首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the study was to find the quantitative relationship of postnatal changes in the glomeruli anatomic structure with the blood flow in kidneys. Kidney development was studied in 4-, 12-, 30-, and 65-day-old Wistar rats. Diameters of glomerulus (Dgl, microm), afferent and efferent arterioles (Daf and Def), and the glomeruli density (Ngl, mm(-3)) were measured posthumously. Volumes of one ((see text of symbol))V gl, microm3) and all glomeruli (see text for symbol)(sigma(see text for symbol)Vgl, mm3/cm3) and the glomeruli arterioles lumen (Saf and Sef, microm2) were calculated. The renal specific blood flow (SBF per unit of kidney weight, KW) was measured by the laser-Doppler flowmeter (in perfusion units, p.u.) under sodium barbamyl narcosis. We have found that, during postnatal growth, glomeruli morphological parameters vary according to the equations: Dgl = 7.1 (see text for symbol) KW0.41, (see text for symbol)V gl = 187 (see text for symbol) KW1.23, Ngl = 5309 (see text for symbol) KW-0.63 (KW, mg and for one kidney), Saf = 1.1 (see text for symbol)V gl 0.35, and Sef = 6.3 (see text for symbol) V gl 0.14. The renal SBF in 4-, 12-, and 65-day-old rats increases according to SBF = 6.7 (see text for symbol) (sigma( see text for symbol)V gl)0.98. The renal SBF calculated per unit of glomeruli volume varies a little with age.  相似文献   

2.
Artificially inseminated eggs of feral North Sea whiting (Merlangius merlangus) were incubated in the laboratory in order to determine reproductive success. After incubation, two measures for reproductive success, total hatch and viable hatch, were determined and correlated with chlorinated hydrocarbon residues in the respective ovaries. From their specific toxicities and the sum of all determined chlorinated hydrocarbon contaminants, a contamination factor (CF) was calculated. Significant negative correlations were found between total hatch and DDT, including its metabolites (ΣDDT), dieldrin and the CF. ΣDDT and the CF were also negatively correlated with viable hatch. A threshold value of ovary contamination above which impairment of reproductive success was likely to occur was set at > 200 μg kg−1 wet wt. for ΣPCB, > 20 μg kg−1 wet wt. for ΣDDT and > 10 μg kg−1 wet wt. for dieldrin.  相似文献   

3.
The rationale of this dose matching/dose escalating study was to compare a panel of flavonoids—luteolin, resveratrol, and quercetin—against the metabolite flux-controlling properties of a synthetic targeted fatty acid synthase inhibitor drug C75 on multiple macromolecule synthesis pathways in pancreatic tumor cells using [1,2-13C2]-d-glucose as the single precursor metabolic tracer. MIA PaCa-2 pancreatic adenocarcinoma cells were cultured for 48 h in the presence of 0.1% DMSO (control), or 50 or 100 μM of each test compound, while intracellular glycogen, RNA ribose, palmitate and cholesterol as well as extra cellular 13CO2, lactate and glutamate production patterns were measured using gas chromatography/mass spectrometry (GC/MS) and stable isotope-based dynamic metabolic profiling (SiDMAP). The use of 50% [1,2-13C2]-d-glucose as tracer resulted in an average of 24 excess 13CO2 molecules for each 1,000 CO2 molecule in the culture media, which was decreased by 29 and 33% (P < 0.01) with 100 μM C75 and luteolin treatments, respectively. Extracellular tracer glucose-derived 13C-labeled lactate fractions (Σm) were between 45.52 and 47.49% in all cultures with a molar ratio of 2.47% M + 1/Σm lactate produced indirectly by direct oxidation of glucose in the pentose cycle in control cultures; treatment with 100 μM C75 and luteolin decreased this figure to 1.80 and 1.67%. The tracer glucose-derived 13C labeled fraction (Σm) of ribonucleotide ribose was 34.73% in controls, which was decreased to 20.58 and 8.45% with C75, 16.15 and 6.86% with luteolin, 27.66 and 19.25% with resveratrol, and 30.09 and 25.67% with quercetin, respectively. Luteolin effectively decreased nucleotide precursor synthesis pentose cycle flux primarily via the oxidative branch, where we observed a 41.74% flux (M + 1/Σm) in control cells, in comparison with only a 37.19%, 32.74%, or a 26.57%, 25.47% M + 1/Σm flux (P < 0.001) after 50 or 100 μM C75 or luteolin treatment. Intracellular de novo fatty acid palmitate (C16:0) synthesis was severely and equally blocked by C75 and luteolin treatments indicated by the 5.49% (control), 2.29 or 2.47% (C75) and 2.21 or 2.73% (luteolin) tracer glucose-derived 13C-labeled fractions, respectively. On the other hand there was a significant 192 and 159% (P < 0.001), and a 103 and 117% (P < 0.01) increase in tracer glucose-derived cholesterol after C75 or luteolin treatment. Only resveratrol and quercetin at 100 μM inhibited tracer glucose-derived glycogen labeling (Σm) and turnover by 34.8 and 23.8%, respectively. The flavonoid luteolin possesses equal efficacy to inhibit fatty acid palmitate de novo synthesis as well as nucleotide RNA ribose turnover via the oxidative branch of the pentose cycle in comparison with the targeted fatty acid synthase inhibitor synthetic compound C75. Luteolin is also effective in stringently controlling glucose entry and anaplerosis in the TCA cycle, while it promotes less glucose flux towards cholesterol synthesis than that of C75. In contrast, quercetin and resveratrol inhibit glycogen synthesis and turnover as their underlying mechanism of controlling tumor cell proliferation. Therefore the flavonoid luteolin controls fatty and nucleic acid syntheses as well as energy production with pharmacological strength, which can be explored as a non-toxic natural treatment modality for pancreatic cancer.  相似文献   

