首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two experiments were conducted to assess the physiological effects of freshwater exposure and amoebic gill disease (AGD) in marine Atlantic salmon (Salmo salar L.). The first experiment monitored marine salmon during a 3 h freshwater exposure, the standard treatment for AGD in Tasmania. The second experiment described the gill mucous cell histochemistry for freshwater adapted and seawater acclimated fish (AGD affected and unaffected) for possible correlations to ionoregulation. When exposed to freshwater, marine Atlantic salmon experienced a minor ionoregulatory dysfunction represented by a net efflux of Cl(-) ions at 3 h. AGD affected fish experienced the net efflux of Cl(-) ions 1 h sooner, and had a significantly greater net efflux of total ammonia. Changes to gill mucous cell populations corresponded to differing salinity and the presence of AGD. In AGD affected fish, these populations significantly differed between lesion and non-lesion associated areas of the gill filament. Our results have shown changes in the ionoregulatory capacity of Atlantic salmon due to freshwater exposure and AGD. Gill mucous cell histochemistry indicates the potential importance of the mucous layer in ionoregulation and disease. In comparison to previous studies on rainbow trout, these results suggest that Atlantic salmon have a greater short-term ionoregulatory capacity.  相似文献   

2.
Marine sediment samples collected from various sites at 2 Atlantic salmon farms in Tasmania were analysed for the presence of Neoparamoeba sp., an amoeba associated with amoebic gill disease (AGD) in farmed Atlantic salmon. Environmental variables of the sediment layer at each site, including redox potential and sulphide concentration, were measured and the general biological condition assessed by video observation. Sediments and environmental data were collected on 4 occasions at each site over a 12 mo period. Neoparamoeba sp. was detected in populations of amoebae recovered by culture from all sites and in 50% of all sediment samples taken. There was evidence of a seasonal influence on the presence of the amoeba, but this was different at each farm. No Neoparamoeba sp. was recovered from any sites at Farm 1 during the winter of 2002 whereas at Farm 2 this was the case for the summer of 2003. There appeared to be no relationship between the presence of Neoparamoeba sp., salmon farming activities and environmental parameters.  相似文献   

3.
Previously we described a new member of the Neoparamoeba genus, N. perurans, and showed that it is an agent of amoebic gill disease (AGD) of Atlantic salmon Salmo salar cultured in southeast Tasmania, Australia. Given the broad distribution of cases of AGD, we were interested in extending our studies to epizootics in farmed fish from other sites around the world. Oligonucleotide probes that hybridise with the 18S rRNA of N. perurans, N. branchiphila or N. pemaquidensis were used to examine archival samples of AGD in Tasmania as well as samples obtained from 4 host fish species cultured across 6 countries. In archival samples, N. perurans was the only detectable amoeba, confirming that it has been the predominant aetiological agent of AGD in Tasmania since epizootics were first reported. N. perurans was also the exclusive agent of AGD in 4 host species across 6 countries. Together, these data show that N. perurans is a cosmopolitan agent of AGD and, therefore, of significance to the global mariculture industry.  相似文献   

