首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Dendritic cells (DCs) initiate proinflammatory or regulatory T cell responses, depending on their activation state. Despite extensive knowledge of DC-activating signals, the understanding of DC inhibitory signals is relatively limited. We show that Src homology region 2 domain-containing phosphatase-1 (SHP-1) is an important inhibitor of DC signaling, targeting multiple activation pathways. Downstream of TLR4, SHP-1 showed increased interaction with several proteins including IL-1R-associated kinase-4, and modulated LPS signaling by inhibiting NF-κB, AP-1, ERK, and JNK activity, while enhancing p38 activity. In addition, SHP-1 inhibited prosurvival signaling through AKT activation. Furthermore, SHP-1 inhibited CCR7 protein expression. Inhibiting SHP-1 in DCs enhanced proinflammatory cytokines, IL-6, IL-12, and IL-1β production, promoted survival, and increased DC migration to draining lymph nodes. Administration of SHP-1-inhibited DCs in vivo induced expansion of Ag-specific cytotoxic T cells and inhibited Foxp3(+) regulatory T cell induction, resulting in an enhanced immune response against pre-established mouse melanoma and prostate tumors. Taken together, these data demonstrate that SHP-1 is an intrinsic global regulator of DC function, controlling many facets of T cell-mediated immune responses.  相似文献   

5.
The ability of cultured, antigen-loaded dendritic cells (DCs) to induce antigen-specific T cell immunity in vivo has previously been demonstrated and confirmed. Immune monitoring naturally focuses on immunity against vaccine antigens and may thus ignore other effects of DC vaccination. Here we therefore focused on antigen-independent responses induced by DC vaccination of renal cell carcinoma patients. In addition to the anticipated response against the vaccine antigen KLH, vaccination with CD83+ monocyte-derived DCs resulted in a strong increase in the ex vivo proliferative and cytokine responses of PBMCs stimulated with LPS or BCG. In addition, LPS strongly enhanced the KLH-induced proliferative and cytokine response of PBMCs. Moreover, proliferative and cytokine responses of PBMCs stimulated with the homeostatic cytokines IL-7 and IL-15 were also clearly enhanced after DC vaccination. In contrast to LPS induced proliferation, which is well known to depend on monocytes, IL-7 induced proliferation was substantially enhanced after monocyte depletion indicating that monocytes limit IL-7 induced lymphocyte expansion. Our data indicate that DC vaccination leads to an increase in the ex vivo responsiveness of patient PBMCs consistent with a DC vaccination induced enhancement of T cell memory. Our findings also suggest that incorporation of bacterial components and homeostatic cytokines into immunotherapy protocols may be useful in order to enhance the efficacy of DC vaccination and that monocytes may limit DC vaccination induced immunity. Supported by a grant to Martin Thurnher from the kompetenzzentrum medizin tirol (kmt), a center of excellence.  相似文献   

6.
7.
8.
Dendritic cells (DCs) are recognized as major players in the regulation of immune responses to a variety of Ags, including bacterial agents. LPS, a Gram-negative bacterial cell wall component, has been shown to fully activate DCs both in vitro and in vivo. LPS-induced DC maturation involves activation of p38, extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinases, and NF-kappaB. Blocking p38 inhibits LPS-induced maturation of DCs. In this study we investigated the role of LPS in the in vitro generation of immature DCs. We report here that in contrast to the observed beneficial effects on DCs, the presence of LPS in monocyte culture retarded the generation of immature DCs. LPS not only impaired the morphology and reduced the yields of the cultured cells, but also inhibited the up-regulation of surface expression of CD1a, costimulatory and adhesion molecules. Furthermore, LPS up-regulated the secretion of IL-1beta, IL-6, IL-8, IL-10, and TNF-alpha; reduced Ag presentation capacity; and inhibited phosphorylation of ERK, but activated p38, leading to a reduced NF-kappaB activity in treated cells. Neutralizing Ab against IL-10, but not other cytokines, partially blocked the effects of LPS. Inhibiting p38 (by inhibitor SB203580) restored the morphology, phenotype, and Ag presentation capacity of LPS-treated cells. SB203580 also inhibited LPS-induced production of IL-1beta, IL-10, and TNF-alpha; enhanced IL-12 production; and recovered the activity of ERK and NF-kappaB. Thus, our study reveals that LPS has dual effects on DCs that are biologically important: activating existing DCs to initiate an immune response, and inhibiting the generation of new DCs to limit such a response.  相似文献   

