alpha 1PI damage in the ACTE system, as judged from hydroxyl radical scavenger studies. Ascorbate and various thiols offer protection to different degrees, dependent on the incubation conditions. Of several amino acids tested, cysteine and methionine (but not methionine sulfoxide) are the only two that protect alpha 1PI. We suggest that components of cigarette smoke particulate matter extracted into the aqueous lung fluid environment may cause local deficiencies in alpha 1PI in smokers' lungs.  相似文献   

8.
Due to the action of a serum protease, the two most cathodal isoinhibitors of the alpha 1-proteinase inhibitor (alpha 1-PI) are cleaved at the Gly5-Asp6 bond and lack two negative charges. In spite of this, these can bind trypsin and chymotrypsin, showing that the N-terminal pentapeptide is not indispensable for inhibition function. Pancreatic proteases also cleave a bond near the N-terminus in alpha 1-PI, resulting in a loss of two negative charges and a corresponding cathodal shift in the electrofocusing behavior of the isoinhibitors. Trypsin cleaves isoinhibitors near the N-terminus at a large inhibitor excess and unless an additional cleavage takes place, at least two of the new isoinhibitors remain active. An additional cleavage(s), most likely at a distance of 30-40 residues from the C-terminus results in a corresponding decrease of the molecular mass and a loss of inhibition function. Although the C-terminal cleavage peptide does separate from the protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it remains associated with it under conditions of polyacrylamide gel isoelectric focusing. Chymotrypsin also cleaved alpha 1-PI near the N-terminus but this could be observed only at protease excess and the modified isoinhibitors did not form complexes with chymotrypsin. The molecular polymorphism of alpha 1-PI is partly explained by the absence of the N-terminal pentapeptide from some of the isoinhibitors.  相似文献   

9.
The replacement of ser359 with ala359 at the P1 position in human alpha-1-proteinase inhibitor results in the production of a variant protein containing 15% of the inhibitory activity of the normal inhibitor. Separation of active from inactive inhibitor on anhydrochymotrypsin-sepharose yields a form which has a second order association rate with neutrophil elastase which is approximately one half that for the native protein. These data indicate that the P1 residue is not of primary importance during the interaction of proteinases with alpha-1-proteinase inhibitor. Since substitution of alanine for serine causes the formation, primarily, of inactive inhibitor the major function of ser359 probably involves proper folding to give a functionally active inhibitory conformation.  相似文献   

10.
Inactivation of alpha- and beta-thrombin by alpha 2-macroglobulin, by alpha 1-proteinase inhibitor and by antithrombin-III and heparin was studied. The amount of alpha- and beta-thrombin inactivated by antithrombin-III was proportional to the concentration of the inhibitor, but the inactivation rates of the two forms of thrombin were different. Heparin facilitated complex-formation between alpha-thrombin and antithrombin-III, whereas inactivation of beta-thrombin by antithrombin was only slightly influenced, even at a heparin concentration two orders of magnitude higher. alpha 2-Macroglobulin inhibited both alpha- and beta-thrombin activity similarly, i.e. the amount of alpha- and beta-thrombin inactivated as well as the rates of their inhibition were the same. alpha 1-Proteinase inhibitor also formed a complex with alpha- and beta-thrombin, similarly to antithrombin-III, although the inactivation of the enzyme needed high inhibitor concentration and long incubation time. These results suggest that the inactivation of beta-thrombin, if it occurs in the plasma, is also controlled by plasma inhibitors.  相似文献   

11.
Human alpha 1-proteinase inhibitor (alpha 1-PI) yielded nine fragments on cleavage with CNBr. The amino acid sequences of these fragments were determined. Three of these CNBr-cleavage fragments, namely fragment I (residues 64-220), fragment II (residues 243-351) and fragment III (residues 1-63), were found to bind rabbit polyclonal antibodies against chemically oxidized alpha 1-PI and mouse polyclonal antibodies against native alpha 1-PI by the Bio-Dot method (enzyme-linked immunosorbent assay on nitrocellulose). These fragments, I, II and III, inhibited by 60%, 25% and 5% respectively the binding between alpha 1-PI and the rabbit antibodies. Fragments I, II and III were subjected to proteolytic digestion, and 15, ten and five peptides were obtained from these fragments respectively. Only four of these peptides showed binding to the mouse antibodies against native alpha 1-PI. These were residues 40-63, 79-86, 176-206 and 299-323. A panel of monoclonal antibodies was prepared by conventional hybridoma technology, with chemically oxidized alpha 1-PI as the antigen. The ability of the monoclonal antibodies to bind native alpha 1-PI and CNBr-cleavage fragments I-III was determined. The monoclonal antibodies fell into three categories. Most (over 90%) belonged to group I, which was capable of binding alpha 1-PI and only fragment I. Antibodies in groups II and III bound alpha 1-PI and either fragment II or fragment III respectively. The ability of the peptides derived from proteolytic digestion of fragments I, II and III to bind three monoclonal antibodies representing each of the three groups was determined. Among all the peptides tested, only one (residues 176-206) derived from fragment I showed binding to the antibodies from group I, one (residues 299-323) derived from fragment II showed binding to the antibodies from group II, and one (residues 40-63) from fragment III showed binding to the antibodies from group III. Each of these three peptides also inhibited the binding between alpha 1-PI and the corresponding monoclonal antibodies. From these data we concluded that at least four epitopic regions (residues 40-63, 79-86, 176-206 and 299-323) were present in alpha 1-PI. Specific monoclonal antibodies to three of these sites were obtained.  相似文献   