4.
Neoparamoeba pemaquidensis is a parasomal amoeboid protozoan identified as the agent of amoebic gill disease (AGD) in Atlantic salmon Salmo salar reared in sea-pens in Tasmania, Australia, and coho salmon Oncorhynchus kisutch farmed on the west coast of the USA. Outbreaks of AGD caused by immunologically cross-reactive paramoebae have also been reported in sea-farmed salmonids in several other countries. Complete 18S rDNA sequences were determined for respective paramoebae isolated from infected gills of salmon from Tasmania and Ireland, and N. pemaquidensis isolates from the USA and UK, including representative free-living isolates. Alignments over 2110 bp revealed 98.1 to 99.0% sequence similarities among isolates, confirming that paramoebae implicated in AGD in geographically distant countries were homologous and belonged to the same species, N. pemaquidensis. The results supported previous findings that N. pemaquidensis exists as a widely distributed, amphizoic marine protozoan. Partial 18S rDNA sequences were obtained for the ultrastructurally similar species, N. aestuarina, and for the morphologically similar but non-parasomal amoeba Pseudoparamoeba pagei. N. aestuarina had 95.3 to 95.7% sequence similarities with N. pemaquidensis strains, which distinguished 2 closely related but separate species. Neoparamoeba spp. were not analogous to P. pagei or to other marine Gymnamoebia. We designed 4 oligonucleotide primers based on elucidated 18S rDNA sequences and applied them to single-step and nested 2-step PCR protocols developed to identify N. pemaquidensis to the exclusion of apparently closely related and non-related protistan taxa. Nested PCR was able to detect the AGD parasite from non-purified, culture-enriched net microfouling samples from Atlantic salmon sea-pens in Tasmania, and confirmed that N. pemaquidensis was also responsible for AGD in chinook salmon O. tshawytscha in New Zealand. Our sequence and PCR analyses have now shown that AGD affecting 3 different salmonid species farmed in 4 countries are associated with N. pemaquidensis. A species-specific diagnostic PCR provides for the first time, a highly specific detection and identification assay for N. pemaquidensis that will facilitate future ecological and epidemiological studies of AGD.  相似文献   

5.
AIM: To investigate whether epilithic biofilms in freshwater streams in a mixed UK agricultural river catchment harbour Escherichia coli O157, and if so, whether they demonstrate an association with those excreted by grazing farm animals. METHODS AND RESULTS: Flint shingle, native to the study site, was used as a surface for biofilm development within cages of metal lath set into a stream bed at four locations on a chalkland farm. Shingle was collected from all sites once a month, as were pooled faecal samples from five farm animal populations. Subpopulations of E. coli, including E. coli O157 that demonstrated significant phenotypic and genotypic similarity with animal faecal isolates (t-test, P = 0.05) were isolated. Of 1002 E. coli isolates from biofilms and animal faeces, 48 were confirmed as the O157 strain by latex agglutination. The presence of five virulence traits associated with incidence of human disease was tested using PCR. Stx(2) was the most frequently isolated single gene (30 isolates), while stx(1) was the least frequently recovered (four isolates). CONCLUSION: Escherichia coli O157, expressing up to four virulence factors associated with human disease, reside within freshwater biofilms in this agricultural environment. SIGNIFICANCE AND IMPACT OF THE STUDY: Aquatic biofilms may potentially act as a reservoir for these pathogens, and the implications of the findings for the protection of drinking water resources should be further investigated.  相似文献   

6.
Gyrodactylus salaris is a freshwater, monogenean ectoparasite of Baltic strains of Atlantic salmon Salmo salar on which it generally causes no clinical disease. Infection of other strains of Atlantic salmon in Norway has resulted in high levels of juvenile salmon mortality and highly significant reductions in the population. The parasite is a major exotic disease threat to wild Atlantic salmon in the UK. This paper qualitatively assesses the risk of introduction and establishment of G. salaris into the UK. The current UK fish health regime prevents the importation of live salmonids from freshwater in territories that have not substantiated freedom from G. salaris. The importation of other species, e.g. eels Anguilla anguilla and non-salmonid fish, represents a low risk because the likelihood of infection is very low and the parasite can only survive on these hosts for less than 50 d. Importation of salmon carcasses presents a negligible risk because harvested fish originate from seawater sites and the parasite cannot survive full strength salinity. The importation of rainbow trout Oncorhynchus mykiss carcasses from G. salaris infected freshwater sites might introduce the parasite, but establishment is only likely if carcasses are processed on a salmonid farm in the UK. A number of mechanical transmission routes were considered (e.g. angling equipment, canoes, ballast water) and the most important was judged to be the movement of live fish transporters from farms on mainland Europe direct to UK fish farms. In the future, territories may have to substantiate freedom from G. salaris and economic drivers for live salmonid imports may strengthen. Under these circumstances, legal or illegal live salmonid imports would become the most significant risk of introduction.  相似文献   

