首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rutin (3',4',5,7-tetrahydroxyflavone-3-rutinoside) was oxidized by a horseradish peroxidase-H2O2 system to an ascorbate-reducible product which had an absorption maximum at about 290 nm and a shoulder at about 440 nm at pH 4. At pH 7.8, ascorbate-reducible compounds and sodium hydrosulfite-reducible and -nonreducible compounds were formed by the oxidation. The ascorbate-reducible compounds consisted of at least two components, the absorption bands of which were at 460-480 nm and about 620 nm. The sodium hydrosulfite-reducible compounds also consisted of two components, and one of the components which had an absorption maximum at about 480 nm seems to be formed from the ascorbate-reducible component of an absorption maximum at the blue region by a nonenzymatic reaction. A mixture of oxidized products of rutin formed by tert-butyl hydroperoxide-dependent oxidation was similar to that formed by the enzymatic reaction. It is discussed that the 3'- and 4'-OH groups of rutin were oxidized by the horseradish peroxidase-H2O2 system and that the oxidized product which could be reduced by ascorbate is an o-quinone derivative.  相似文献   

2.
H van der Deen  H Hoving 《Biochemistry》1977,16(16):3519-3525
The reaction of nitrite and nitric oxide with Helix pomatia hemocyanin has been studied. One or both of the two copper ions in the active site can be oxidized, depending upon reaction conditions. The single oxidation of the oxygen binding site can be reversed by reduction with hydroxylamine, and the oxygen binding properties of the protein are simultaneously restored. The experiments, including electron paramagnetic resonance, indicate that nitric oxide is not a ligand of copper in the singly oxidized active site and that the oxidized copper ions is coupled to at least two nitrogen atoms of amino acid residues. The doubly oxidized protein can be reduced to a singly oxidized one with ascorbic acid or hydroxylamine; the latter reagent is again able to reduce the singly oxidized state and to restore the oxygen binding properties.  相似文献   

3.
Susceptibility of tryptophan (Trp) in a complementarity-determining region (CDR) to oxidation is a significant issue for recombinant monoclonal antibody (mAb) therapeutics due to the clinical efficacy and stability concerns. Here we present a case study using hydrophobic interaction chromatography (HIC) to separate an oxidized Trp containing population of an IgG1. The best separation was achieved using dual Dionex ProPac HIC-10 columns, and the oxidized Trp population was isolated as a separated pre-peak. Peptide map analysis revealed that the oxidized Trp is located in a heavy chain CDR. In addition, the HIC method was capable of monitoring the oxidation status of the CDR Trp, as the oxidation rate of the CDR Trp measured by HIC directly correlated with the results of the peptide maps. The same method conditions were also capable of separating oxidized methionine (Met) and isomerization/deamidation products, which co-elute as another pre-peak at a different retention time from the oxidized Trp species. These observations indicate that the HIC procedure can be utilized to monitor the oxidative status of the CDR Trp in the IgG1.  相似文献   

4.

Objective

Angiotensinogen exists in two distinct redox forms in plasma, the oxidized sulfhydryl-bridge form and the reduced, unbridged, free thiol form. The oxidized form of angiotensinogen compared to the free thiol form preferentially interacts with renin resulting in increased generation of angiotensin. The predictive potential of the ratio of free-thiol to oxidized angiotensinogen in the plasma for pre-eclampsia was first suggested by the Read group in ref 10. We propose an improved method for determining the ratio and validate the method in a larger cohort of pregnant women.

Methods

Plasma samples from 115 individuals with pre-eclampsia and from 55 healthy pregnant control subjects were collected sequentially over a 2 year period. Using two distinct enzyme-linked immunosorbent assays (ELISAs) the plasma levels of total and free thiol angiotensinogen were quantified. The oxidized angiotensinogen plasma level is derived by subtracting the level of free thiol, reduced angiotensinogen from the total angiotensinogen levels in the plasma.