4.
Summary The intrarenal distribution of renin in the mouse kidney was evaluated in a semiquantitative immunocytochemical study using an antiserum against pure mouse renin and the PAP technique. The bulk of renin positive cells was found in the media of the afferent arteriole. When examining the geometry of renin distribution about 35% of the afferent vessels were seen to be renin positive only over a distance of 20 m, about 60% over a distance of 30 m. In the remaining afferent arterioles, renin was also found upstream over distances up to 100 or even 200 m. These results are discussed with regard to the stimuli for renin secretion, especially the macula densa signal. — At the vascular pole of the glomerulus, virtually 100% of the afferent, and 20%–40% of the efferent arterioles were found to be renin positive at an antiserum dilution of 1:1,000. As some efferent vessels — especially those of the juxtamedullar region — show scattered activity occasionally over a distance of more than 100 m, it is suggested that the figure of 20%–40% should be taken as a minimal count for renin positive efferent arterioles. — To compare the renin content of superficial and juxtamedullary, afferent and efferent arterioles in normal salt and salt depleted mice, the fraction of positive renin reactions close to the vascular pole was determined at antiserum concentrations of 10–3, 10–4, 2×10–4 and 10–5. By this semiquantitative immunocytochemical method the afferent arterioles of superficial glomeruli could be shown to contain significantly higher renin concentrations than those of juxtamedullar glomeruli. This result was in agreement with biochemical renin estimations in mouse kidney slices taken from cortical and juxtamedullar sites. Sodium deprivation was followed by only a slight elevation of the fraction of positive superficial afferent arterioles (confirmed by the biochemical data). In contrast, sodium deprivation induced a highly significant increase of the number of positive superficial efferent vessels. This result is discussed with regard to (controversial) reports on a preferential efferent vasoconstrictor tone sustained by angiotensin II especially under the condition of sodium depletion. Juxtamedullar vasa afferentia and efferentia did not respond significantly to sodium restriction. —The Goormaghtigh cell field was found to be renin negative in superficial as well as in juxtamedullar glomeruli both in normal salt and salt deprived mice. Inspecting nearly 5,000 glomeruli, only 5 clearly renin positive mesangial cells were seen close to the glomerular stalk. In contrast, renin positive media cells could not seldom be seen in interlobular arteries and at the point of their branching into afferent arterioles.A first account of these results was given at the Rottach-Egern Satellite Symposium of the VIIth International Congress of Nephrology: The juxtaglomerular apparatus and the tubuloglomerular feedback mechanism — morphology, biochemistry and function, June 3 to 5, 1981These studies were supported by the Deutsche Forschungsgemeinschaft within the SFB 90 Cardiovasculäres System  相似文献   

