首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new type of coating for manufacturing DNA chips was constructed of the basis of an organic-inorganic nanocomposite based on the polyvinylbutyral-tetraethoxysilane copolymer. The organosilicon composite was functionalized by introduction of ethanolamine vinyl ether copolymers, which contain amino groups and anchor vinyloxide units capable of reacting with silanol groups of the nanocomposite. The resulting coatings form a film on glass slides with a high surface density of amino groups (up to 700 groups/nm2) suitable for three-dimensional immobilization of oligonucleotides. The use of bifunctional reagents (e.g., phenylene diisothiocyanate) for the attachment of oligonucleotides bearing amino linkers to the amino-containing surface provides an immobilization density of 0.5-1.6 pmol/mm2. Immobilization with a higher density (10-12 pmol/mm2) was achieved for attachment to amino-containing glass slides upon the use of oligonucleotides containing selectively activated terminal phosphate groups. The activation of oligonucleotides was carried out with the triphenylphosphine-dithiodipyridine pair in the presence of dimethylaminopyridine N-oxide. The resulting DNA chips were shown to be useful in principle for DNA detection.  相似文献   

2.
A chemical procedure was developed to functionalize poly(methyl methacrylate) (PMMA) substrates. PMMA is reacted with hexamethylene diamine to yield an aminated surface for immobilizing DNA in microarrays. The density of primary NH2 groups was 0.29 nmol/cm2. The availability of these primary amines was confirmed by the immobilization of DNA probes and hybridization with a complementary DNA strand. The hybridization signal and the hybridization efficiency of the chemically aminated PMMA slides were comparable to the hybridization signal and the hybridization efficiency obtained from differently chemically modified PMMA slides, silanized glass, commercial silylated glass and commercial plastic Euray™ slides. Immobilized and hybridized densities of 10 and 0.75 pmol/cm2, respectively, were observed for microarrays on chemically aminated PMMA. The immobilized probes were heat stable since the hybridization performance of microarrays subjected to 20 PCR heat cycles was only reduced by 4%. In conclusion, this new strategy to modify PMMA provides a robust procedure to immobilize DNA, which is a very useful substrate for fabricating single use diagnostics devices with integrated functions, like sample preparation, treatment and detection using microfabrication and microelectronic techniques.  相似文献   

3.
To explore a method for enhancing the immobilization and hybridization efficiency of oligonucleotides on DNA microarrays, conventional protocols of poly‐L‐lysine coating were modified by means of surface chemistry, namely, the slides were prepared by the covalently coupling of poly‐L‐lysine to a glycidoxy‐modified glass surface. The modified slides were then used to print microarrays for the detection of the SARS coronavirus by means of 60mer oligonucleotide probes. The characteristics of the modified slides concerning immobilization efficiency, hybridization dynamics, and probe stripping cycles were determined. The improved surface exhibited high immobilization efficiency, a good quality uniformity, and satisfactory hybridization dynamics. The spotting concentration of 10 μmol/L can meet the requirements of detection; the spots were approximately 170 nm in diameter; the mean fluorescence intensity of the SARS spots were between 3.2 × 104 and 5.0 × 104 after hybridization. Furthermore, the microarrays prepared by this method demonstrated more resistance to consecutive probe stripping cycles. The activated GOPS‐PLL slide could undergo hybridization stripping cycles for at least three cycles, and the highest loss in fluorescence intensity was found to be only 11.9 % after the third hybridization. The modified slides using the above‐mentioned method were superior to those slides treated with conventional approaches, which theoretically agrees with the fact that modification by surface chemistry attaches the DNA covalently firmly to the slides. This protocol may have great promise in the future for application in large‐scale manufacture.  相似文献   

4.
The tricarboxylate reagent benzene-1,3,5-triacetic acid (BTA) was used to attach 5′-aminated DNA primers and templates on an aminosilanized glass surface for subsequent generation of DNA colonies by in situ solid-phase amplification. We have characterized the derivatized surfaces for the chemical attachment of oligonucleotides and evaluate the properties relevant for the amplification process: surface density, thermal stability towards thermocycling, functionalization reproducibility and storage stability. The derivatization process, first developed for glass slides, was then adapted to microfabricated glass channels containing integrated fluidic connections. This implementation resulted in an important reduction of reaction times, consumption of reagents and process automation. Innovative analytical methods for the characterization of attached DNA were developed for assessing the surface immobilized DNA content after amplification. The results obtained showed that the BTA chemistry is compatible and suitable for forming highly dense arrays of DNA colonies with optimal surface coverage of about 10 million colonies/cm2 from the amplification of initial single-template DNA molecules immobilized. We also demonstrate that the dsDNA colonies generated can be quantitatively processed in situ by restriction enzymes digestion. DNA colonies generated using the BTA reagent can be used for further sequence analysis in an unprecedented parallel fashion for low-cost genomic studies.  相似文献   