Results

The relative proportion of free thiol angiotensinogen, expressed as a percentage of that observed with an in-house standard, is significantly decreased in pre-eclamptic patients (70.85% ± 29.49%) (mean ± SD) as compared to healthy pregnant controls (92.98 ± 24.93%) (mean ± SD) p ≤ 0.0001. The levels of total angiotensinogen did not differ between the two groups.

Conclusion

Patients with pre-eclampsia had substantially lower levels of free thiol angiotensinogen compared to healthy pregnant controls, whilst maintaining similar total angiotensinogen levels in the plasma. Hence, elevated levels of plasma oxidized angiotensinogen may be a contributing factor to hypertension in the setting of pre-eclampsia.  相似文献   

5.
Hollemeyer K  Heinzle E  Tholey A 《Proteomics》2002,2(11):1524-1531
Oxidation of methionine residues in peptides and proteins occurs in vivo or may be an artifact resulting from purification steps. We present a three step method for the localization of methionine sulfoxides in peptides with two methionine residues. In the first step, the N-terminus as well as other reactive side chain functions are blocked by acetylation. The resulting protected peptides are cleaved by cyanogen bromide. The cleavage does not occur at methionine sulfoxide but only at reduced methionine residues forming new amino termini. The newly formed amino group is then derivatized with a bromine containing compound in the last step of the procedure. The resulting peptide can easily be identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry using both the characteristic isotope pattern of the halogen and the metastable loss of methanesulfenic acid from oxidized residues. This procedure allows the unequivocal localization of oxidized methionines even in complex peptide mixtures.  相似文献   

6.
Calmodulin is known to be a target for oxidation, which leads to conversion of methionine residues to methionine sulfoxides. Previously, we reported that both methionine sulfoxide reductases MsrA and MsrB were able to reduce methionine sulfoxide residues in oxidized calmodulin. In the present study, we have made use of the interaction between calmodulin and RS20, a peptide model for calmodulin targets, to probe the structural consequences of oxidation and mode of repair both by MsrA and MsrB. Isothermal titration calorimetry and differential scanning calorimetry showed that oxidized calmodulin interacts with RS20 via its C-terminal domain only, resulting in a non-productive complex. As shown by spectrofluorometry, oxidized calmodulin treated with MsrA exhibited native binding affinity for RS20. In contrast, MsrB-treatment of oxidized calmodulin resulted in 10-fold reduced affinity. Mass spectrometry revealed that the sulfoxide derivative of methionine residue 124 was differentially repaired by MsrA and MsrB. This provided a basis for rationalizing the difference in binding affinities of oxidized calmodulin reported above, since Met124 residue had been shown to be critical for interaction with some targets. This study provides the first evidence that in an oxidized polypeptide chain MetSO residues might be differentially repaired by the two Msr enzymes.  相似文献   

7.
Recently, it was reported that oxidized phosphatidylcholine shows biological activities via scavenger receptor CD36 or Toll-like receptor 4 (TLR4)-TRIF. Thus, the analysis of oxidized phospholipids is essential in understanding these biological roles. Here, we report an analytical method for oxidized phosphatidylcholines using multiple reaction monitoring (MRM) with theoretically expanded data sets. This analytical method was performed by a quadrupole linear ion trap mass spectrometer with ultra performance LC (UPLC). To investigate whether this established analytical method was applicable to biological samples, we performed variation analysis of oxidized PCs using a myocardial ischemia-reperfusion model. Most oxidized PCs were detected in higher amounts in the ischemic myocardium than in the non-ischemic myocardium. From these application results, this established method is a valuable tool for the global analysis of oxidized PCs. In the future, our study can provide further understanding of how oxidized phospholipids are produced and are correlated to various diseases.  相似文献   