5.
Sef is a transmembrane protein inhibiting FGF signaling. To determine the correlation of Sef with human diseases, Sef expression patterns were observed in cell lines and human cancer tissues. Western blot using anti-hSef antibodies showed that hSef, when expressed in Cos7 cells gave a molecular mass of 100 KD as compared with 80 KD in an in vitro translation assay suggesting occurrence of glycosylation at the potential N-linked glycosylation sites in the extracellular domain. Northern blot showed that hSef was mainly expressed in human kidney and testis. RT-PCR analysis showed a widely spread expression pattern in several cell lines. Immunohistochemical analysis revealed a high expression level of hSef in kidney, testis, and the corresponding carcinoma tissues. Results demonstrated that Sef might be up-regulated in the cancer tissues suggesting a possible role of Sef in pathophysiology of human diseases. __________ Translated from Chinese Journal of Biochemistry and Molecular Biology, 2005, 21 (2) [译自: 中国生物化学与分子生物学报, 2005,21(2)]  相似文献   

6.
A method for measuring the gas temperature in an oxygen plasma by spectroscopy of the electronic transition from the O2(b 1Σ g + , v = 0) metastable state of molecular oxygen into the O2(X 3Σ g , v = 0) ground state is considered in detail. The method is verified experimentally for the plasma of dc glow discharge in pure oxygen. It is shown that the gas temperature can be determined by analyzing high-resolution spectra of the P branch of this transition, no matter whether its fine structure (P P and P Q branches) is resolved or masked, provided that the rotational structure of the spectrum is resolved. The feasibility of the method proposed in 1999 by P. Maco and P. Veis for determining the gas temperature from the ratio between the intensity maxima of the R and P branches of the O2(b 1Σ g + , v = 0) → O2(X 3Σ g , v = 0) transition in a poorly resolved spectrum was studied experimentally. It is shown that, in order to use this method, it is necessary to know the spectrograph instrumental function. The effect of the spatial inhomogeneity of the temperature and concentration of O2(b 1Σ g + ) molecules on the accuracy of integral (over the plasma volume) measurements of the gas temperature is investigated using spatially resolved spectroscopy of the O2(b 1Σ g + , v = 0) → O2(X 3Σ g , v = 0) transition. It is shown that precise measurements of the temperature require that the optical measurement system be thoroughly adjusted in order for the temperature and concentration of the emitting particles to vary insignificantly over the optically selected volume. Original Russian Text ? S.M. Zyryanov, D.V. Lopaev, 2007, published in Fizika Plazmy, 2007, Vol. 33, No. 6, pp. 563–574.  相似文献   

7.
The dependence of nitrification on time may be expressed as ΣN=C/(m+1) ·t m+1 since its logarithmic form log ΣN=K logt+q suggests the possibility of a linear relationship between log ΣN and logt such as was found in more than 50 cases of nitrification in different soils. It was further shown that the equations for the integration curve and for the rate curve are of the same form, differing only in the constants.  相似文献   

8.
Dopamine and urodilatin promote natriuresis and diuresis through a common pathway that involves reversible deactivation of renal Na+, K+-ATPase. We have reported that urodilatin enhances dopamine uptake in outer renal cortex through the natriuretic peptide type A receptor. Moreover, urodilatin enhances dopamine-induced inhibition of Na+, K+-ATPase activity. The objective of the present work was to investigate the intracellular signals involved in urodilatin effects on dopamine uptake in renal cortex of kidney rats. We show that urodilatin-elicited increase in 3H-dopamine was blunted by methylene blue (10 μM), a non-specific guanylate cyclase inhibitor, and by phorbol-12-myristate-13-acetate (1 μM), a particulate guanylate cyclase inhibitor, but not by 1H-[1,2,4]-Oxadiazolo-[4,3-a]-quinoxalin-1-one (10 μM), a specific soluble guanylate cyclase inhibitor; therefore the involvement of particulate guanylate cyclase on urodilatin mediated dopamine uptake was confirmed. Cyclic guanosine monophosphate and proteinkinase G were also implicated in the signaling pathway, since urodilatin effects were mimicked by the analog 125 μM 8-Br-cGMP and blocked by the proteinkinase G-specific inhibitor, KT-5823 (1 μM). In conclusion, urodilatin increases dopamine uptake in renal cortex stimulating natriuretic peptide type A receptor, which signals through particulate guanylate cyclase activation, cyclic guanosine monophosphate generation, and proteinkinase G activation. Dopamine and urodilatin may achieve their effects through a common pathway that involves deactivation of renal Na+, K+-ATPase, reinforcing their natriuretic and diuretic properties.  相似文献   

