首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The collagen IV sulfilimine cross-link and its catalyzing enzyme, peroxidasin, represent a dyad critical for tissue development, which is conserved throughout the animal kingdom. Peroxidasin forms novel sulfilimine bonds between opposing methionine and hydroxylysine residues to structurally reinforce the collagen IV scaffold, a function critical for basement membrane and tissue integrity. However, the molecular mechanism underlying cross-link formation remains unclear. In this work, we demonstrate that the catalytic domain of peroxidasin and its immunoglobulin (Ig) domains are required for efficient sulfilimine bond formation. Thus, these molecular features underlie the evolutionarily conserved function of peroxidasin in tissue development and integrity and distinguish peroxidasin from other peroxidases, such as myeloperoxidase (MPO) and eosinophil peroxidase (EPO).  相似文献   

2.
Human peroxidasin 1 is a multidomain peroxidase situated in the basement membrane. The iron enzyme with covalently bound heme oxidizes bromide to hypobromous acid which facilitates the formation of distinct sulfilimine cross-links in the collagen IV network and therefore contributes to its mechanical stability. Additional to the catalytically active peroxidase domain peroxidasin comprises a leucine rich repeat domain, four Ig domains and a C-terminal von Willebrand factor type C module (VWC). Peroxidasin has been shown to form homotrimers involving two redox-sensitive cysteine residues and to undergo posttranslational C-terminal proteolytic cleavage. The present study on several recombinantly produced truncated peroxidasin variants showed that the VWC is not required for trimer formation whereas the alpha-helical linker region located between the peroxidase domain and the VWC is crucial for trimerization. Our data furthermore implies that peroxidasin oligomerization occurs intracellularly before C-terminal cleavage. For the first time we present overall solution structures of monomeric and trimeric truncated peroxidasin variants which were determined by rotary shadowing combined with transmission electron microscopy and by small-angle X-ray scattering (SAXS). A triangular arrangement of the peroxidase domains to each other within the homotrimer was revealed and this structure was confirmed by a model of trimeric peroxidase domains. Our SAXS data showed that the Ig domains are highly flexible and interact with the peroxidase domain and that within the homotrimer each alpha-helical linker region interacts with the respective adjacent peroxidase domain. The implications of our findings on the structure-function relationship of peroxidasin are discussed.  相似文献   

3.
Basement membranes provide structural support and convey regulatory signals to cells in diverse tissues. Assembly of collagen IV into a sheet-like network is a fundamental mechanism during the formation of basement membranes. Peroxidasin (PXDN) was recently described to catalyze crosslinking of collagen IV through the formation of sulfilimine bonds. Despite the significance of this pathway in tissue genesis, our understanding of PXDN function is far from complete. In this work we demonstrate that collagen IV crosslinking is a physiological function of mammalian PXDN. Moreover, we carried out structure–function analysis of PXDN to gain a better insight into its role in collagen IV synthesis. We identify conserved cysteines in PXDN that mediate the oligomerization of the protein into a trimeric complex. We also demonstrate that oligomerization is not an absolute requirement for enzymatic activity, but optimal collagen IV coupling is only catalyzed by the PXDN trimers. Localization experiments of different PXDN mutants in two different cell models revealed that PXDN oligomers, but not monomers, adhere on the cell surface in “hot spots,” which represent previously unknown locations of collagen IV crosslinking.  相似文献   

4.
Irreversible cross-links are increasingly being recognized as important posttranslational oxidative protein modifications that contribute to tissue injury during oxidative stress and inflammation. They also have a structural function in extracellular matrix proteins such as collagen IV. Likely contenders for forming such cross-links are the reactive halogen species that are generated by neutrophils and eosinophils, including hypochlorous acid, hypobromous acid, and their related haloamines. Methionine residues are kinetically preferred targets for these oxidants and oxidation can potentially result in sulfilimine (>SN–) bonds with amines. Therefore, we investigated whether oxidation of methionine in the model peptide formyl-Met-Leu-Phe-Lys (fMLFK) produces cross-links with lysine residues, using mass spectrometry to characterize the products. As expected, the sulfoxide was the major product with each reactive halogen species. However, intra- and intermolecular cross-linked products were also formed. Isomers of an intramolecular sulfilimine were readily produced by hypobromous acid and bromamines, with hypochlorous acid forming lesser amounts. The predominant cross-link with chloramines was an intermolecular bond between the sulfur of fMLFK and the amine derived from the chloramine. Reactive halogen species also formed these sulfilimine cross-links in other peptides that contain methionine. We propose that protein cross-links involving methionine and amine residues will form via this mechanism when granulocytes are activated at sites of inflammation. Our results also support the proposal that reactive halogen species generated by the peroxidase peroxidasin could be responsible for the sulfilimine bonds that are integral to the structure of collagen IV.  相似文献   