8.
Iron-mediated formation of an oxidized adriamycin free radical   总被引:2,自引:0,他引:2  
Electron paramagnetic resonance studies are reported which demonstrate that the reduction of Fe3+ to Fe2+ by adriamycin results in the formation of an oxidized adriamycin free radical with an EPR signal at g = 2.004. A transient iron-adriamycin free radical complex is also observed at g = 2.34. The free radical is quantitated and its aerobic stability is determined. Observation of the oxidized adriamycin free radical signal confirms that adriamycin donates an electron to the bound Fe3+. In the presence of glutathione the drug-mediated reduction of Fe3+ to Fe2+ is bypassed, and the oxidized adriamycin radical signal is not observed. The oxidized adriamycin radicals and reduced oxygen radicals which are formed are two different mediators, whose relative concentrations could modulate the therapeutic and toxic effects of adriamycin.  相似文献   

9.
The quantitative determination of tetrahydrobiopterin (BH4) and its oxidized forms (dihydrobiopterin and biopterin) is important in searching for possible markers of neuropsychiatric and cardiovascular disorders as well as in diagnosing BH4 deficiencies. Currently, two high-performance liquid chromatography (HPLC) methods are available, although both have some limitations. We developed an enzymatic method to distinguish BH4 from the oxidized forms by employing BH4:UDP-glucose α-glucosyltransferase (BGluT), which catalyzes glucosyl transfer from UDP-glucose to BH4. The recombinant BGluT isolated from Escherichia coli converted essentially all of the BH4 in a mixture containing oxidized biopterins to the glucoside while leaving the oxidized forms intact. Therefore, acidic iodine oxidation of the reaction mixture followed by single fluorescence HPLC permitted the determination of biopterin and biopterin-glucoside, which represent oxidized biopterins and BH4, respectively. The validity of the method was evaluated using authentic biopterins and animal samples such as human urine, rat plasma, and rat liver. The BGluT-catalyzed reaction not only would reduce the burden of chromatographic separation but also would promise non-HPLC analysis of BH4.  相似文献   

10.
The primatry compound formed in the reaction between H2O2 and cytochrome c peroxidase is oxidized two equivalents above the native enzyme. The two oxidized sites are thought to be an Fe(IV) and an amino acid radical. In the absence of oxidizable substrate, the Fe(IV) and radical sites decay by apparent first-order processes but at different rates. It is likely that the decay involves both intra- and intermolecular electron-transfer reactions. The reduction of the Fe(IV) site depends upon the pH with a minimum reduction rate of 2.9-10(-5)s(-1) at pH 6. At pH 4 and 6, the reduction of the Fe(IV) site is facilitated by prior oxidation of amino acid residues in the protein.  相似文献   

11.
Short-term storage and cryopreservation of sperm are two common procedures in aquaculture, used for routine practices in artificial insemination reproduction and gene banking, respectively. Nevertheless, both procedures cause injuries affecting sperm motility, viability, cell structure and DNA stability, which diminish reproductive success. DNA modification is considered extremely important, especially when sperm storage is carried out with gene banking purposes. DNA damage caused by sperm storage is not well characterized and previous studies have reported simple and double strand breaks that have been attributed to oxidative events promoted by the generation of free radicals during storage.The objective of this study was to reveal DNA fragmentation and to explore the presence of oxidized bases that could be produced by oxidative events during short-term storage and cryopreservation in sex-reversed rainbow trout (Oncorhynchus mykiss) spermatozoa. Sperm from six males was analyzed separately. Different aliquots of the samples were stored 2 h (fresh) or 5 days at 4 °C or were cryopreserved. Then spermatozoa were analyzed using the Comet assay, as well as combining this method with digestion with two endonucleases from Escherichia coli (Endonuclease III, that cut in oxidized cytosines, and FPG, cutting in oxidized guanosines). Both storage procedures yielded DNA fragmentation, but only short-term storage oxidative events were clearly detected, showing that oxidative processes affect guanosines rather than cytosines. Cryopreservation increases DNA fragmentation but the presence of oxidized bases was not noticed, suggesting that mechanisms other than oxidative stress could be involved in DNA fragmentation promoted by freezing.  相似文献   

