首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The microbial polysaccharides secreted and produced from various microbes into their extracellular environment is known as exopolysaccharide. These polysaccharides can be secreted from the microbes either in a soluble or insoluble form.Lactobacillus sp. is one of the organisms that have been found to produce exopolysaccharide. Exo-polysaccharides (EPS) have various applications such as drug delivery, antimicrobial activity, surgical implants and many more in different fields. Medium composition is one of the major aspects for the production of EPS from Lactobacillus sp., optimization of medium components can help to enhance the synthesis of EPS . In the present work, the production of exopolysaccharide with different medium composition was optimized by response surface methodology (RSM) followed by tested for fitting with artificial neural networks (ANN). Three algorithms of ANN were compared to investigate the highest yeild of EPS. The highest yeild of EPS production in RSM was achieved by the medium composition that consists of (g/L) dextrose 15, sodium dihydrogen phosphate 3, potassium dihydrogen phosphate 2.5, triammonium citrate 1.5, and, magnesium sulfate 0.25. The output of 32 sets of RSM experiments were tested for fitting with ANN with three algorithms viz. Levenberg–Marquardt Algorithm (LMA), Bayesian Regularization Algorithm (BRA) and Scaled Conjugate Gradient Algorithm (SCGA) among them LMA found to have best fit with the experiments as compared to the SCGA and BRA.  相似文献   

2.
A gel-forming exopolysaccharide was previously shown to play an important structural role in aerobic granules treating nutrient-rich industrial wastewater. To identify whether this exopolysaccharide performs a similar role in other granular biomass and if conditions favouring its production can be more precisely elucidated, extracellular polymeric substances (EPS) were extracted from granules grown under four different operating conditions. 1H nuclear magnetic resonance (NMR) spectroscopy of their EPS indicated that the gel-forming exopolysaccharide was expressed in two granular sludges both enriched in CandidatusCompetibacter phosphatis”. In contrast, it was not expressed in granules performing denitrification with methanol as a carbon source and nitrate as the electron acceptor or granules enriched in CandidatusAccumulibacter phosphatis” performing enhanced biological phosphorus removal from synthetic wastewater. In one of the first two sludges, the exopolysaccharide contained in the seeding granular sludge continued to be a major component of the granule EPS while Competibacter was being enriched. In the second sludge, a floccular sludge not containing the gel-forming exopolysaccharide initially was also enriched for Competibacter. In this sludge, an increase in particle size was detected coinciding with a yield increase of EPS. NMR spectroscopy confirmed its yield increase to be attributable to the production of this structural gel-forming exopolysaccharide. The results show that (1) the particular gel-forming exopolysaccharide previously identified is not necessarily a key structural exopolysaccharide for all granule types, and (2) synthesis of this exopolysaccharide is induced under conditions favouring the selective enrichment of Competibacter. This indicates that Competibacter may be involved in its production.  相似文献   

3.
Although many studies have examined the influence of culture conditions on the production and composition of polysaccharides, little is known about the factors influencing the quality of exopolysaccharides (EPS). In this work we studied the effect of yeast extract on the production, composition and molecular weight of the EPS zooglan produced by Zoogloea ramigera 115SLR. This bacterium was grown on a new completely defined synthetic medium and on a medium containing yeast extract. Growth and polysaccharide production performances were comparable on the two media with a glucose to exopolysaccharide conversion yield of 35% (g/g). The polysaccharides produced on these two media have an identical composition but a different molecular weight and molecular weight distribution. The yeast extract medium leads to a more homogeneous polysaccharide solution. Received: 12 June 1998 / Received revision: 19 September 1998 / Accepted: 11 October 1998  相似文献   

4.
Optimum culture conditions, and carbon and nitrogen sources for production of water absorbing exopolysaccharide by Bacillus strain CMG1403 on local cheap substrates were determined using one variable at a time approach. Carbon source was found to be sole substrate for EPS biosynthesis in the presence of yeast extract that supported the growth only and hence, indirectly enhanced the EPS yield. Whereas, urea only coupled with carbon source could enhance the EPS production but no effect on growth. The maximum yield of EPS was obtained when Bacillus strain CMG1403 was grown statically in neutral minimal medium with 25% volumetric aeration at 30°C for 10 days. Under these optimum conditions, a maximum yield of 2.71±0.024, 3.82±0.005, 4.33±0.021, 4.73±0.021, 4.85±0.024, and 5.52±0.016 g/L culture medium was obtained with 20 g (sugar) of sweet whey, glucose, fructose, sucrose, cane molasses and sugar beet the most efficient one respectively as carbon sources. Thus, the present study showed that under optimum culture conditions, the local cheap substrates could be superior and efficient alternatives to synthetic carbon sources providing way for an economical production of water absorbing EPS by indigenous soil bacterium Bacillus strain CMG1403.  相似文献   