5.
A recently described reaction for the UV-mediated attachment of alkenes to silicon surfaces is utilized as the basis for the preparation of functionalized silicon surfaces. UV light mediates the reaction of t-butyloxycarbonyl (t-BOC) protected ω-unsaturated aminoalkane (10-aminodec-1-ene) with hydrogen-terminated silicon (001). Removal of the t-BOC protecting group yields an aminodecane-modified silicon surface. The resultant amino groups can be coupled to thiol-modified oligodeoxyribonucleotides using a heterobifunctional crosslinker, permitting the preparation of DNA arrays. Two methods for controlling the surface density of oligodeoxyribonucleotides were explored: in the first, binary mixtures of 10-aminodec-1-ene and dodecene were utilized in the initial UV-mediated coupling reaction; a linear relationship was found between the mole fraction of aminodecene and the density of DNA hybridization sites. In the second, only a portion of the t-BOC protecting groups was removed from the surface by limiting the time allowed for the deprotection reaction. The oligodeoxyribonucleotide-modified surfaces were extremely stable and performed well in DNA hybridization assays. These surfaces provide an alternative to gold or glass for surface immobilization of oligonucleotides in DNA arrays as well as a route for the coupling of nucleic acid biomolecular recognition elements to semiconductor materials.  相似文献   

6.
Different chemical methods used to attach oligonucleotides by their 5′-end on a glass surface were tested in the framework of solid phase PCR where surface-bound instead of freely-diffusing primers are used to amplify DNA. Each method was first evaluated for its capacity to provide a high surface coverage of oligonucleotides essentially attached via a 5′-specific linkage that satisfyingly withstands PCR conditions and leaves the 3′-ends available for DNA polymerase activity. The best results were obtained with 5′-thiol-modified oligonucleotides attached to amino-silanised glass slides using a heterobifunctional cross-linker reagent. It was then demonstrated that the primers bound to the glass surface using the optimal chemistry can be involved in attaching and amplifying DNA molecules present in the reaction mix in the absence of freely-diffusing primers. Two distinct amplification processes called interfacial and surface amplification have been observed and characterised. The newly synthesised DNA can be detected and quantified by radioactive and fluorescent hybridisation assays. These new surface amplification processes are seen as an interesting approach for attachment of DNA molecules by their 5′-end on a solid support and can be used as an alternative route for producing DNA chips for genomic studies.  相似文献   

7.
With a direct count assay, 10 fouling bacterial isolates have been characterized for their ability to adhere to glass cover slips and polystyrene dishes. Although most adhered in greater numbers to polystyrene, the preference was statistically significant for only seven isolates at the 95% confidence level, due in part to the greater variability in cell attachment to glass (coefficient of variation, 32.3% for glass compared with 10.0% for polystyrene). Employing polystyrene dishes, a novel microfouling assay was developed, based on the extraction and fluorometric determination of DNA. The assay was rapid, enabled the detection of as little as 0.15 μg of DNA per dish (~5,000 cells per mm2), and showed good agreement with the direct count assay. The DNA method resulted in less variability among three replicates (average coefficient of variation, 7.06%) and allowed for estimation of bacterial density over a larger surface area per sample (1.89 × 103 mm2) than was feasible with epifluorescence microscopy (0.06 to 0.1 mm2).  相似文献   

8.
We report the synthesis of new phosphoramidite building blocks and their use for the modification of oligonucleotides with hydrazides. The reaction of these hydrazide oligonucleotides with active esters and aldehydes is demonstrated for solution conjugation and immobilization. Compared with the established amino modified oligonucleotides, hydrazides show enhanced reactivity at neutral and acidic buffer conditions. One method to introduce hydrazides is using amidites with preformed, protected hydrazides. A completely novel approach is the generation of the hydrazide functionality during the oligonucleotide cleavage and deprotection with hydrazine. Therefore, building blocks for the introduction of esters as hydrazide precursors are described. For the enhanced attachment on surfaces branched modifier amidites, which introduce up to four reactive groups to the oligonucleotide, are applied. The efficiency of branched hydrazide oligonucleotides compared with standard amino modified oligonucleotides for the immobilization of DNA on active electronic Nanogen chips is demonstrated.  相似文献   