12.
Amino acid sequences in H(2)O(2)-oxidized bovine serum albumin (BSA) that are susceptible to proteolytic cleavage by oxidized protein hydrolase (OPH) were investigated. When oxidized BSA was treated with OPH, low-molecular-weight fragments (54, 46, 24, 22, 20, and 8 kDa) were produced as analyzed by SDS-PAGE. N-Terminal amino acid sequence analysis of these fragments indicated that oxidized BSA was cleaved by OPH at three major sites, Leu218-Ser219, Tyr410-Thr411, and Phe506-Thr507, at an early stage of the proteolytic degradation. In the three-dimensional structure of BSA deduced by computer modeling, these cleavage sites were found to be located slightly inside the BSA molecule, in positions not easily accessible by OPH. The influence of oxidation on the tertiary structure of BSA was then investigated by hypothetically replacing all the four methionine and two tryptophan residues with their oxidized forms, methionine sulfoxide and N'-formyl-kynurenine, respectively. The three-dimensional structure of the hypothetically oxidized BSA indicated that all the three cleavage sites in the protein could become more exposed to the solvent than in unoxidized BSA. These results suggest that, upon oxidation of BSA, the amino acid sequences that are potentially cleavable by OPH but present inside the molecule become exposed on the surface and susceptible to proteolysis by OPH. This is the first report demonstrating the cleavage sites of oxidized protein by oxidized protein-selective protease, suggesting the possible mechanism of oxidized protein-selective degradation by the enzyme.  相似文献   

13.
Oxidative stress in mammalian cells is an inevitable consequence of their aerobic metabolism. Oxidants produce modifications to proteins leading to loss of function (or gain of undesirable function) and very often to an enhanced degradation of the oxidized proteins. For several years it has been known that the proteasome is involved in the degradation of oxidized proteins. This review summarizes our knowledge about the recognition of oxidized protein substrates by the proteasome in in vitro systems and its applicability to living cells. The majority of studies in the field agree that the degradation of mildly oxidized proteins is an important function of the proteasomal system. The major recognition motif of the substrates seems to be hydrophobic surface patches that are recognized by the 20S 'core' proteasome. Such hydrophobic surface patches are formed by partial unfolding and exposure of hydrophobic amino acid residues during oxidation. Oxidized proteins appear to be relatively poor substrates for ubiquitination, and the ubiquitination system does not seem to be involved in the recognition or targeting of oxidized proteins. Heavily oxidized proteins appear to first aggregate (new hydrophobic and ionic bonds) and then to form covalent cross-links that make them highly resistant to proteolysis. The inability to degrade extensively oxidized proteins may contribute to the accumulation of protein aggregates during diseases and the aging process.  相似文献   

14.
The formation of hydrogen peroxide during the oxidation of NADH by purified preparations of cytochrome o has been demonstrated by employing three independent methods: polarographic, colorimetric, and fluorometric. The first two methods were used to assay for the accumulation of hydrogen peroxide and showed that hydrogen peroxide did accumulate as a product, but only about 30% of the oxygen consumed or 15 to 20% of the NADH oxidized was recoverable as hydrogen peroxide. This lack of 1:1 stoichiometry was not due to residual catalase activity in these preparations which could be eliminated by freeze-thawing. Thus, hydrogen peroxide may not be the sole or primary product of the NADH-cytochrome o oxidase reaction. The fluorometric assay could be coupled directly to the NADH-cytochrome o oxidase reaction in one medium, and this method showed that hydrogen peroxide was generated continuously from the beginning of the reaction in a 1:1 stoichiometry, hydrogen peroxide generated to NADH oxidized. This result suggests that hydrogen peroxide is an intermediate that can be trapped efficiently under the conditions of the fluorometric assay, whereas under the conditions of the first two assays most of the hydrogen peroxide generated undergoes further reaction. Exogenously added FAD or FMN increased the percentage of hydrogen peroxide that accumulated in the NADHcytochrome o oxidase reaction. Flavin is believed to act on the reductase side of cytochrome o so the increased percentage of hydrogen peroxide is not likely to result from the direct reaction of reduced flavin with oxygen.  相似文献   