9.
10.
11.
Dendritic cells (DC), the most potent APCs, can initiate the immune response or help induce immune tolerance, depending upon their level of maturation. DC maturation is associated with activation of the NF-kappaB pathway, and the primary NF-kappaB protein involved in DC maturation is RelB, which coordinates RelA/p50-mediated DC differentiation. In this study, we show that silencing RelB using small interfering RNA results in arrest of DC maturation with reduced expression of the MHC class II, CD80, and CD86. Functionally, RelB-silenced DC inhibited MLR, and inhibitory effects on alloreactive immune responses were in an Ag-specific fashion. RelB-silenced DC also displayed strong in vivo immune regulation. An inhibited Ag-specific response was seen after immunization with keyhole limpet hemocyanin-pulsed and RelB-silenced DC, due to the expansion of T regulatory cells. Administration of donor-derived RelB-silenced DC significantly prevented allograft rejection in murine heart transplantation. This study demonstrates for the first time that transplant tolerance can be induced by means of RNA interference using in vitro-generated tolerogenic DC.  相似文献   

12.
An understanding of the biochemical control of dendritic cell (DC) differentiation/activation is essential for improving T cell immunity by various immunotherapeutic approaches, including DC immunization. Ligation of CD40 enhances DC function, including conditioning for CTL priming. NF-kappaB, and particularly RelB, is an essential control pathway for myeloid DC differentiation. Furthermore, RelB regulates B cell Ag-presenting function. We hypothesized that CD40 ligand (CD40L) and TNF-alpha, which differ in their capacity to condition DC, would also differ in their capacity to activate NF-kappaB. DC differentiated for 2 days from monocytes in the presence of GM-CSF and IL-4 were used as a model, as NF-kappaB activity was constitutively low. The capacity of DC to activate T cells following CD40L treatment was enhanced compared with TNF-alpha treatment, and this was NF-kappaB dependent. Whereas RelB/p50 translocation induced by TNF-alpha was attenuated after 6 h, RelB/p50 nuclear translocation induced by CD40L was sustained for at least 24 h. The mechanism of this difference related to enhanced degradation of IkappaBalpha following CD40L stimulation. However, NF-kappaB activation induced by TNF-alpha could be sustained by blocking autocrine IL-10. These data indicate that NF-kappaB activation is essential for T cell activation by DC, and that this function is enhanced if DC NF-kappaB activation is prolonged. Because IL-10 moderates DC NF-kappaB activation by TNF-alpha, sustained NF-kappaB activation can be achieved by blocking IL-10 in the presence of stimuli that induce TNF-alpha.  相似文献   

13.
Recruitment of monocytes into tissues and their differentiation into macrophages or dendritic cells (DCs) depend on the microenvironment of the inflammatory site. Although many factors affecting this process have been identified, the intracellular signaling pathways implicated are poorly understood. We found that cyclic nucleotides regulate certain steps of monocyte differentiation into DCs. Increased levels of the cyclic nucleotides, cAMP or cGMP, inhibit differentiation of CD14(+)/CD1a(low) monocytes into CD14(-)/CD1a(high) DCs. However, DC-specific ICAM-3-grabbing nonintegrin (CD209) up-regulation was not affected by cyclic nucleotides, indicating that DC development was not blocked at the monocyte stage. Interestingly, Ag-presenting function was increased by cyclic nucleotides, as measured by the higher expression of MHC class II, CD86, and an increased ability to stimulate CD4(+) T cell proliferation in allogeneic MLRs. Although cyclic nucleotides do not completely block DC differentiation, they do block the ability of DCs to be induced to mature by LPS. Treatment during DC differentiation with either cAMP or cGMP analogues hampered LPS-induced expression of CD83, DC-LAMP, and CCR7 and the ability of DCs to migrate toward CCL19/macrophage-inflammatory protein 3beta. Interestingly, the induction of a CD16(+) subpopulation of cells was also observed. Thus, signals causing an increase in either cAMP or cGMP levels during monocyte recruitment to inflammatory sites may restrain the activation of acquired immunity by blocking DC development and migration to lymph nodes. At the same time, these signals promote development of an active intermediate cell type having properties between those of macrophages and DCs, which might contribute to the innate immune response in the periphery.  相似文献   