9.
LeProust E  Zhang H  Yu P  Zhou X  Gao X 《Nucleic acids research》2001,29(10):2171-2180
Achieving high fidelity chemical synthesis on glass plates has become increasingly important, since glass plates are substrates widely used for miniaturized chemical and biochemical reactions and analyses. DNA chips can be directly prepared by synthesizing oligonucleotides on glass plates, but the characterization of these micro-syntheses has been limited by the sub-picomolar amount of material available. Most DNA chip syntheses have been assayed using in situ coupling of fluorescent molecules to the 5′-OH of the synthesized oligonucleotides. We herein report a systematic investigation of oligonucleotide synthesis on glass plates with the reactions carried out in an automated DNA synthesizer using standard phosphoramidite chemistry. The analyses were performed using 32P gel electrophoresis of the oligonucleotides cleaved from glass plates to provide product distribution profiles according to chain length of oligonucleotides. 5′-Methoxythymidine was used as the chain terminator, which permits assay of coupling reaction yields as a function of chain length growth. The results of this work reveal that a major cause of lower fidelity synthesis on glass plates is particularly inefficient reactions of the various reagents with functional groups close to glass plate surfaces. These problems cannot be detected by previous in situ fluorescence assays. The identification of this origin of low fidelity synthesis on glass plates should help to achieve improved synthesis for high quality oligonucleotide microarrays.  相似文献   

10.
The characteristics of the UV-induced immobilization of oligonucleotides on nylon membranes and the efficiency of the enzymatic labeling of immobilized probes in heterophase identifying specific DNA sequences were studied. Oligonucleotides bound to short terminal oligothymidylates (up to 10 nt) through a flexible linker based on diethylene glycol phosphodiester are proposed as probes for immobilization on nylon. The presence of this fragment allows one to enhance the immobilization efficiency and reduce the UV-dependent degradation of the sequence-specific part of the probe by decreasing the irradiation dose needed for DNA immobilization. The optimal dose of UV irradiation is evaluated to be ∼0.4 J/cm2 at 254 nm, which provides a high level of the hybridization signal for immobilized probes of various nucleotide sequences. It was found that nylon amide groups play a key role in the photoinduced fixation of oligonucleotides to the polymer surface, while its primary amino groups were not as responsible for the covalent binding of DNA as previously thought. Various additives in the membrane wetting solution were demonstrated to influence both the efficiency of the UV-induced immobilization and the functional integrity of immobilized probes. Other radical generating systems alternative to UV irradiation are shown to provide the immobilization of oligonucleotides on nylon membranes.  相似文献   

11.
The covalent attachment of DNA oligonucleotides onto crystalline silicon (100) surfaces, in patterns with submicron features, in a straightforward, two-step process is presented. UV light exposure of a hydrogen-terminated silicon (100) surface coated with alkenes functionalized with N-hydroxysuccinimide ester groups resulted in the covalent attachment of the alkene as a monolayer on the surface. Submicron-scale patterning of surfaces was achieved by illumination with an interference pattern obtained by the transmission of 248 nm excimer laser light through a phase mask. The N-hydroxysuccinimide ester surface acted as a template for the subsequent covalent attachment of aminohexyl-modified DNA oligonucleotides. Oligonucleotide patterns, with feature sizes of 500 nm, were reliably produced over large areas. The patterned surfaces were characterized with atomic force microscopy, scanning electron microscopy, epifluorescence microscopy and ellipsometry. Complementary oligonucleotides were hybridized to the surface-attached oligonucleotides with a density of 7 × 1012 DNA oligonucleotides per square centimetre. The method will offer much potential for the creation of nano- and micro-scale DNA biosensor devices in silicon.  相似文献   