9.
Critical levels of selenium in raya (Brassica juncea Czern L.), maize (Zea mays L.), wheat (Triticum aestivum L.) and rice (Oryza sativa L.) were worked out by growing these crops in an alkaline silty loam soil treated with different levels of selenite-Se ranging from 1 to 25 μg g−1 soil. Significant decrease in dry matter yield was observed above a level of 5 μg Se g−1 soil in raya and maize; 4 μg Se g−1 soil in wheat and 10 μg Se g−1 soil in rice shoots. The critical level of Se in plants above which significant decrease in yield would occur was found to be 104.8 μg g−1 in raya, 76.9 μg g−1 in maize, 41.5 μg g−1 in rice and 18.9 μg g−1 in wheat shoots. Significant coefficients of correlation were observed between Se content above the critical level and dry matter yield of raya as well as rice (r = −0.99, P ≤ 0.01), wheat (r = −0.97, P ≤ 0.01) and maize ((r = −0.96, P ≤ 0.01). A synergistic relationship was observed between S and Se content of raya (r = 0.96, P ≤ 0.01), wheat (r = 0.89, P ≤ 0.01), rice (r = 0.85, P ≤ 0.01) and maize (r = 0.84, P ≤ 0.01). Raya, maize and rice absorbed Se in levels toxic for animal consumption (i.e. > 5 mg Se kg−1) when the soil was treated with more than 1.5 μg Se g−1. In case of wheat, application of Se more than 3 μg g−1 soil resulted in production of toxic plants.  相似文献   

10.
Songbirds are widely studied to investigate the hormonal control of behavior. However, little is known about the effects of steroids on neurotransmission in these birds. We used electrophysiological and pharmacological techniques to characterize γ-aminobutyric acid (GABA) type A receptors (GABAA) of primary cultured telencephalic and hippocampal neurons from developing zebra finches. Additionally, their modulation by 17β-estradiol(E2), 5α- and 5β-dihydrotestosterone (DHT), 5α- and 5β-pregnan-3α-ol-20-one, and corticosterone was examined. Whole-cell GABA-evoked currents were inhibited by picrotoxin (10 μmol l−1) and bicuculline methiodide (10 μmol l−1) and potentiated by pentobarbital (100 μmol l−1) and propofol (3 μmol l−1). Loreclezole (10 μmol l−1) potentiated GABA-evoked currents, suggesting the presence of β2, β3 and/or β4 subunits. Diazepam (1 μmol l−1) potentiated currents, while Zn2+ (1 μmol l−1) caused no inhibition, indicating the presence of γ subunits. 5α- and 5β-Pregnan-3α-ol-20-one (100 nmol l−1) potentiated currents, whereas E2 (1 μmol l−1), 5α- and 5β-DHT (1 μmol l−1), and corticosterone (10 μmol l−1) had no detectable effect. We conclude that zebra finch telencephalic and hippocampal GABAA receptors include α, β, and γ subunits and are similar to their mammalian counterparts in both their biophysical and pharmacological properties. Additionally, GABA-evoked currents are greatly potentiated by 5α- and 5β-pregnan-3α-ol-20-one but show little or no acute modulation by sex steroids or corticosterone. Accepted: 12 November 1997  相似文献   

11.
N-malonyl-D-tryptophan (MT) and D-tryptophan added to the medium instead of auxin stimulated growth of soybean and tomato cell and tissue cultures. Effects of 50–100 μmol 1-1 MT and 100 –300 μmol 1-1 D-tryptophan were equal to the effect of 3–10 μmol 1-1 IAA. Soybean cells grown in the presence of 100 μmol 1-1 MT contained 125–170 ng IAA per 1 g fresh mass (as determined by spectrofluorimetric indole-α-pyrone method), whereas the cells grown in the presence of NAA 10. 7 μmol 1-1 contained 50 –60 ng IAA and the cells grown in the absence of auxin failed to show endogenous IAA. MT as proposed can be hydrolyzed by plant cells with liberation of D-tryptophan, which in turn can be used in IAA synthesis. It is proposed that MT is a possible source of endogenous auxin in plants.  相似文献   