5.
Basement membranes are thin sheets of extracellular proteins situated in close contact with cells at various locations in the body. They have a great influence on tissue compartmentalization and cellular phenotypes from early embryonic development onwards. The major constituents of all basement membranes are collagen IV and laminin, which both exist as multiple isoforms and each form a huge irregular network by self assembly. These networks are connected by nidogen, which also binds to several other components (proteoglycans, fibulins). Basement membranes are connected to cells by several receptors of the integrin family, which bind preferentially to laminins and collagen IV, and via some lectin-type interactions. The formation of basement membranes requires cooperation between different cell types since nidogen, for example, is usually synthesized by cells other than those exposed to the basement membranes. Thus many molecular interactions, of variable affinities, determine the final shape of basement membranes and their preferred subanatomical localization.  相似文献   

6.
Basement membranes are defining features of the cellular microenvironment; however, little is known regarding their assembly outside cells. We report that extracellular Cl ions signal the assembly of collagen IV networks outside cells by triggering a conformational switch within collagen IV noncollagenous 1 (NC1) domains. Depletion of Cl in cell culture perturbed collagen IV networks, disrupted matrix architecture, and repositioned basement membrane proteins. Phylogenetic evidence indicates this conformational switch is a fundamental mechanism of collagen IV network assembly throughout Metazoa. Using recombinant triple helical protomers, we prove that NC1 domains direct both protomer and network assembly and show in Drosophila that NC1 architecture is critical for incorporation into basement membranes. These discoveries provide an atomic-level understanding of the dynamic interactions between extracellular Cl and collagen IV assembly outside cells, a critical step in the assembly and organization of basement membranes that enable tissue architecture and function. Moreover, this provides a mechanistic framework for understanding the molecular pathobiology of NC1 domains.  相似文献   

7.
Type IV collagen includes six genetically distinct polypeptides named alpha1(IV) through alpha6(IV). These isoforms are speculated to organize themselves into unique networks providing mammalian basement membranes specificity and inequality. Recent studies using bovine and human glomerular and testis basement membranes have shown that unique networks of collagen comprising either alpha1 and alpha2 chains or alpha3, alpha4, and alpha5 chains can be identified. These studies have suggested that assembly of alpha5 chain into type IV collagen network is dependent on alpha3 expression where both chains are normally present in the tissue. In the present study, we show that in the lens and inner ear of normal mice, expression of alpha1, alpha2, alpha3, alpha4, and alpha5 chains of type IV collagen can be detected using alpha chain-specific antibodies. In the alpha3(IV) collagen-deficient mice, only the expression of alpha1, alpha2, and alpha5 chains of type IV collagen was detectable. The non-collagenous 1 domain of alpha5 chain was associated with alpha1 in the non-collagenous 1 domain hexamer structure, suggesting that network incorporation of alpha5 is possible in the absence of the alpha3 chain in these tissues. The present study proves that expression of alpha5 is not dependent on the expression of alpha3 chain in these tissues and that alpha5 chain can assemble into basement membranes in the absence of alpha3 chain. These findings support the notion that type IV collagen assembly may be regulated by tissue-specific factors.  相似文献   

8.
《The Journal of cell biology》1986,103(6):2467-2473
Type IV collagen incubated at elevated temperatures in physiologic buffers self-associates (a) via its carboxy-terminal (NC1) domain, (b) via its amino-terminal (7S) domain, and (c) laterally; and it forms a network. When examined with the technique of rotary shadowing, isolated domain NC1 was found to bind along the length of type IV collagen to four distinct sites located at intervals of approximately 100 nm each. The same 100-nm distance was observed in domain NC1 of intact type IV collagen bound along the length of the collagen molecules during initial steps of network formation and in complete networks. The presence of anti-NC1 Fab fragments in type IV collagen solutions inhibited lateral association and network formation in rotary shadow images. During the process of self-association type IV collagen develops turbidity; addition of isolated domain NC1 inhibited the development of turbidity in a concentration-dependent manner. These findings indicate that domain NC1 of type IV collagen plays an important role in the process of self-association and suggest that alterations in the structure of NC1 may be partially responsible for impaired functions of basement membranes in certain pathological conditions.  相似文献   