12.
Various materials, such as glass, plastic, metals, etc., are utilized for preparing DNA chips. In each particular case special approaches are used for immobilization of different oligonucleotide derivatives on the solid supports. We describe a general technique for DNA chips preparation on various unmodified surfaces using one type of oligonucleotide derivative, polylysine-oligonucleotide conjugates (PL-oligo). A long polyamine spacer in the PL-oligo conjugates provides a durable irreversible non-covalent immobilization onto a variety of solid supports and enough distance between oligonucleotides and the surface. The resulting DNA chips were shown to be useful for the detection of PCR DNA fragments and to be sensitive to single nucleotide discrepancies. They represent a promising instrument for revealing genetic diseases, genotyping viruses and bacteria, and for displaying their drug-resistant strains.  相似文献   

13.
A set of methods for analysis of the quality of aminated substrates that could be a basis for the large-scale manufacturing of biological microchips is suggested. The analysis includes the determination of the number of amino groups, their availability for the immobilization of phosphorylated oligonucleotides, and the characterization of surface properties of the substrates in respect to the nonspecific sorption of reagents during hybridization. A simple procedure was suggested for determination of the density/number of amino groups. It is based on the use of dimethoxytrityl chloride with the subsequent spectrophotometric determination of dimethoxytrityl cation. The availability of amino groups was estimated by covalent attachment of an oligonucleotide probe containing a fluorescently labeled group to the aminated surface and the subsequent comparison of the intensity of fluorescing zones formed on the chip. The sorption properties of the surface were investigated with the help of a model hybridization reaction. A comparative analysis of aminated glasses manufactured by various firms and in our laboratory showed that the glasses with the amino group density from 0.7 to 2.0 groups/nm2 prepared by our procedure have the best properties for the hybridization analysis.  相似文献   

14.
Attachment of oligodeoxynucleotides (ODNs) containing benzaldehyde (BAL) groups to semicarbazide-coated glass (SC-glass) slides is described. 5′-BAL-ODNs are prepared using automated DNA synthesis and an acetal-protected BAL phosphoramidite reagent. The hydrophobic protecting group simplifies purification of BAL-ODNs by reverse phase HPLC and is easily removed using standard acid treatment. The electrophilic BAL-ODNs are stable in solution, but react specifically with semicarbazide groups to give semicarbazone bonds. Glass slides were treated with a semicarbazide silane to give SC-glass. BAL-ODNs are coupled to the SC-glass surface by a simple one-step procedure that allows rapid, efficient and stable attachment. Hand-spotted arrays of BAL-ODNs were prepared to evaluate loading density and hybridization properties of immobilized probes. Hybridization to radiolabeled target strands shows that at least 30% of the coupled ODNs were available for hybridization at maximum immobilization density. The array was used to probe single nucleotide polymorphisms in synthetic DNA targets, and PCR products were correctly genotyped using the same macroarray. Application of this chemistry to manufacturing of DNA microarrays for sequence analysis is discussed.  相似文献   

15.
Near-infrared (near-IR) excitation produces little background signal from biological molecules, making near-IR fluorescence technology highly useful in proteomic and genomic applications. To increase the emissions of near-IR fluorophores, we examined the use of metal-enhanced fluorescence on these longer wavelength dyes. IRDye®700- and IRDye®800-labeled DNA oligonucleotides and proteins were spotted onto silver island film (SIF)-coated glass slides, and analyzed using a LI-COR Odyssey® IR imaging system. We observed more than 18-fold enhancement of the IRDye®700 and 15-fold enhancement of the IRDye®800-labeled DNA oligonucleotides when spotted on SIF-coated surfaces compared with uncoated surfaces. We also demonstrated that the enhanced emissions produced on the SIF-coated slides remained linear over several orders of magnitude, that the emissions remained reproducible across a slide surface, and that the SIF-coated slide remained effective at enhancing emissions after 9 months of storage. Our results indicate that SIF-coated glass slides are effective at enhancing near-IR fluorescence and could be developed into an effective tool to aid in molecular biological applications.  相似文献   