12.
Peanut agglutinin was acylated with a new heterobifunctional, cleavable photosensitive crosslinking reagent, N-[4-(p-azidophenylazo)benzoyl]-3-aminopropyl-N′-oxysuccinimide ester. The lectin derivative binds specifically and reversibly to neuraminidase-treated human erythrocyte ghosts and upon irradiation covalent attachment of over 35% of the bound lectin occurs. The affinity-crosslinked ghosts were solublized in deoxycholate, immunoprecipitated with anti-peanut agglutinin antiserum, and analyzed by sodium dodecylsulfate polyacrylamine gel electrophoresis. Bands containing both peanut agglutinin and membrane glycoproteins were detected with apparent molecular weights of 58 000, 85 000, 110 000 and 135 000. Upon subsequent cleavage with sodium dithionite, asialoglycophorin A (apparent M.W. 41 000 and 85 000) and a second glycoprotein (apparent M.W. 58 000 – 61 000) were tentatively identified as the receptors for peanut agglutinin in the intact membrane.  相似文献   

13.
This paper explores the possibility that neutrophil-derived DNA interferes with the inhibition of neutrophil cathepsin G (cat G) and proteinase 3 by the lung antiproteinases alpha(1)-proteinase inhibitor (alpha(1)PI), alpha(1)-antichymotrypsin (ACT), and mucus proteinase inhibitor (MPI). A 30-base pair DNA fragment ((30bp)DNA), used as a model of DNA, tightly binds cat G (K(d), 8.5 nM) but does not react with proteinase 3, alpha(1)PI, ACT, and MPI at physiological ionic strength. The polynucleotide is a partial noncompetitive inhibitor of cat G whose K(i) is close to K(d). ACT and alpha(1)PI are slow binding inhibitors of the cat G-(30bp)DNA complex whose second-order rate constants of inhibition are 2300 M(-1) s(-1) and 21 M(-1) s(-1), respectively, which represents a 195-fold and a 3190-fold rate deceleration. DNA thus renders cat G virtually resistant to inhibition by these irreversible serpins. On the other hand, (30bp)DNA has little or no effect on the reversible inhibition of cat G by MPI or chymostatin or on the irreversible inhibition of cat G by carbobenzoxy-Gly-Leu-Phe-chloromethylketone. The polynucleotide neither inhibits proteinase 3 nor affects its rate of inhibition by alpha(1)PI. These findings suggest that cat G may cause lung tissue destruction despite the presence of antiproteinases.  相似文献   

14.
Alpha(1)-proteinase inhibitor (alpha(1)-PI) is a natural serine protease inhibitor. Although mainly thought to protect the airways from neutrophil elastase, alpha(1)-PI may also regulate the development of airway hyperresponsiveness (AHR), as indicated by our previous findings of an inverse relationship between lung alpha(1)-PI activity and the severity of antigen-induced AHR. Because allergic stimulation of the airways causes release of elastase, tissue kallikrein, and reactive oxygen species (ROS), all of which can reduce alpha(1)-PI activity and contribute to AHR, we hypothesized that administration of exogenous alpha(1)-PI should protect against pathophysiological airway responses caused by these agents. In untreated allergic sheep, airway challenge with elastase, xanthine/xanthine oxidase (which generates ROS), high-molecular-weight kininogen, the substrate for tissue kallikrein, and antigen resulted in bronchoconstriction. ROS and antigen also induced AHR to inhaled carbachol. Treatment with 10 mg of recombinant alpha(1)-PI (ralpha(1)-PI) blocked the bronchoconstriction caused by elastase, high-molecular-weight kininogen, and ROS, and the AHR induced by ROS and antigen. One milligram of ralpha(1)-PI was ineffective. These are the first in vivo data demonstrating the effects of ralpha(1)-PI. Our results are consistent with and extend findings obtained with human plasma-derived alpha(1)-PI and suggest that alpha(1)-PI may be important in the regulation of airway responsiveness.  相似文献   