7.
To study the concentration effects of the bacterium Winogradskyella sp. on amoebic gill disease (AGD), Atlantic salmon Salmo salar were pre-exposed to 2 different doses (10(8) or 10(10) cells 1(-1)) of Winogradskyella sp. before being challenged with Neoparamoeba spp. Exposure of fish to Winogradskyella sp. caused a significant increase in the percentage of AGD-affected filaments compared with controls challenged with Neoparamoeba only; however, these percentages did not increase significantly with an increase in bacterial concentration. The results show that the presence of Winogradskyella sp. on salmonid gills can increase the severity of AGD.  相似文献   

8.
Studies of the influence of fish aquaculture on benthic freshwater nematode assemblages are scarce, but could provide a way of gauging environmental effects. The abundance and diversity of nematode assemblages in response to Oreochromis niloticus aquaculture were investigated in Kafr El-Sheikh Governorate, Egypt, from July to November 2014 under conditions of irrigation (reference), fish farm pond with high Tilapia density, and fish farm pond effluent canal without fish. The nematode genera Adoncholaimus, Punctodora, Labronema, Oncholaimus and Odontolaimus were present at all sites. Environmental factors were not related to nematode distribution patterns. Tilapia predation and/or disturbance may explain reduced nematode abundance, especially of the largest genera, Adoncholaimus, Punctodora and Labronema at the fish farm site. The absence of fish from the drainage site allowed intergeneric nematode competitive exclusion, benefitting the largest nematodes and reducing diversity indices.  相似文献   

9.
The objective of the present study was to evaluate the in vitro toxicity of bithionol and bithionol sulphoxide to Neoparamoeba spp., the causative agent of amoebic gill disease (AGD). The current treatment for AGD-affected Atlantic salmon involves bathing sea-caged fish in freshwater for a minimum of 3 h, a labour-intensive and costly exercise. Previous attempts to identify alternative treatments have suggested bithionol as an alternate therapeutic, but extensive in vitro efficacy testing has not yet been done. In vitro toxicity to Neoparamoeba spp. was examined using amoebae isolated from the gill of AGD-affected Atlantic salmon and exposing the parasites to freshwater, alumina (10 mg l(-1)), seawater, bithionol or bithionol sulphoxide at nominal concentrations of 0.1, 0.5, 1, 5 and 10 mg l(-1) in seawater. The numbers of viable amoebae were counted using the trypan blue exclusion method at 0, 24, 48 and 72 h. Both bithionol and bithionol sulphoxide demonstrated in vitro toxicity to Neoparamoeba spp. at all concentrations examined (0.1 to 10 mg l(-1) over 72 h), with a comparable toxicity to freshwater observed for both chemicals at concentrations > 5 mg l(-1) following a 72 h treatment. Freshwater remained the most effective treatment, with only 6% viable amoebae seen after 24 h and no viable amoebae observed after 48 h.  相似文献   

10.
Amoebic gill disease (AGD), the most serious infectious disease affecting farmed salmon in Tasmania, is caused by free-living marine amoeba Neoparamoeba sp. The parasites on the gills induce proliferation of epithelial cells initiating a hyperplastic response and reducing the surface area available for gaseous exchange. AGD can be induced in salmon by exposure to freshly isolated Neoparamoeba from AGD infected fish, however cultured Neoparamoeba are non-infective. We describe here antigenic differences between freshly isolated and in vitro cultured parasites, and within individual isolates of the parasite cultured under different conditions. Immunoblot analysis using polyclonal antisera, revealed differences in the antigen profiles of two cultured isolates of Neoparamoeba sp. when they were grown on agar versus in liquid medium. However, the antigen profiles of the two isolates were very similar when they were grown under the same culture conditions. Comparison of these antigen profiles with a preparation from parasites freshly isolated from infected gills revealed a very limited number of shared antigens. In addition monoclonal antibodies (mAbs) raised against surface antigens of cultured parasites were used in an indirect immunofluorescence assay to assess the expression of specific surface antigens of Neoparamoeba sp. after various periods in culture. Significant changes in antigen expression of freshly isolated parasites were observed after 15 days of in vitro culture. The use of mAb demonstrated progressive exposure/expression of individual antigens on the surface of the freshly isolated parasites during the period in culture.  相似文献   