9.
Nidogen-1 and nidogen-2 are major components of all basement membranes and are considered to function as link molecules between laminin and collagen type IV networks. Surprisingly, the knockout of one or both nidogens does not cause defects in all tissues or in all basement membranes. In this study, we have elucidated the appearance of the major basement membrane components in adult murine kidney lacking nidogen-1, nidogen-2, or both nidogens. To this end, we localized laminin-111, perlecan, and collagen type IV in knockout mice, heterozygous (+/-) or homozygous (-/-) for the nidogen-1 gene, the nidogen-2 gene, or both nidogen genes with the help of light microscopic immunostaining. We also performed immunogold histochemistry to determine the occurrence of these molecules in the murine kidney at the ultrastructural level. The renal basement membranes of single knockout mice contained a similar distribution of laminin-111, perlecan, and collagen type IV compared to heterozygous mice. In nidogen double-knockout animals, the basement membrane underlying the tubular epithelium was sometimes altered, giving a diffuse and thickened pattern, or was totally absent. The normal or thickened basement membrane of double-knockout mice also showed a similar distribution of laminin-111, perlecan, and collagen type IV. The results indicate that the lack of nidogen-1, nidogen-2, or both nidogens, plays no crucial role in the occurrence and localization of laminin-111, collagen type IV, and perlecan in murine tubular renal basement membranes.  相似文献   

10.
Heterogeneity of normal tissue and neoplastic basement membranes was investigated immunohistochemically with monoclonal antibodies and polyclonal antisera to laminin and collagen type IV. Cryostat sections of normal and neoplastic human tissues were digested with bacterial protease or trypsin. The duration of digestion and the concentration of enzyme were varied to determine whether laminin and collagen type IV could be removed differentially from basement membranes from distinct anatomic sites. After digestion, the residual antigenicity of glycoprotein was assessed immunohistochemically. Laminin could be removed more easily from all tissues than could collagen IV, and also much more easily from malignant tumors than from benign tumors or normal tissues. On the basis of susceptibility to proteolytic digestion, basement membranes from normal human tissues were classified as susceptible (e.g., heart and smooth muscle of gastrointestinal tract and uterus), moderately resistant (e.g., nerve, skeletal muscle, epithelial basement membrane of skin, smooth muscle of arteries), and very resistant (e.g., glomerulus). Differential susceptibility to proteolytic digestion most likely reflects quantitative and possibly also qualitative differences in the composition of basement membranes.  相似文献   

11.
Nidogen-1, a key component of basement membranes, is considered to function as a link between laminin and collagen Type IV networks and is expressed by mesenchymal cells during embryonic and fetal development. It is not clear which cells produce nidogen-1 in early developmental stages when no mesenchyme is present. We therefore localized nidogen-1 and its corresponding mRNA at the light and electron microscopic level in Day 7 mouse embryos during the onset of mesoderm formation by in situ hybridization, light microscopic immunostaining, and immunogold histochemistry. Nidogen-1 mRNA was found not only in the cells of the ectoderm-derived mesoderm but also in the cytoplasm of the endoderm and ectoderm, indicating that all three germ layers express it. Nidogen-1 was localized only in fully developed basement membranes of the ectoderm and was not seen in the developing endodermal basement membrane or in membranes disrupted during mesoderm formation. In contrast, laminin-1 and collagen Type IV were present in all basement membrane types at this developmental stage. The results indicate that, in the early embryo, nidogen-1 may be expressed by epithelial and mesenchymal cells, that both cell types contribute to embryonic basement membrane formation, and that nidogen-1 might serve to stabilize basement membranes in vivo. (J Histochem Cytochem 48:229-237, 2000)  相似文献   

12.
Nidogen 1 is a highly conserved protein in mammals, Drosophila melanogaster, Caenorhabditis elegans, and ascidians and is found in all basement membranes. It has been proposed that nidogen 1 connects the laminin and collagen IV networks, so stabilizing the basement membrane, and integrates other proteins, including perlecan, into the basement membrane. To define the role of nidogen 1 in basement membranes in vivo, we produced a null mutation of the NID-1 gene in embryonic stem cells and used these to derive mouse lines. Homozygous animals produce neither nidogen 1 mRNA nor protein. Surprisingly, they show no overt abnormalities and are fertile, their basement membrane structures appearing normal. Nidogen 2 staining is increased in certain basement membranes, where it is normally only found in scant amounts. This occurs by either redistribution from other extracellular matrices or unmasking of nidogen 2 epitopes, as its production does not appear to be upregulated. The results show that nidogen 1 is not required for basement membrane formation or maintenance.  相似文献   