15.
Human plasma alpha1 proteinase inhibitor is the body's principal modulator of serine proteinases (such as those released from phagocytic cells). Cysteine-active-site proteinases, which are not inhibited, have now been found to inactivate this important inhibitor by proteolytic cleavage of a scissile peptide bond. Papain carries out this inactivation catalytically, whereas cathepsin B1 acts stoicheiometrically. Thus thiol proteinases could easily disrupt the delicately regulated balance between serine proteinases and alpha1 proteinase inhibitor.  相似文献   

16.
The purpose of our investigation was to obtain monoclonal antibodies that could distinguish three forms of alpha 1-proteinase inhibitor (alpha 1-PI): native alpha 1-PI, N-chlorosuccinimide-oxidized alpha 1-PI (Ox-alpha 1-PI) and proteolytically modified alpha 1-PI (alpha 1-PI). Three specific monoclonal antibodies were characterized as to their binding properties. By using the Bio-Dot assay, it was found that all three forms of alpha 1-PI were capable of binding to antibody 6D4-6-18, that only Ox-alpha 1-PI, but not native alpha 1-PI or alpha 1-PI, could bind to antibody 6C7-5, and that alpha 1-PI and a complex between alpha 1-PI and trypsin uniquely were not able to bind to antibody 5C12-8-7. Thus it was concluded that it is possible to use monoclonal antibodies with different epitopic specificities to distinguish two chemically modified forms of alpha 1-PI from the native protein.  相似文献   

17.
Both the clotting and esterase activities of thrombin are inhibited by alpha1-proteinase inhibitor (alpha1-antitrypsin). The inhibition is a time-and temperature-dependent reaction which is proportional to the molar ratio of thrombin to inhibitor. Both the active-site serine residue of thrombin and the reactive-site lysine residue of alpha1-proteinase inhibitor are involved. alpha1-Proteinase inhibitor forms a 1:1 complex with thrombin that is comparable with the complex formed with trypsin and other proteinases. Incubation of the inhibitor with excess of thrombin, however, results in inactivation of nearly all the enzyme, even though only as much complex is formed as alpha1-proteinase inhibitor present. A portion of the remaining thrombin apparently aggregates. These results suggest that the mechanism for inhibition of thrombin may not be exactly the same as for trypsin, which is inhibited only to the extent to which complex is formed.  相似文献   

18.
Human alpha-1-proteinase inhibitor (α-1-PI) from synovial fluid has been isolated to near 90% purity. The preparation has a molecular weight near 52,000, contains 3.5 residues of methionine sulfoxide, and an amino terminal glutamine residue. Sequence studies indicate that the first 17 residues, normally present in plasma α-1-PI, are missing from this protein. The inhibitor did not form a complex with porcine pancreatic elastase but, instead, was converted to a lower molecular weight form. Sequence studies on the latter indicated that two methionyl residues, one at the P1 reactive site and the other at P8, had been oxidized. These data confirm the fact that oxidized α-1-PI may be formed in vivo, presumably by the action of myeloperoxidase. This latter effect may alter the proteinase-proteinase inhibitor balance in tissues so that excess proteolysis and abnormal tissue degradation may occur.  相似文献   

19.
Highly purified human polymorphonuclear leucocyte collagenase cleaved human alpha-1-proteinase inhibitor (alpha 1-PI) at the carboxyl site of Phe352 (P7). The inhibitor was thereby rapidly inactivated and generated a primary degradation product as shown by reverse-phase HPLC and N-terminal sequencing. Prolonged incubation of the modified inhibitor with polymorphonuclear leucocyte collagenase led to the generation of a secondary degradation product with additional cleavage at the carboxyl site of Pro357 (P2).  相似文献   

20.
Previous folding studies of alpha-1-proteinase inhibitor (alpha1-PI), which regulates the activity of the serine protease human neutrophil elastase, show an intermediate state at approximately 1.5 M guanidine-HCl (Gu). For the normal form of alpha1-PI, we demonstrate the reversible formation of the same stable distribution of monomeric and polymeric intermediates after approximately 1 h in 1.5 M Gu at approximately 23 degrees C from fully folded or fully unfolded alpha1-PI at similar final total concentrations and show that the stable distribution of monomeric and polymeric intermediates conforms with the law of mass action. We attribute these observations to an apparent equilibrium among intermediates. Our CD data are compatible with the intermediates having slightly relaxed structures relative to that of fully folded alpha1-PI and, thus, with the polymeric intermediates having a loop-sheet structure. Furthermore, we observe that the rates of folding (fast and slow terms) from the intermediate state are the same as those from the fully unfolded state, thereby supporting the contention that this intermediate state is on the folding pathway. We attribute the tendency of the Z mutant protein to polymerize/aggregate to an increased rate of the monomeric intermediate to form the apparent equilibrium distribution of intermediate species relative to its rate of folding to give intact alpha1-PI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号