12.
The objective of this work was to determine the influence of total dissolved solids/salinity (TDS mgL-1) on growth and biomass specific rates of nodularin (hepatotoxin) production by Nodularia spumigena 001E isolated from Lake Alexandrina, South Australia. Maximum biomass yield (dry matter, chlorophyll a and particulate organic carbon/POC) at 80 μmol photon m-2 s-1 was recorded at 3300 mg TDS L-1 and decreased at salinities above or below this value (p < 0.05). The maximum biomass yield (dry matter and chlorophyll a) at 30 μmol m-2 s-1 occurred at a higher salinity of 9900 mg TDS L-1. Cultures grown at 80 μmol m-2 s-1, at a TDS> 6600 mg L-1, had significantly (p < 0.05) lower nodularin content (ml-1 medium) than cultures grown at the same salinities at 30 μmolm-2 s-1. The maximum total toxin concentration (mL-1 medium) occurred at 9900 and 3300 mg TDS L-1 at 30 μmol m-2 s-1and 80 μmol m-2 s-1 respectively. Toxin per unit biomass, expressed as dry matter, chlorophyll a and POC was similar for cultures grown at 30 μmol m-2 s-1 or 80 μmol m-2s-1 at salinities < 6600 mg TDS L-1. At salinities > 9900 mg TDS L-1 the toxin content per unit biomass decreased at both irradiances, however, cultures grown at 30 μmol m-2s-1 had a higher toxin content than those grown at 80 μmol m-2 s-1. The results indicate that not only do changes in irradiance and salinity directly influence growth and toxin production but that changes in irradiance affected the influence of salinity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
We examined whether metabolites of arachidonic acid (AA) regulate K+ efflux during regulatory volume decrease (RVD) by mudpuppy red blood cells (RBCs). Volume regulation was inhibited by the phospholipase A2 antagonists mepacrine (10 μm) and ONO-RS-082 (10 μm); the inhibitory effect of ONO-RS-082 was reversed by gramicidin (5 μm). Eicosatetraynoic acid (ETYA, 100 μm), a general antagonist of AA metabolism, also blocked RVD. In addition, volume regulation was inhibited by the lipoxygenase pathway antagonist nordihydroguaiaretic acid (NDGA, 10 μm), the 5 lipoxygenase antagonists AA-861 (5 μm) and curcumin (20 μm), and by the 5-lipoxygenase activating protein inhibitor L-655,298 (5 μm). Inhibition by all four of these agents was reversed with gramicidin. In contrast, the 12- and 15-lipoxygenase pathway inhibitor ethyl-3,4-dihydroxy-benzylidene-cyanoacetate (EDBCA, 1 μm) and the cytochrome P-450 monooxygenase pathway blocker ketoconazole (20 μm) had no effect. On the other hand, the cyclooxygenase pathway inhibitor aspirin (100 μm) slightly enhanced RVD. Consistent with these findings, a K+-selective whole cell conductance responsible for K+ efflux during cell swelling was inhibited by ONO-RS-082 (10 μm), NDGA (10 μm), AA-861 (5 μm), curcumin (20 μm), and l-655,298 (5 μm). In contrast, EDBCA (1 μm), ketoconazole (20 μm), and indomethacin (10 μm) did not block this whole cell conductance. These results indicate that a channel mediating K+ loss during RVD is regulated by a 5-lipoxygenase metabolite of arachidonic acid. Received: 12 December 1996/Revised: 28 February 1997  相似文献   

14.
Lipoxygenase (LOX) from opium poppy (Papaver somniferum L.) chloroplasts was isolated and 126.1-fold purified to electrophoretic homogeneity by combination of ion-exchange chromatography on HA-Ultragel column and affinity chromatography on a linoleyl-aminopropyl agarose column. The relative molecular mass of the LOX determined by SDS-PAGE was 92 kDa. Kinetic properties of purified LOX were determined in spectrophotometric assay by using of linoleic acid (KM = 1.78 mM and Vmax = 11.4 μmol mg−1 min−1) and linolenic acid (KM = 1.27 mM and Vmax = 10.2 μmol mg−1 min−1). The optimum pH was 6.0 for both linoleic and linolenic acid dioxygenation catalyzed by LOX. HPLC analysis of the products revealed a dual positional specificity of linoleic acid dioxygenation at pH 6.0 with ratio of 9- and 13-hydroperoxide products being about 1:1. The activity of purified LOX was stimulated by Mg2+ and Ca2+.  相似文献   

