首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We previously reported that necrosis occurs predominantly in porcine renal tubular LLC-PK1 cells, when the cells were exposed transiently to a high concentration of cisplatin. Moreover, we demonstrated that generation of reactive oxygen species and subsequent production of tumor necrosis factor-α (TNF-α) through phosphorylation of p38 MAPK are implicated in the pathogenesis of cisplatin-induced renal cell injury. However, some TUNEL-positive cells appeared in renal proximal tubules of rats after systemic injection of cisplatin, suggesting an involvement of apoptosis. In the present study, we found in LLC-PK1 cells that both apoptosis and necrosis were elicited when the cells were exposed to 200 μM cisplatin for 1 h followed by incubation for 24 h in the presence of 20 μM cisplatin. The cisplatin-induced necrosis was largely attenuated by the antioxidant N-acetylcysteine, while apoptosis was prevented by the specific inhibitors for caspases-2, -8, and -3 and a p53 inhibitor pifithrin-α but not by the p38 MAPK inhibitor SB203580. On the other hand, SB203580 attenuated the cisplatin-induced increase in TNF-α production. These findings suggest that p53-mediated activations of caspases-2, -8 and -3 play a key role in cisplatin-induced renal cell apoptosis, while oxidative stress-induced TNF-α synthesis via p38 MAPK phosphorylation contributed to the necrosis.  相似文献   

2.
Nephrotoxicity is one of the important dose-limiting factors during cisplatin treatment. There is a growing body of evidence that activation of p53 has a critical role in cisplatin-induced renal apoptotic injury. The nicotinamide adenine dinucleotide-dependent protein deacetylase SIRT1 decreases apoptosis through deacetylating of p53, and resveratrol is known as an activator of SIRT1. To study the role of SIRT1 in cisplatin-induced renal injury through interaction with p53, mouse proximal tubular cells (MPT) were treated with cisplatin and examined the expression level of SIRT1, acetylation of p53, PUMA-α, Bax, the cytosolic/mitochondrial cytochrome c ratio, and active caspase-3. The expression of SIRT1 was decreased by cisplatin. Resveratrol, a SIRT1 activator, ameliorated cisplatin-induced acetylation of p53, apoptosis, and cytotoxicity in MPT cells. In addition, resveratrol remarkably blocked cisplatin-induced decrease of Bcl-xL in MPT cells. Further specific SIRT1 inhibition with EX 527 or small interference RNA specific to SIRT1 reversed the effect of resveratrol on cisplatin-induced toxicity. Inhibition of p53 by pifithrin-α reversed the effect of EX527 in protein expression of PUMA-α, Bcl-xL, and caspase-3 and cytotoxicity in MPT cells. SIRT1 protein expression after cisplatin treatment was significantly decreased in the kidney. SIRT1 activation by resveratrol decreased cisplatin-induced apoptosis while improving the glomerular filtration rate. Taken together, our findings suggest that the modulation of p53 by SIRT1 could be a possible target to attenuate cisplatin-induced kidney injury.  相似文献   

3.
低剂量顺铂可通过诱导p21与p16表达而诱导肿瘤细胞早衰,但其机制不明。本研究探讨了低剂量顺铂诱导的HeLa细胞衰老过程中p21与p16的上调机制。低剂量顺铂(4 μmol/L)处理HeLa细胞后,DNA甲基转移酶DNMT1蛋白水平降低;p21与p16启动子甲基化水平降低,二者mRNA及蛋白质水平升高;顺铂对DNMT1蛋白水平的降低作用与其激活p38MAPK有关,用SB203580抑制p38MAPK可部分逆转顺铂对DNMT1蛋白水平以及p21与p16启动子甲基化的降低作用,从而部分逆转顺铂对p21与p16表达的诱导;抑制p38MAPK 也可部分逆转低剂量顺铂诱导的HeLa细胞早衰。上述结果表明,低剂量顺铂可通过p38MAPK信号通路下调p21与p16启动子甲基化水平,进而上调二者的表达。这些结果为解析低剂量顺铂诱导肿瘤细胞早衰的信号转导机制提供了实验依据。  相似文献   