5.
Aims: The aim of this study was to assess the exopolysaccharide (EPS) production capacities of various strains of Oenococcus oeni, including malolactic starters and strains recently isolated from wine . Methods and Results: Fourteen O. oeni strains displaying or not (PCR check on genomic DNA) the gtf gene generally associated with β‐glucan formation and ropiness were grown on grape juice medium, dialysed MRS‐derived medium or synthetic medium. The soluble polysaccharides (PS) remaining in the culture supernatant were alcohol precipitated, and their concentration was quantified by the phenol‐sulfuric method. Most of the O. oeni strains studied produced significant amounts of EPS, independently of their genotype (gtf+ or gtf?). The EPS production was not directly connected with growth and could be stimulated by changing the growth medium composition. The molecular weight distribution analysis and attempts to determine the PS chemical structure suggested that most strains produce a mixture of EPS. Conclusion: Oenococcus oeni strains recently isolated from wine or cultivated for many generations as a malolactic starter are able to produce EPS other than β‐glucan. Significance and Impact of the Study: These EPS may enhance the bacteria survival in wine (advantage for malolactic starters) and may contribute to the wine colloidal equilibrium.  相似文献   

6.
Aims:  To identify if culture conditions affect the chemical composition of exopolysaccharide (EPS) produced by Aureobasidium pullulans .
Methods and Results:  In batch airlift and continuously stirred tank (CSTR) reactors the EPS produced with low (0·13 g l−1 N) initial NaNO3 or (NH4)2SO4 levels contained pullulan, with maltotriose as its major component, similar to that synthesized in the airlift reactor with high (0·78 g l−1 N) initial NaNO3 levels. EPS produced by CSTR grown cultures with high (NH4)2SO4 levels contained little pullulan, possibly because of a population shift from unicells to mycelium. This chemical difference may explain why total EPS yields did not fall as they did with cultures grown under identical conditions with high NaNO3 levels, where the pullulan component of the EPS disappeared. EPS synthesized in N-limiting chemostat cultures of A. pullulans changed little with growth rate or N source, being predominantly pullulan consisting of maltotriose units.
Conclusions:  While the EPS chemical composition changed little under N-limiting conditions, high initial medium N levels determined maltotriose content and/or pullulan content possibly by dictating culture morphology.
Significance and Impact of the Study:  These results emphasize the requirement of all studies to determine EPS chemical composition when examining the influence of culture conditions on EPS yields.  相似文献   

7.
Summary The exopolysaccharide (EPS) production and growth characteristics of Lactobacillus casei CRL 87 under pH control were studied. Maximum polymer synthesis (488 mg/l) and cell viability (2.4×1010 cfu/ml) occurred when L. casei was cultured at a constant pH of 6.0 and 30°C for 24 h. However, the optimum specific EPS production (3.9×10-5 g EPS/g cell dry weigt) and EPS yield (4.3%) were found at a pH of 4.0.  相似文献   

8.
EnterohemorrhagicEscherichia coli O157H7 produces visibly slimy colonies when grown on Sorbitol/MacConkey or Maloney's agar plates at room temperature, indicative of exopolysaccharide (EPS) production. Eighteen of 27 (67%) wild-typeE. coli O157H7 isolates produced enough EPS to be visually distinguishable. Of five strains that showed no visible EPS production on these media, four (80%) did produce slimy colonies on media containing higher salt concentrations. Measurements of EPS production by colorimetric determination of uronic acid indicated that EPS production was affected by growth temperature, atmosphere, and medium. Wild-typeE. coli O157H7 strain 932 produced the greatest amounts of EPS when grown anaerobically at 37°C, whereas its plasmid-cured derivative 932P produced large quantities of EPS when grown aerobically at room temperature. Electron micrographs revealed thin, flexible fibers extending from the bacterial cell surface. Cells of strain 932P grown aerobically at room temperature were completely encased in a thick EPS matrix. Chemical analysis of purified EPS revealed that it is very similar or identical to colanic acid.E. coli O157H7 adheres better to INT 407 cells when grown under conditions that favor high EPS production than when grown under conditions that repress EPS production.  相似文献   