13.
The rate of biosynthesis of procollagen IV, the principal collagen of basement membranes, and the concentration of specific RNAs coding for procollagen IV were measured in neonatal rat lungs. Both decreased sharply at birth and then recovered again a few days later. The supramolecular assembly of procollagen IV was followed in neonatal rat, mouse, and chick lungs, which actively elaborate endothelial and alveolar basement membranes, and in chick embryo gizzard which is rich in smooth muscle. The tetramer of four procollagen IV molecules linked covalently through their amino ends was isolated as an assembly intermediate from all these tissues. While noncovalent association of the carboxyl ends of two procollagen IV molecules occurred readily, the subsequent establishment of covalent cross-links was substantially slower in the junctional complexes of the carboxyl ends than of the amino ends. Both disulfide bonds and other, unidentified covalent links formed. The six component carboxyl peptides of a junctional complex became progressively covalently linked into two kinds of carboxyl peptide pairs. We conclude that both amino-linked tetramers and carboxyl-linked dimers of procollagen IV molecules are intermediates in the biological assembly of the collagen networks of these basement membranes.  相似文献   

14.
Human peroxidasin 1 (hsPxd01) is a multidomain heme peroxidase that uses bromide as a cofactor for the formation of sulfilimine cross-links. The latter confers critical structural reinforcement to collagen IV scaffolds. Here, hsPxd01 and various truncated variants lacking nonenzymatic domains were recombinantly expressed in HEK cell lines. The N-glycosylation site occupancy and disulfide pattern, the oligomeric structure, and unfolding pathway are reported. The homotrimeric iron protein contains a covalently bound ferric high spin heme per subunit with a standard reduction potential of the Fe(III)/Fe(II) couple of −233 ± 5 mV at pH 7.0. Despite sequence homology at the active site and biophysical properties similar to human peroxidases, the catalytic efficiency of bromide oxidation (kcat/KMapp) of full-length hsPxd01 is rather low but increased upon truncation. This is discussed with respect to its structure and proposed biosynthetic function in collagen IV cross-linking.  相似文献   

15.
Type IV collagen, which is present in all metazoan, exists as a family of six homologous alpha(IV) chains, alpha1-alpha6, in mammals. The six chains assemble into three different triple helical protomers and self-associate as three distinct networks. The network underlies all epithelia as a component of basement membranes, which play important roles in cell adhesion, growth, differentiation, tissue repair and molecular ultrafiltration. The specificity of both protomer and network assembly is governed by amino acid sequences of the C-terminal noncollagenous (NC1) domain of each chain. In this study, the structural basis for protomer and network assembly was investigated by determining the crystal structure of the ubiquitous [(alpha1)(2).alpha2](2) NC1 hexamer of bovine lens capsule basement membrane at 2.0 A resolution. The NC1 monomer folds into a novel tertiary structure. The (alpha1)(2).alpha2 trimer is organized through the unique three-dimensional domain swapping interactions. The differences in the primary sequences of the hypervariable region manifest in different secondary structures, which determine the chain specificity at the monomer-monomer interfaces. The trimer-trimer interface is stabilized by the extensive hydrophobic and hydrophilic interactions without a need for disulfide cross-linking.  相似文献   

16.
The COOH-terminal non-collagenous domains (NC1) of type IV collagen from glomerular basement membranes (GBM), lens capsule basement membranes, and Descemet's membrane varied in the distribution of their NC1 subunits. All of these basement membranes (BMs) contained both classical (alpha 1(IV) and alpha 2(IV)) and novel collagen chains (alpha 3(IV), alpha 4(IV) and the Alport antigen). Whereas GBM had a predominance of disulfide-bonded subunits, the lens capsule and Descemet's membrane were primarily monomeric, differences that are likely related to the functional and structural diversity of collagen in various tissues. A heterodimer formed from monomeric subunits of alpha 3(IV) and the Alport antigen exists in human and bovine GBM. This dimer represents an important cross-link of the NC1 domain of novel collagen. Additionally, immunoaffinity methodology showed that the novel BM collagen hexamers segregate into populations containing only novel BM subunits without the participation of the classical subunits (alpha 1(IV) and alpha 2(IV)). These data provided evidence for the presence of two separate networks of BM collagen: one containing alpha 1(IV) and alpha 2(IV), and the other consisting of the novel collagen chains.  相似文献   