11.
The relationship between salmonid gill bacteria and Neoparamoeba sp., the aetiological agent of amoebic gill disease (AGD) was determined in vivo. Fish were divided into 4 groups and were subjected to following experimental infections: Group 1, amoebae only; Group 2, Staphylococcus sp. and amoebae; Group 3, Winogradskyella sp. and amoebae; Group 4, no treatment (control). Fish (Groups 1, 2 and 3) were exposed to potassium permanganate to remove the natural gill microflora prior to either bacterial or amoebae exposure. AGD severity was quantified by histological analysis of gill sections to determine the percentage of lesioned filaments and the number of affected lamellae within each lesion. All amoebae infected groups developed AGD, with fish in Group 3 showing significantly more filaments with lesions than other groups. Typically lesion size averaged between 2 to 4 interlamellar units in all AGD infected groups. The results suggest that the ability of Neoparamoeba sp. to infect filaments and cause lesions might be enhanced in the presence of Winogradskyella sp. The possibility is proposed that the prevalence of more severe AGD is due to the occurrence of Winogradskyella sp. at high concentrations on the gills.  相似文献   

12.
The cardiovascular effects of amoebic gill disease (AGD) were investigated immediately following surgery in three salmonid species; Atlantic salmon (Salmo salar L.), brown trout (Salmo trutta L.) and rainbow trout (Oncorhynchus mykiss Walbaum). Fish, both naïve (control) and infected (AGD-affected) of each species, were fitted with dorsal aorta catheters and cardiac flow probes. Cardiac output and dorsal aortic pressures were then continuously measured over a 6-h period following surgery. Results showed that Atlantic salmon, brown trout and rainbow trout displayed similar dorsal aortic pressure, cardiac output, and systemic vascular resistance (mean dorsal aotic pressure divided by cardiac output) values. However, the only significant differences relating to disease status i.e. infected or control, were found in Atlantic salmon. Although no significant differences were seen in dorsal aortic pressure values, AGD-affected salmon displayed significantly elevated systemic vascular resistance at 4 and 6 h post surgery. Cardiac output was also approximately 35% lower in AGD-affected salmon compared to the non-affected control counterparts. These results comparatively examine cardiac function in response to AGD across three salmonid species and highlight species-specific cardiovascular responses that occur in association with disease. It is suggested that the apparent cardiac dysfunction seen in AGD-affected Atlantic salmon could, under stressful conditions, become exacerbated. Cardiac failure is therefore suggested to be a possible physiological mechanism by which AGD causes or contributes to mortality in Atlantic salmon.  相似文献   

13.
This is the first comprehensive region wide, spatially explicit epidemiologic analysis of surveillance data of the aquatic viral pathogen infectious hematopoietic necrosis virus (IHNV) infecting native salmonid fish. The pathogen has been documented in the freshwater ecosystem of the Pacific Northwest of North America since the 1950s, and the current report describes the disease ecology of IHNV during 2000–2012. Prevalence of IHNV infection in monitored salmonid host cohorts ranged from 8% to 30%, with the highest levels observed in juvenile steelhead trout. The spatial distribution of all IHNV‐infected cohorts was concentrated in two sub‐regions of the study area, where historic burden of the viral disease has been high. During the study period, prevalence levels fluctuated with a temporal peak in 2002. Virologic and genetic surveillance data were analyzed for evidence of three separate but not mutually exclusive transmission routes hypothesized to be maintaining IHNV in the freshwater ecosystem. Transmission between year classes of juvenile fish at individual sites (route 1) was supported at varying levels of certainty in 10%–55% of candidate cases, transmission between neighboring juvenile cohorts (route 2) was supported in 31%–78% of candidate cases, and transmission from adult fish returning to the same site as an infected juvenile cohort was supported in 26%–74% of candidate cases. The results of this study indicate that multiple specific transmission routes are acting to maintain IHNV in juvenile fish, providing concrete evidence that can be used to improve resource management. Furthermore, these results demonstrate that more sophisticated analysis of available spatio‐temporal and genetic data is likely to yield greater insight in future studies.  相似文献   