9.
In the rhizosphere, exopolymers are also known to be useful to improve the moisture-holding capacity. The ability of the isolates from coastal sand dunes to produce exopolymers was determined. Among which the isolate, showing very high production of exopolysaccharide (EPS), Microbacterium arborescens––AGSB, a facultative alkalophile was further studied for exopolymer production. The isolate a gram-positive non-spore forming, slender rod, catalase positive, oxidase negative, showed growth in 12% sodium chloride. The culture was found to produce exopolymer which showed good aggregation of sand which has an important role in the stabilization of sand dunes. The exopolymer was further analysed. The cold isopropanol precipitation of dialysed supernatants grown in polypeptone yeast extract glucose broth produced partially soluble EPSs with glucose as the sole carbon source. Chemical analysis of the EPS revealed the presence of rhamnose, fucose, arabinose, mannose, galactose and glucose. On optimization of growth parameters (sucrose as carbon source and glycine as nitrogen source), the polymer was found to be a heteropolysaccharide containing mannose as the major component. It was interesting to note that the chemical composition of the exopolymers produced from both unoptimized and optimized culture conditions of Microbacterium arborescens––AGSB is different from those of other species from the same genera. This study shows that marine coastal environments such as coastal sand dunes, are a previously unexplored habitat for EPS-producing bacteria, and that these molecules might be involved in ecological roles protecting the cells against dessication especially in nutrient-limited environments such as the coastal sand dunes more so in the extreme conditions of pH. Such polysaccharides may help the bacteria to adhere to solid substrates and survive during the nutrient limitations.  相似文献   

10.
Effects of a fungal endophyte, Fusarium mairei, on growth and paclitaxel formation of Taxus cuspidata cells were investigated by adding fungal endophyte culture supernatant (FECS) to suspension cultures of T. cuspidata cells. The main effective chemical responsible for paclitaxel formation in FECS was an exopolysaccharide (EPS) of molecular weight ~2 kDa. FECS fractions except EPS stimulated growth of Taxus cells but had no effects on paclitaxel accumulation. Additionally, elicitation efficiency of FECS based on different culture conditions was studied. EPS content in FECS was related to FECS culture conditions. FECS with long cultivation and high-aeration cultivation contained higher EPS content and resulted in higher paclitaxel yield than that with short cultivation and low-aeration cultivation. The maximum yield of paclitaxel from Taxus cultures, elicited by FECS with 9-day cultivation, was 4.7-fold that of the control cultures.  相似文献   

11.
The bacterial plant pathogen Xylella fastidiosa produces biofilm that accumulates in the host xylem vessels, affecting disease development in various crops and bacterial acquisition by insect vectors. Biofilms are sensitive to the chemical composition of the environment, and mineral elements being transported in the xylem are of special interest for this pathosystem. Here, X. fastidiosa liquid cultures were supplemented with zinc and compared with nonamended cultures to determine the effects of Zn on growth, biofilm, and exopolysaccharide (EPS) production under batch and flow culture conditions. The results show that Zn reduces growth and biofilm production under both conditions. However, in microfluidic chambers under liquid flow and with constant bacterial supplementation (closer to conditions inside the host), a dramatic increase in biofilm aggregates was seen in the Zn-amended medium. Biofilms formed under these conditions were strongly attached to surfaces and were not removed by medium flow. This phenomenon was correlated with increased EPS production in stationary-phase cells grown under high Zn concentrations. Zn did not cause greater adhesion to surfaces by individual cells. Additionally, viability analyses suggest that X. fastidiosa may be able to enter the viable but nonculturable state in vitro, and Zn can hasten the onset of this state. Together, these findings suggest that Zn can act as a stress factor with pleiotropic effects on X. fastidiosa and indicate that, although Zn could be used as a bactericide treatment, it could trigger the undesired effect of stronger biofilm formation upon reinoculation events.  相似文献   

12.
The physico-chemical factors influencing the production of poly(-hydroxybutyric acid) [PHB] and exopolysaccharide (EPS) by a yellow pigmented Azotobacter beijerinckii strain WDN-01 were investigated. Under N-free condition with excess carbon, PHB accumulation attained its maximum at the late exponential phase followed by a sharp decline while EPS production was more or less parallel with growth. Polymer synthesis, however, was carbon-source-specific, the highest yield of PHB (2.73 g/l) and EPS (1.5 g/l) was obtained with 3% (w/v) glucose and mannitol respectively. Organic N-sources enhanced PHB production significantly, but inorganic nitrogenous compounds were inhibitory to both PHB and EPS synthesis. At optimum K2HPO4 concentration, the polymer yield was attributed to biomass yield. Oxygen-limiting conditions, irrespective of carbon sources favoured production of PHB and EPS.  相似文献   