15.
We performed a one-year study to determine the effects of on-site sewage disposal systems (OSDS, septic tanks) on the nutrient relations of limestone groundwaters and nearshore surface waters of the Florida Keys. Monitor wells were installed on canal residences with OSDS and a control site in the Key Deer National Wildlife Refuge on Big Pine Key. Groundwater and surface water samples were collected monthly during 1987 and analyzed for concentrations of dissolved inorganic nitrogen (DIN = NOf3/sup- + NOf2/sup- + NH4/su+), soluble reactive phosphate (SRP), temperature and salinity. Significant nutrient enrichment (up to 5000-fold) occurred in groundwaters contiguous to OSDS; DIN was enriched an average of 400-fold and SRP some 70-fold compared to control groundwaters. Ammonium was the dominant nitrogenous species and its concentration ranged from a low of 0.77 μM in control wells to 2.75 mM in OSDS-enriched groundwaters. Concentrations of nitrate plus nitrite were also highly enriched and ranged from 0.05 μM in control wells to 2.89 mM in enriched groundwaters. Relative to DIN, concentrations of SRP were low and ranged from 30 nM in control wells to 107 μM in enriched groundwaters. N : P ratios of enriched groundwaters were consistently > 100 and increased with increasing distance from the OSDS, suggesting significant, but incomplete, adsorption of SRP by subsurface flow through carbonate substrata. Nutrient concentrations of groundwaters also varied seasonally and were approximately two-fold higher during the winter (DIN = 1035 μM; SRP = 10.3 μM) compared to summer (DIN = 470 μM; SRP = 4.0 μM). In contrast, surface water nutrient concentrations were two-fold higher during the summer (DIN = 5.0 μM; SRP = 0.50 μM) compared to winter (DIN = 2.5 μM; SRP = 0.15 μM). Direct measurement of subsurface groundwater flow rate indicated that tides and increased groundwater recharge enhanced flow some two-fold and six-fold, respectively. Accordingly, the observed seasonal coupling of OSDS-derived nutrients from groundwaters to surface waters is maximum during summer because of seasonally maximum tides and increased hydraulic head during the summer wet season. The yearly average benthic flux of anthropogenic DIN into contiguous canal surface waters is 55 mmol m-2 day-1, a value some five-fold greater than the highest rate of benthic N-fixation measured in carbonate-rich tropical marine waters.  相似文献   

16.
Enterotoxin production is a key factor in Bacillus cereus food poisoning. Herein, the effect of the growth rate (μ) on B. cereus toxin production when grown on sucrose was studied and the Hemolytic BL enterotoxin (HBL) and nonhemolytic enterotoxin (Nhe) production by B. cereus was compared according to carbohydrate at μ = 0.2 h−1. The anaerobic growth was carried out on continuous cultures in synthetic medium supplemented with glucose, fructose, sucrose, or an equimolar mixture of glucose and fructose. Concerning the HBL and Nhe enterotoxin production: (1) the highest enterotoxin production has occurred at μ = 0.2 h−1 when growing on sucrose; (2) HBL production was repressed when glucose was consumed and the presence of fructose (alone or in mixture) cancelled glucose catabolite repression; (3) the consumption of sucrose increased Nhe production, which was not affected by the catabolite repression. Furthermore, analysis of the fermentative metabolism showed that whatever the μ or the carbon source, B. cereus used the mixed acid fermentation to ferment the different carbohydrates. The enterotoxin productions by this strain at μ = 0.2 h−1 are highly influenced by the carbohydrates that do not involve any fermentative metabolism changes.  相似文献   

17.
 The synthesis of poly(3-hydroxyalkanoates) (PHA) by Pseudomonas putida KT2442 growing on long-chain fatty acids was studied in continuous cultures. The effects of the growth rate on the biomass and polymer concentration were determined and it was found that the PHA concentrations decreased with increasing growth rates. The highest volumetric productivity was 0.13 g PHA l-1 h-1 at a specific growth rate (μ) of 0.1 h-1. The molecular mass of the polymer remained constant at all growth rates but changes in the monomeric composition of the PHA synthesized were observed. Variation of the carbon to nitrogen (C/N) ratio of the substrate feed at μ=0.1 h-1 revealed optimal PHA formation at C/N=20 mol/mol. In order to optimize PHA production P. putida KT2442 was cultivated to high cell densities in oxygen-limited continuous cultures. In this way a maximum biomass concentration of 30 g/l containing approximately 23% PHA was achieved. This corresponds to a volumetric productivity of 0.69 g  l-1 h-1. Received: 14 December 1995 / Received revision: 18 April 1996 / Accepted: 22 April 1996  相似文献   