15.
Paixão VB  Vis H  Turner DL 《Biochemistry》2010,49(44):9620-9629
Cytochrome c3 from Desulfovibrio desulfuricans ATCC 27774 appears to be capable of receiving two protons and two electrons from hydrogenase for transport to the membrane, and converting electronic energy into proton motive force. Detailed studies of the mechanism require control both of the redox state and of the protonation state of the protein; hence, structure determination of the protein in solution by NMR is the preferred method. This work compares the structures of the protonated protein in the fully oxidized and fully reduced states as a first step toward elucidating the pH-dependent and redox-state-dependent conformational changes that drive the energy transduction. These high-resolution structures revealed significant localized differences upon change of redox state, even though the global folds of the two families of structures are similar. There are concerted redox-linked motions within the protein that bring E61 and K75 closer to heme II in the oxidized form. This is consistent with an electrostatically driven movement that may provide an important contribution to the previously measured positive cooperativity between hemes I and II. No significant conformational changes were observed that might be related to redox?Bohr effects; the families of structures represent mainly protonated forms, and therefore, pH dependence should not play a major role in the observed structural rearrangements.  相似文献   

16.
Synopsis A method is presented for the histochemical demonstration of native and induced sulphate groups. This method is similar in principle to the Bracco-Curti technique, and is based on the formation, at an acid pH, of insoluble salts formed between sulphate groups and diaminobenzidine. The salt complex is subsequently oxidized by means of osmium tetroxide and, in addition to the brown oxidized diaminobenzidine, osmium black is precipitated.This new method presents some advantages over the Bracco-Curti technique, and it may be useful in the development of a technique for the electron microscopical localization of sulphated mucopolysaccharides.On leave from the Istituto di Anatomia ed Istologia Patologica of the University of Turin and supported by a Fellowship from the Accademia Nazionale dei Lincei.  相似文献   

17.
K Langsetmo  J Fuchs  C Woodward 《Biochemistry》1989,28(8):3211-3220
The urea-induced denaturation of Escherichia coli thioredoxin and thioredoxin variants has been examined by electrophoresis on urea gradient slab gels by the method of Creighton [Creighton, T. (1986) Methods Enzymol. 131, 156-172]. Thioredoxin has only two cysteine residues, and these form a redox-active disulfide at the active site. Oxidized thioredoxin-S2 and reduced thioredoxin-(SH)2 each show two folded isomers with a large difference in stability to urea denaturation. The difference in stability is greater for the isomers of oxidized than for the isomers of reduced thioredoxin. At 2 degrees C, the urea concentrations at the denaturation midpoint are approximately 8 and 4.3 M for the oxidized isomers and 4.8 and 3.7 M for the reduced isomers. The difference between the gel patterns of samples applied in native versus denaturing buffer, and at 2 and 25 degrees C, is characteristic for the involvement of a cis-proline-trans-proline isomerization. The data very strongly suggest that the two folded forms of different stabilities correspond to the cis and trans isomers of the highly conserved Pro 76 peptide bond, which is cis in the crystal structure of oxidized thioredoxin. Urea gel experiments with the mutant thioredoxin P76A, with alanine substituted for proline at position 76, corroborate this interpretation. The electrophoretic banding pattern diagnostic for an involvement of proline isomerization in urea denaturation is not observed for oxidized P76A. In broad estimates of delta G degree for the native-denatured transition, the difference in delta G degree (no urea) between the putative cis and trans isomers of the Ile 75-Pro 76 peptide bond is approximately 3 kcal/mol for oxidized thioredoxin and approximately 1.5 kcal/mol for reduced thioredoxin. Since cis oxidized thioredoxin is much more stable than trans, folded oxidized thioredoxin is essentially all cis. In folded reduced thioredoxin, cis and trans interconvert slowly, on the minute time scale at 2 and 25 degrees C. In the absence of urea, the folded reduced thioredoxin is less than a few percent trans. Three additional mutants with additions or substitutions at the active site also show electrophoresis banding patterns consistent with a difference in stability between cis and trans isomers.  相似文献   