13.
The effects of monovalent and divalent cations on the rheological behavior of Halomonas eurihalina exopolysaccharide (EPS) were studied. Sodium, potassium, magnesium and calcium were added and the relative abilities to increase viscosity were as follows: KCl > NaCl > MgCl2 > CaCl2. The highest viscosity value was measured in acidic 10−4 M KCl, in which a gel formed. A loss of sulfate content seemed to correlate with the increase of viscosity. H. eurihalina produced EPS in all growth media. Addition of hydrophobic substrates to culture media produced changes in chemical composition and emulsifying activity of the EPS. Xylene was the most effectively emulsified substance and the EPS produced on tetradecane and on corn oil the most active emulsifier. Received 25 July 1997/ Accepted in revised form 30 January 1998  相似文献   

14.
Some physicochemical properties of the microbial exopolysaccharide (EPS) ethapolan synthesized by Acinetobacter sp. 12S depended on whether the producer was grown on a mixture of ethanol and glucose or on a single substrate. Irrespective of the carbon source in the nutrient medium, the contents of carbohydrates, pyruvic acid, uronic acids, and mineral components in the EPS remained unchanged. The EPS were also identical in their monosaccharide composition: the molar ratio of glucose, mannose, galactose, and rhamnose was 3 : 2 : 1 : 1. EPS with a higher content of fatty acids was synthesized during growth on the mixture of ethanol and glucose. The average molecular mass and the content of high-molecular (M > 2 MDa) fractions were greater in ethapolan produced on the substrate mixture. In the presence of 0.1 M KCl, after transformation into the H+ form, and in the Cu2+–glycine system, solutions of these EPS showed higher viscosity than solutions of EPS synthesized on single substrates. The reasons for the improved rheological properties of the EPS produced on the substrate mixture are discussed.  相似文献   

15.
The aerobic nitrogen-fixing cyanobacterium, Cyanothece sp. BH68K produces non-mucoid variants defective in exopolysaccharide (EPS) production at a high frequency. The EPS-producing wild-type colonies (EPS+) have a characteristic smooth and shiny appearance which allows them to be easily distinguished from the EPS- variants. When grown on agar plates lacking a source of combined nitrogen, the EPS- variants exhibited a yellow phenotype typical of nitrogen starvation. These EPS- variants showed varying degrees of reversion back to the EPS+ phenotype. After reversion, they exhibited normal diazotrophic growth on agar plates. Alcian blue and ruthenium red staining indicated that the EPS is an acidic polysaccharide, which is present as a loose network around the cell, and which can be completely removed by low speed centrifugation. The accumulation of EPS takes place mainly during the stationary phase. All EPS- variants failed to produce any EPS. Analysis of growth of wild-type and EPS- variants revealed that EPS production is beneficial for diazotrophic growth on solid medium, but not in liquid medium. In addition, EPS phenotypic alteration may have some advantage in the dispersal of cells from one place to another in the natural environment.K.J. Reddy. J. Tang and R.L. Bradley are, and B.W. Soper was, with the Department of Biological Sciences, State University of New York at Binghamton, Binghamton, NY 13902; B.W. Soper is now with the Jackson Laboratory, Box 302, 600 Main St., Bar Harbor, ME 04609.  相似文献   

16.
The potential of Lactobacillus rhamnosus R for producing exopolysaccharide (EPS) when grown on basal minimum medium supplemented with glucose or lactose was investigated. EPS production by L. rhamnosus R is partially growth associated and about 500 mg of EPS per liter was synthesized with both sugars. The product yield coefficient (Y(EPS/S)) was 3.15 (0.0315 g of EPS [g of lactose](-1)) and 2.88 (0.0288 g of EPS [g of glucose](-1)). It was clearly shown that the amount of EPS produced declined upon prolonged fermentation. Degradation of EPS in fermentation processes was also assessed by measuring its molecular weights and viscosities. As these reductions might have a negative effect on the yield and viscosifying properties of EPS, it was essential to examine possible causes related to this breakdown. The decrease in viscosities and molecular weights of EPS withdrawn at different cultivation times permitted us to suspect the presence of a depolymerizing enzyme in the fermentation medium. Our study on enzymatic production profiles showed a large spectrum of glycohydrolases (alpha-D-glucosidase, beta-D-glucosidase, alpha-D-galactosidase, beta-D-galactosidase, beta-D-glucuronidase, and some traces of alpha-L-rhamnosidase). These enzymes were localized, two of them (alpha-D-glucosidase and beta-D-glucuronidase) were partially purified and characterized. When incubated with EPS, these enzymes were capable of lowering the viscosity of the polymer as well as liberating some reducing sugars. Upon prolonged incubation (27 h), the loss of viscosity was increased up to 33%.  相似文献   