18.
Growth of Delftia acidovorans MC1 on 2,4-dichlorophenoxyacetic acid (2,4-D) and on racemic 2-(2,4-dichlorophenoxy)propanoic acid ((RS)-2,4-DP) was studied in the perspective of an extension of the strain’s degradation capacity at alkaline pH. At pH 6.8 the strain grew on 2,4-D at a maximum rate (μmax) of 0.158 h−1. The half-maximum rate-associated substrate concentration (Ks) was 45 μM. At pH 8.5 μmax was only 0.05 h−1 and the substrate affinity was mucher lower than at pH 6.8. The initial attack of 2,4-D was not the limiting step at pH 8.5 as was seen from high dioxygenase activity in cells grown at this pH. High stationary 2,4-D concentrations and the fact that μmax with dichlorprop was around 0.2 h−1 at both pHs rather pointed at limited 2,4-D uptake at pH 8.5. Introduction of tfdK from D. acidovorans P4a by conjugation, coding for a 2,4-D-specific transporter resulted in improved growth on 2,4-D at pH 8.5 with μmax of 0.147 h−1 and Ks of 267 μM. Experiments with labeled substrates showed significantly enhanced 2,4-D uptake by the transconjugant TK62. This is taken as an indication of expression of the tfdK gene and proper function of the transporter. The uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) reduced the influx of 2,4-D. At a concentration of 195 μM 2,4-D, the effect amounted to 90% and 50%, respectively, with TK62 and MC1. Cloning of tfdK also improved the utilization of 2,4-D in the presence of (RS)−2,4-DP. Simultaneous and almost complete degradation of both compounds occurred in TK62 up to D = 0.23 h−1 at pH 6.8 and up to D = 0.2 h−1 at pH 8.5. In contrast, MC1 left 2,4-D largely unutilized even at low dilution rates when growing on herbicide mixtures at pH 8.5.  相似文献   

19.
Zinc, cadmium, and copper are known to interact in many transport processes, but the mechanism of inhibition is widely debated, being either competitive or noncompetitive according to the experimental model employed. We investigated the mechanisms of inhibition of zinc transport by cadmium and copper using renal proximal cells isolated from rabbit kidney. Initial rates of65Zn uptake were assessed after 0.5 min of incubation. The kinetics parameters of zinc uptake obtained at 20°C were a Jmax of 208.0±8.4 pmol· min−1·(mg protein)−1, aK m of 15.0±1.5 μM and an unsaturable constant of 0.259±0.104 (n=8). Cadmium at 15 μM competitively inhibited zinc uptake. In the presence of 50 μM cadmium, or copper at both 15 and 50 μM, there was evidence of noncompetitive inhibition. These data suggest that zinc and cadmium enter renal proximal cells via a common, saturable, carrier-mediated process. The mechanisms of the noncompetitive inhibition observed at higher concentrations of cadmium or with copper require further investigation, but may involve a toxic effect on the cytoskeleton.  相似文献   

20.
Respiratory activity and metabolic CO2production of the microplankton in the Otranto Strait (Mediterranean Sea) were determined by monitoring the Electron Transport System activity. Ten stations were repeatedly investigated during two oceanographic surveys in February–March and August 1994. Respiratory activity and CO2 production, estimated from the surface to the bottom, were higher in the euphotic layers (0-200 m) during summer (mean values: Winter = 0.024 μg C h−1 dm−3; Summer = 0.042 μg C h−1 dm−3); in the aphotic zone (deeper than 200 m), the rates were similar throughout different seasons (0.013 and 0.014 μg C h−1 dm−3, respectively). A comparison with data collected by other authors from the euphotic layers of the Mediterranean Sea was made. Respiratory activities decreased from Western to Eastern Mediterranean Basins. The values of CO2 production, integrated between 200 and 1000 m in the Otranto Strait (mean value 237.7 mg C m−2 d−1), were compared with other data collected from the Mediterranean Sea as well as from the Pacific, Atlantic and Indian Oceans. The comparison showed the Otranto Strait to be a site of organic matter oxidation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号