17.
Abstract

Basement membranes are thin layers of a specialized extracellular matrix that form the supporting structure on which epithelial and endothelial cells grow, and that surround muscle and fat cells and the Schwann cells of peripheral nerves. One common denominator is that they are always in close apposition to cells, and it has been well demonstrated that basement membranes do not only provide a mechanical support and divide tissues into compartments, but also influence cellular behavior. The major molecular constituents of basement membranes are collagen IV, laminin-entactin/nidogen complexes, and proteoglycans. Collagen IV provides a scaffold for the other structural macromolecules by forming a network via interactions between specialized N-and C-terminal domains. Laminin-entactin/nidogen complexes self-associate into less-ordered aggregates. These two molecular assemblies appear to be interconnected, presumably via binding sites on the entactin/nidogen molecule. In addition, proteoglycans are anchored into the membrane by an unknown mechanism, providing clusters of negatively charged groups. Specialization of different basement membranes is achieved through the presence of tissue-specific isoforms of laminin and collagen IV and of particular proteoglycan populations, by differences in assembly between different membranes, and by the presence of accessory proteins in some specialized basement membranes. Many cellular responses to basement membrane proteins are mediated by members of the integrin class of transmembrane receptors. On the intracellular side some of these signals are transmitted to the cytoskeleton, and result in an influence on cellular behavior with respect to adhesion, shape, migration, proliferation, and differentiation. Phosphorylation of integrins plays a role in modulating their activity, and they may therefore be a part of a more complex signaling system.  相似文献   

18.
Basement membranes are thin layers of a specialized extracellular matrix that form the supporting structure on which epithelial and endothelial cells grow, and that surround muscle and fat cells and the Schwann cells of peripheral nerves. One common denominator is that they are always in close apposition to cells, and it has been well demonstrated that basement membranes do not only provide a mechanical support and divide tissues into compartments, but also influence cellular behavior. The major molecular constituents of basement membranes are collagen IV, laminin-entactin/nidogen complexes, and proteoglycans. Collagen IV provides a scaffold for the other structural macromolecules by forming a network via interactions between specialized N- and C-terminal domains. Laminin-entactin/nidogen complexes self-associate into less-ordered aggregates. These two molecular assemblies appear to be interconnected, presumably via binding sites on the entactin/nidogen molecule. In addition, proteoglycans are anchored into the membrane by an unknown mechanism, providing clusters of negatively charged groups. Specialization of different basement membranes is achieved through the presence of tissue-specific isoforms of laminin and collagen IV and of particular proteoglycan populations, by differences in assembly between different membranes, and by the presence of accessory proteins in some specialized basement membranes. Many cellular responses to basement membrane proteins are mediated by members of the integrin class of transmembrane receptors. On the intracellular side some of these signals are transmitted to the cytoskeleton, and result in an influence on cellular behavior with respect to adhesion, shape, migration, proliferation, and differentiation. Phosphorylation of integrins plays a role in modulating their activity, and they may therefore be a part of a more complex signaling system.  相似文献   

19.
Basement membranes are thin sheets of self-assembled extracellular matrices that are essential for embryonic development and for the homeostasis of adult tissues. They play a role in structuring, protecting, polarizing, and compartmentalizing cells, as well as in supplying them with growth factors. All basement membranes are built from laminin and collagen IV networks stabilized by nidogen/perlecan bridges. The precise composition of basement membranes, however, varies between different tissues. Even though basement membranes represent physical barriers that delimit different tissues, they are breached in many physiological or pathological processes, including development, the immune response, and tumor invasion. Here, we provide a brief overview of the molecular composition of basement membranes and the process of their assembly. We will then illustrate the heterogeneity of basement membranes using two examples, the epithelial basement membrane in the gut and the vascular basement membrane. Finally, we examine the different strategies cells use to breach the basement membrane.  相似文献   

20.
Peroxidasin is a novel protein combining peroxidase and extracellular matrix motifs. Hemocytes differentiate early from head mesoderm, make peroxidasin and later phagocytose apoptotic cells. As hemocytes spread throughout the embryo, they synthesize extracellular matrix and peroxidasin, incorporating it into completed basement membranes. Cultured cells secrete peroxidasin; it occurs in larvae and adults. Each 1512 residue chain of the three-armed, disulfide-linked homotrimer combines a peroxidase domain with six leucine-rich regions, four Ig loops, a thrombospondin/procollagen homology and an amphipathic alpha-helix. The peroxidase domain is homologous with human myeloperoxidase and eosinophil peroxidase. This heme protein catalyzes H2O2-driven radioiodinations, oxidations and formation of dityrosine. We propose that peroxidasin functions uniquely in extracellular matrix consolidation, phagocytosis and defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号