14.
15.
16.
Type 2 diabetes mellitus (T2DM) leads to monocyte dysfunction associated with atherogenesis and defective arteriogenesis. Transforming growth factor (TGF)-β1, placenta growth factor (PlGF)-1 and vascular endothelial growth factor (VEGF)A play important roles in atherogenesis and arteriogenesis. VEGF-receptor (VEGFR)-mediated monocyte migration is inhibited in T2DM (VEGFA resistance), while TGF-β1-induced monocyte migration is fully functional. Therefore, we hypothesize that TGF-β antagonises the VEGFA responses in human monocytes. We demonstrate that monocytes from T2DM patients have an increased migratory response towards low concentrations of TGF-β1, while PlGF-1/VEGFA responses are mitigated. Mechanistically, this is due to increased expression of type II TGF-β receptor in monocytes under high-glucose conditions and increased expression of soluble (s)VEGFR1, which is known to interfere with VEGFA signalling. VEGFA resistance in monocytes from T2DM patients can be rescued by either experimental down-regulation of TGF-β receptor expression in vitro or by functional blocking of TGF-β signalling using either a TGF-β receptor kinase inhibitor or a TGF-β neutralizing antibody. Our data demonstrate that both T2DM and high-glucose potentiate the TGF-β pathway. TGF-β signalling impairs VEGFR-mediated responses in T2DM monocytes and in this way contributes to mononuclear cell dysfunction, provide novel insights into T2DM vascular dysfunction.  相似文献   

17.
18.
Disease manifestations in COVID-19 range from mild to severe illness associated with a dysregulated innate immune response. Alterations in function and regeneration of dendritic cells (DCs) and monocytes may contribute to immunopathology and influence adaptive immune responses in COVID-19 patients. We analyzed circulating DC and monocyte subsets in 65 hospitalized COVID-19 patients with mild/moderate or severe disease from acute illness to recovery and in healthy controls. Persisting reduction of all DC subpopulations was accompanied by an expansion of proliferating LineageHLADR+ cells lacking DC markers. Increased frequency of CD163+ CD14+ cells within the recently discovered DC3 subpopulation in patients with more severe disease was associated with systemic inflammation, activated T follicular helper cells, and antibody-secreting cells. Persistent downregulation of CD86 and upregulation of programmed death-ligand 1 (PD-L1) in conventional DCs (cDC2 and DC3) and classical monocytes associated with a reduced capacity to stimulate naïve CD4+ T cells correlated with disease severity. Long-lasting depletion and functional impairment of DCs and monocytes may have consequences for susceptibility to secondary infections and therapy of COVID-19 patients.  相似文献   

19.
20.
The suppressor of cytokine signaling (SOCS) group of proteins has been implicated in regulation of various cytokine signaling and in a negative crosstalk between distinct signaling pathways. Interleukin-10 (IL-10) and LPS were known to induce expression of SOCS-3 in neutrophils and monocytes/macrophages. IL-10 was also reported to inhibit a proinflammatory signal-induced NF-kappaB activation in monocytes and peripheral T lymphocytes. The effects of increased SOCS-3 expression upon IL-10 regulation of NF-kappaB activation have not yet been demonstrated. Here we examined the effects of SOCS-3 on NF-kappaB activity. SOCS-3 did not induce any alterations in NF-kappaB activity induced by LPS or TNF-alpha. However, it enhanced RelA-dependent kappaB promoter activity when cotransfected with RelA. Similar results were observed with SOCS-1. In contrast, SOCS-2 did not show any regulatory effects on RelA activity. Analysis of C-terminal truncation mutants of SOCS-1 and SOCS-3 demonstrated that the SOCS box and its N-terminal region, a less well-conserved linker region were important for SOCS-3 activation of RelA. In contrast, the SOCS box itself was critical for SOCS-1 to activate RelA. These results suggest that SOCS proteins can enhance the effects of NF-kappaB/Rel proteins, and therefore, further modulate immune and inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号