14.
A comparison of sediments and associated macrobenthos at sites sampled within 20 fish farm leases distributed across southeastern Tasmania indicated major natural changes along a regional cline. Introduced taxa were strongly represented in the fauna, comprising 45% of total macrofaunal biomass. Large differences were evident between sites affected by different levels of organic farm waste. Sites located adjacent (< 10 m) to farm cages possessed significantly depressed sediment redox levels, a dominance of capitellid and dorvilleid polychaetes, and low macrofaunal species richness. Subtle impacts extended across farm lease areas in the form of depressed redox potential at 40 mm depth and changes to the macrobenthic community, including a prevalence of the dogwhelk Nassarius nigellus and a paucity of the heart urchin Brissus sp. and the maldanid polychaetes Asychis sp. and Rhodine sp. Minor farm effects were also evident at sites sampled 35 m outside farm lease boundaries, most notably as elevated population numbers of the polychaete Terrebellides sp., bivalve Mysella donaciformis and heart urchin Echinocardium cordatum. Amongst the univariate metrics examined, redox potential at 40 mm depth and the ratio of bivalves to total molluscs provided the most sensitive indicators of farm impacts, with the latter metric relatively insensitive to spatial variation between locations within the region studied.  相似文献   

15.
Amoebic gill disease (AGD) affects the culture of Atlantic salmon Salmo salar in the southeast of Tasmania. The disease is characterised by the presence of epizoic Neoparamoeba spp. in association with hyperplastic gill tissue. Gill-associated amoebae trophozoites were positively selected by plastic adherence for culture in seawater, where they proliferated using heat-killed E. coli as a nutrient source. One isolate of gill-harvested amoebae designated NP251002 was morphologically consistent to N. pemaquidensis under light, fluorescence and transmission electron microscopy. Rabbit anti-N. pemaquidensis antiserum bound to NP251002, and N. pemaquidensis small subunit (SSU) ribosomal DNA (18S rDNA) was detected in NP251002 genomic DNA preparations using PCR. A high degree of similarity in the alignment of the NP251002 18S rDNA PCR amplicon sequence with reference isolates of N. pemaquidensis suggested conspecificity. While short-term culture (72 h) of gill-harvested amoebae does not affect the capacity of amoebae to induce AGD, Atlantic salmon challenged with NP251002 after the trophozoites had been 34 and 98 d in culture exhibited neither gross nor histological evidence of AGD. It is not known if NP251002 were avirulent at the time of isolation, had down-regulated putative virulence factors or virulence was inhibited by the culture conditions. Therefore, the time in culture could be a limiting factor in maintaining virulence using the culture technique described here.  相似文献   

16.
In central Europe, both brown trout Salmo trutta and European grayling Thymallus thymallus are threatened native salmonid species with high value in recreational angling and nature conservation. On the other hand, rainbow trout Oncorhynchus mykiss and brook trout Salvelinus fontinalis are intensively stocked non-native species of high angling value but no value for nature conservation. This study tested if harvest rates of native salmonids are negatively correlated to intensive stocking and harvest rates of non-native salmonids in inland freshwater recreational fisheries. Data were collected from 250 fishing sites (river and stream stretches) over 13 years using mandatory angling logbooks. Logbooks were collected from individual anglers by the Czech Fishing Union in the regions of Prague and Central Bohemia, Czechia (central Europe) and processed by the author of this study. In result, anglers harvested 200,000 salmonids with total weight of 80 tons over 13 years. Intensive stocking of multiple salmonid species lead to slightly lower harvests of native salmonids. Inversely, intensive harvests of multiple salmonid species lead to slightly higher harvest of native salmonids. Recapture rates of stocked salmonids were relatively low (0.6%–3.7%), proving fish stocking moderately ineffective. Since the effects of non-native salmonid stocking and harvest rates on native salmonid harvest were significant but not strong, it is suggested that rivers and streams that support fishing for non-native salmonids still support fishing for native salmonids. However, this idea does not apply for fishing sites with really high intensity of non-native salmonid stocking – harvest rates of natives were very low on these fishing sites.  相似文献   