18.
Purified catalase-1 (CAT-1) from Neurospora crassa asexual spores is oxidized by singlet oxygen giving rise to active enzyme forms with different electrophoretic mobility. These enzyme forms are detected in vivo under stress conditions and during development at the start of the asexual morphogenetic transitions. CAT-1 heme b is oxidized to heme d by singlet oxygen. Here, we describe functional and structural comparisons of the non-oxidized enzyme with the fully oxidized one. Using a broad H(2)O(2) concentration range (0.01-3.0 M), non-hyperbolic saturation kinetics was found in both enzymes, indicating that kinetic complexity does not arise from heme oxidation. The kinetics was consistent with the existence of two kinds of active sites differing more than 10-times in substrate affinity. Positive cooperativity for one or both of the saturation curves is possible. Kinetic constants obtained at 22 degrees C varied slightly and apparent activation energies for the reaction of both components are not significantly different. Protein fluorescence and circular dicroism of the two enzymes were nearly identical, indicating no gross conformational change with oxidation. Increased sensitivity to inhibition by cyanide indicated a local change at the active site in the oxidized catalase. Oxidized catalase was less resistant to high temperatures, high guanidinium ion concentration, and digestion with subtilisin. It was also less stable than the non-oxidized enzyme at an acid pH. The overall data show that the oxidized enzyme is structurally different from the non-oxidized one, although it conserves most of the remarkable stability and catalytic efficiency of the non-oxidized enzyme. Because the enzyme in the cell can be oxidized under physiological conditions, preservation of functional and structural properties of catalase could have been selected through evolution to assure an active enzyme under oxidative stress conditions.  相似文献   

19.
Over the last few years, it has been clearly established that normal plasma contains low levels of oxidized polypeptides, and that these accumulate in tissues during several age-related pathologies. In contrast, normal mammalian aging, contrary to conventional dogma, is not clearly associated with enhanced levels of oxidized proteins, except in extracellular connective tissues, whose proteins can, for example, be oxidized by the neutrophil oxidative burst. Since mildly oxidized proteins are susceptible to accelerated degradation in most experimental systems, the question arises as to how the accumulation of oxidized proteins can take place. Such accumulation requires an excess of production (or deposition) over removal, which might reflect alterations in capacity or rate of production or removal. This chapter discusses our presently limited knowledge of rates and control of proteolysis of oxidized proteins in two pathologies, cataractogenesis and atherogenesis. It commences with a brief summary of current understanding of the mechanisms of protein oxidation, and of the observed accumulation of oxidized proteins in several pathologies.  相似文献   

20.
Oxidation is emerging as an important regulatory mechanism of protein-tyrosine phosphatases (PTPs). Here we report that PTPs are differentially oxidized, and we provide evidence for the underlying mechanism. The membrane-proximal RPTPalpha-D1 was catalytically active but not readily oxidized as assessed by immunoprobing with an antibody that recognized oxidized catalytic site cysteines in PTPs (oxPTPs). In contrast, the membrane-distal RPTPalpha-D2, a poor PTP, was readily oxidized. Oxidized catalytic site cysteines in PTP immunoprobing and mass spectrometry demonstrated that mutation of two residues in the Tyr(P) loop and the WPD loop that reverse catalytic activity of RPTPalpha-D1 and RPTPalpha-D2 also reversed oxidizability, suggesting that oxidizability and catalytic activity are coupled. However, catalytically active PTP1B and LAR-D1 were readily oxidized. Oxidizability was strongly dependent on pH, indicating that the microenvironment of the catalytic cysteine has an important role. Crystal structures of PTP domains demonstrated that the orientation of the absolutely conserved PTP loop arginine correlates with oxidizability of PTPs, and consistently, RPTPmu-D1, with a similar conformation as RPTPalpha-D1, was not readily oxidized. In conclusion, PTPs are differentially oxidized at physiological pH and H(2)O(2) concentrations, and the PTP loop arginine is an important determinant for susceptibility to oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号