17.
Elevated levels of the second messenger c‐di‐GMP activate biosynthesis of an unknown exopolysaccharide (EPS) in the food‐borne pathogen Listeria monocytogenes. This EPS strongly protects cells against disinfectants and desiccation, indicating its potential significance for listerial persistence in the environment and for food safety. We analyzed the potential phylogenetic origin of this EPS, determined its complete structure, characterized genes involved in its biosynthesis and hydrolysis and identified diguanylate cyclases activating its synthesis. Phylogenetic analysis of EPS biosynthesis proteins suggests that they have evolved within monoderms. Scanning electron microscopy revealed that L. monocytogenes EPS is cell surface‐bound. Secreted carbohydrates represent exclusively cell‐wall debris. Based on carbohydrate composition, linkage and NMR analysis, the structure of the purified EPS is identified as a β‐1,4‐linked N‐acetylmannosamine chain decorated with terminal α‐1,6‐linked galactose. All genes of the pssAE operon are required for EPS production and so is a separately located pssZ gene. We show that PssZ has an EPS‐specific glycosylhydrolase activity. Exogenously added PssZ prevents EPS‐mediated cell aggregation and disperses preformed aggregates, whereas an E72Q mutant in the presumed catalytic residue is much less active. The diguanylate cyclases DgcA and DgcB, whose genes are located next to pssZ, are primarily responsible for c‐di‐GMP‐dependent EPS production.  相似文献   

18.
Our studies enabled us to intensify the synthesis of the microbial exopolysaccharide (EPS) ethapolan produced by Acinetobacter sp. IMV B-7005 grown on a mixture of fumarate (an energy-excessive substrate) and glucose (an energy-deficient substrate). Supplementing glucose-containing medium with sodium (potassium) fumarate at a molar ratio of 4: 1 resulted in a 1.3–2.2-fold increase of the EPS amount synthesized and in a 1.3–2-fold increase of the EPS yield relative to the biomass compared to cultivation on monosubstrates. The conversion of the carbon of both substrates to EPS was the highest if the carbon/nitrogen ratio in the cultivation medium was 70.5 and inoculum grown on glucose monosubstrate was used.  相似文献   

19.
It is believed that high concentrations of sodium chloride (NaCl) suppress the biosynthesis of exopolysaccharide (EPS) in lactic acid bacteria (LAB). Nevertheless, overproduction of EPSs due to high salinity stress in solid state fermentation performed on an agar surface was demonstrated in this study using a response surface methodology via a central composite design (CCD). Under optimized conditions with NaCl 4.97% and sucrose 136.5 g/L at 40.79 h of incubation, the EPS yield was 259% (86.36 g/L of EPS), higher than the maximum yield produced with the modified MRS medium containing only 120 g/L of sucrose without NaCl (33.4 g/L of EPS). Biosynthesis of EPS by Lactobacillus confusus TISTR 1498 was independent of biomass production. Our results indicated that high salinity stress can enhance EPS production in solid state fermentation.  相似文献   

20.
Influence of various levels of CaCl2 (0, 1, 10 and 100 mM) on exopolysaccharide production has been investigated in the cyanobacterium Anabaena 7120. At the concentration of 1 mM CaCl2, growth was found to be stimulatory while 100 mM was sub lethal for the cyanobacterial cells. Estimation of EPS content revealed that EPS production depends on the concentration of calcium ions in the immediate environment with maximum being at10 mM CaCl2. A possible involvement of alr2882 gene in the process of EPS production was also revealed through qRT-PCR. Further, FTIR-spectra marked the presence of aliphatic alkyl-group, primary amine-group, and polysaccharides along with shift in major absorption peaks suggesting that calcium levels in the external environment regulate the composition of EPS produced by Anabaena 7120. Thus, both quantity and composition of EPS is affected under different calcium chloride concentrations presenting possibilities of EPS with novel unexplored features that may offer biotechnological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号