17.
D. ZILBERG 《动物学报》2005,51(4):554-556
海水养殖的鲑鱼及鲽鱼(Scophthalmusmaximus)的阿米巴鳃病是由Neoparamoebapemaquidensis引起的。在西班牙,该病对鲑鱼的海水养殖造成巨大损失,同时也正威胁着鲽鱼的养殖。组织病理损伤主要是鱼鳃上皮细胞的增生和肥大。该虫仅寄生在鱼鳃表面。现已有证据证明,非特异免疫参与鱼类抵御该病,但还没有证明特异性免疫在此过程中发挥作用的相似证据。对鲑鱼来说,治疗该病惟一有效的方法就是用淡水浸泡  相似文献   

18.
A survey was carried out at 156 sites, situated in streams in the province of Overijssel (The Netherlands), to describe the macroinvertebrate assemblages and their environments. Fifty-six environmental variables were measured once at each sampling site. The main aim was to describe a typology of stream for this region.Different multivariate analysis techniques (clustering and ordination) were used in combination with ecological information on individual taxa to derive and describe site groups in terms of taxonomic composition and mean environmental conditions. The resulting site groups were termed cenotypes.Eleven cenotypes were distinguished. Differences between cenotypes were attributed to (combinations of) environmental key factors, namely, dimensions (width and depth), morphological (profile shape) and hydraulic stream characteristics, duration of drought and load of organic material.The typology offers a basis to be used for regional stream management and nature conservation. Efforts to improve stream ecosystems should be directed at the physical and hydraulic conditions.Typological studies are needed (especially in semi-natural landscapes) if we are to better understand, manage and conserve freshwater biota.  相似文献   

19.
Amoebic gill disease (AGD) is a potentially fatal disease of some marine fish. Two amphizoic amoebae Neoparamoeba pemaquidensis and Neoparamoeba branchiphila have been cultured from AGD-affected fish, yet it is not known if one or both are aetiological agents. Here, we PCR amplified the 18S rRNA gene of non-cultured, gill-derived (NCGD) amoebae from AGD-affected Atlantic salmon (Salmo salar) using N. pemaquidensis and N. branchiphila-specific oligonucleotides. Variability in PCR amplification led to comparisons of 18S rRNA and 28S rRNA gene sequences from NCGD and clonal cultured, gill-derived (CCGD) N. pemaquidensis and N. branchiphila. Phylogenetic analyses inferred from either 18S or 28S rRNA gene sequences unambiguously segregated a lineage consisting of NCGD amoebae from other members of the genus Neoparamoeba. Species-specific oligonucleotide probes that hybridise 18S rRNA were designed, validated and used to probe gill tissue from AGD-affected Atlantic salmon. The NCGD amoebae-specific probe bound AGD-associated amoebae while neither N. pemaquidensis nor N. branchiphila were associated with AGD-lesions. Together, these data indicate that NCGD amoebae are a new species, designated Neoparamoeba perurans n.sp. and this is the predominant aetiological agent of AGD of Atlantic salmon cultured in Tasmania, Australia.  相似文献   

20.
Abstract Data on soils, vegetation and environment were collected between 510 and 1050m a. s. l. on Mt Sprent, southwestern Tasmania, traversing the Gymnoschoenus sphaerocephalus sedgeland-alpine vegetation boundary. One or more of the following horizons were found in almost all soil pits (downwards from the surface to the bed rock) fibric peat, hemic peat, sapric peat, organic sand, sand and clay. Mean total soil depth, mean organic soil depth, mean humification of the soil surface horizon, pH and mean organic content of the surface horizon all decline with altitude, while the redness of the soil and the mean depth of the mineral and gravel layers increase. At four intensively studied sites at 620, 850, 930 and 1040 m the relationships between phytosociological, topographic and water-table variables, and soil characteristics were determined. The pH of the topsoil was significantly positively related to water-table depth at three sites, but there were no other relationships between local environmental variation and soil characteristics that were consistent between most of the four sites, despite a large number of locally significant relationships. The alpine and sedgeland soils differ most markedly in colour, number of horizons and degree of humification of the surface horizon. The vegetation at each site was separated into communities along a drainage gradient. The mesoscale differences in soils seem most likely to be attributable to a vegetation productivity gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号