16.
In order to study the possibility of using titanium dioxide (TiO2) nanoparticles to deliver peptide nucleic acids (PNA) in eukaryotic cells, a PNA oligomer was synthesized, and a method of PNA immobilization in the form of hybrid DNA/PNA duplexes on the surface of TiO2 nanoparticles covered with polylysine (PL) was developed. The attachment of a DNA/PNA duplex to TiO2 · PL nanoparticles occurs due to electrostatic interactions between the negatively charged DNA chain and the positively charged amino groups of PL. The binding of the PNA to the nanocomposite is achieved through noncovalent Watson-Crick interactions between PNA and complementary DNA. The capacity of the obtained TiO2 · PL · DNA/PNA nano-composites depending on immobilization conditions was 10?C30 nmol PNA per 1 mg of TiO2 particles, which corresponds to ??1?C3 PNA molecules per one TiO2 particle with a size of 4?C6 nm. It was shown by confocal laser scanning microscopy that fluorescently-labeled PNA molecules in the TiO2 · PL · DNA/FluPNA nano-composites effectively penetrate into HeLa cells without transfection agents, electroporation, or other auxiliary procedures.  相似文献   

17.
DNA microarrays with PAMAM dendritic linker systems   总被引:6,自引:4,他引:2       下载免费PDF全文
The DNA microarray-based analysis of single nucleotide polymorphisms (SNPs) is important for the correlation of genetic variations and individual phenotypes, and for locating disease-causing genes. To facilitate the development of surfaces suitable for immobilization of oligonucleotides, we report here a novel method for the surface immobilization of DNA using pre-fabricated polyamidoamine (PAMAM) starburst dendrimers as mediator moieties. Dendrimers containing 64 primary amino groups in their outer sphere are covalently attached to silylated glass supports and, subsequently, the dendritic macromolecules are modified with glutaric anhydride and activated with N-hydroxysuccinimide. As a result of the dendritic PAMAM linker system the surfaces reveal both a very high immobilization efficiency for amino-modified DNA-oligomers, and also a remarkable high stability during repeated regeneration and re-using cycles. The performance of dendrimer-based DNA microarrays in the discrimination of SNPs is demonstrated.  相似文献   

18.
In peptide-based microarrays, most existing methods do not allow for site-specific immobilization of peptides on the glass surface. We have developed two new approaches for site-specific immobilization of kinase substrates onto glass slides: (1) slides were functionalized with avidin for attachment of biotinylated peptides; and (2) slides were functionalized with thioester for attachment of N-terminally cysteine-containing peptides via a native chemical ligation reaction.  相似文献   

19.
In the microarray format of the minisequencing method multiple oligonucleotide primers immobilised on a glass surface are extended with fluorescent ddNTPs using a DNA polymerase. The method is a promising tool for large-scale single nucleotide polymorphism (SNP) detection. We have compared eight chemical methods for covalent immobilisation of the oligonucleotide primers on glass surfaces. We included both commercially available, activated slides and slides that were modified by ourselves. In the comparison the differently derivatised glass slides were evaluated with respect to background fluorescence, efficiency of attaching oligonucleotides and performance of the primer arrays in minisequencing reactions. We found that there are significant differences in background fluorescence levels among the different coatings, and that the attachment efficiency, which was measured indirectly using extension by terminal transferase, varied largely depending on which immobilisation strategy was used. We also found that the attachment chemistry affects the genotyping accuracy, when minisequencing on microarrays is used as the genotyping method. The best genotyping results were observed using mercaptosilane-coated slides attaching disulfide-modified oligonucleotides.  相似文献   

20.
Although gel-based microchips offer significant advantages over two-dimensional arrays, their use has been impeded by the lack of an efficient manufacturing procedure. Here we describe two simple, fast, and reproducible methods of fabrication of DNA gel drop microchips. In the first, copolymerization method, unsaturated groups are chemically attached to immobilized molecules, which are then mixed with gel-forming monomers. In the second, simpler polymerization-mediated immobilization method, aminated DNA without prior modification is added to a polymerization mixture. Droplets of polymerization mixtures are spotted by a robot onto glass slides and the slides are illuminated with UV light to induce copolymerization of DNA with gel-forming monomers. This results in immobilization of DNA within the whole volume of semispherical gel drops. The first method can be better controlled while the second one is less expensive, faster, and better suited to large-scale production. The microchips manufactured by both methods are similar in properties. Gel elements of the chip are porous enough to allow penetration of DNA up to 500 nucleotides long and its hybridization with immobilized oligonucleotides. As shown with confocal microscope studies, DNA is hybridized uniformly in the whole volume of gel drops. The gels are mechanically and thermally stable and withstand 20 subsequent hybridizations or 30-40 PCR cycles without decrease in hybridization signal. A method for quality control of the chips by staining with fluorescence dye is proposed. Applications of hydrogel microchips in research and clinical diagnostics are summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号