4.
Kaushal GP  Kaushal V  Herzog C  Yang C 《Autophagy》2008,4(5):710-712
One of the major side effects of cisplatin chemotherapy is toxic acute kidney injury due to preferential accumulation of cisplatin in renal proximal tubule epithelial cells and the subsequent injury to these cells. Apoptosis is known as a major mechanism of cisplatin-induced cell death in renal tubular cells. We have also recently demonstrated that autophagy induction is an immediate response of renal tubular epithelial cell exposure to cisplatin. Inhibition of cisplatin-induced autophagy blocks the formation of autophagosomes and enhances cisplatin-induced caspase-3, -6, and -7 activation, nuclear fragmentation and apoptosis. The switch from autophagy to apoptosis by autophagic inhibitors suggests that autophagy induction was responsible for a pre-apoptotic lag phase observed on exposure of renal tubular cells to cisplatin. Our studies provide evidence that autophagy induction in response to cisplatin mounts an adaptive response that suppresses and delays apoptosis. The beneficial effect of autophagy has a potential clinical significance in minimizing or preventing cisplatin nephrotoxicity.  相似文献   

5.
Acute renal failure is a dose-limiting factor during cisplatin chemotherapy. We have previously shown in rats that the hydroxyl radical scavenger edaravone reverses cisplatin-induced in vivo renal damage. In the present study, the role of poly(ADP-ribose) polymerase (PARP) in cisplatin nephrotoxicity was investigated in porcine tubular cells LLC-PK1. Cell injury was elicited by transient exposure to 500 microM cisplatin for 1 h or continuous exposure to 30 microM cisplatin for 24 h. Various hydroxyl radical scavengers reversed cell damage in a transient but not permanent model. The cell injury seemed to be necrosis and apoptosis in transient and permanent models, respectively, as assessed by TUNEL method and Annexin V stain. PARP inhibitors such as 3-aminobenzamide and benzamide inhibited cell damage in transient but not permanent model. PARP-dependent cell injury was also observed after transient exposure to hydroxyl radical-generating solution. We demonstrated for the first time the activation of PARP in renal tubular cells by transient cisplatin exposure, as determined by immunofluorescent stain with anti-poly(ADP-ribose) antibody. Moreover, ATP was depleted by transient exposure to cisplatin or hydroxyl radical, both of which were reversed by PARP inhibitors. These findings suggest that hydroxyl radical generation followed by PARP activation contributes to the necrotic cell injury caused by a transient exposure to cisplatin.  相似文献   

6.
In the present study, the effect of arjunolic acid on testicular damage induced by intraperitoneal injection of rats with 7 mg/kg cisplatin was studied. Cisplatin induced a significant reduction in testicular weights, plasma testosterone, and testicular reduced glutathione levels in addition to a significant elevation of testicular malondialdehyde levels and testicular gene expressions of inducible nitric oxide synthase (iNOS), tumor necrosis factor‐α (TNF‐α), and p38 mitogen‐activated protein kinase (MAPK) when compared with the control group (p < 0.05). Lower tubular diameters and depletion of germ cells and irregular small seminiferous tubules with Sertoli cells only were observed in the cisplatin group. Arjunolic acid administration significantly corrected the changes in both biochemical and histopathological parameters. Arjunolic acid plays a significant protective role against cisplatin‐induced testicular injury by attenuating oxidative stress parameters along with downregulation of iNOS, TNF‐α, and p38‐MAPK testicular expressions.  相似文献   

7.
《Autophagy》2013,9(5):710-712
One of the major side effects of cisplatin chemotherapy is toxic acute kidney injury due to preferential accumulation of cisplatin in renal proximal tubule epithelial cells and the subsequent injury to these cells. Apoptosis is known as a major mechanism of cisplatin-induced cell death in renal tubular cells. We have also recently demonstrated that autophagy induction is an immediate response of renal tubular epithelial cell exposure to cisplatin. Inhibition of cisplatin-induced autophagy blocks the formation of autophagosomes and enhances cisplatin-induced caspase-3, -6, and -7 activation, nuclear fragmentation, and apoptosis. The switch from autophagy to apoptosis by autophagic inhibitors suggests that autophagy induction was responsible for a pre-apoptotic lag phase observed on exposure of renal tubular cells to cisplatin. Our studies provide evidence that autophagy induction in response to cisplatin mounts an adaptive response that suppresses and delays apoptosis. The beneficial effect of autophagy has a potential clinical significance in minimizing or preventing cisplatin nephrotoxicity.

Addedum to: Yang C, Kaushal V, Shah SV, Kaushal GP. Autophagy and apoptosis are associated in cisplatin injury to renal tubular epithelial cell injury. Am J Physiol Renal Physiol 2008; 294:F777-87.  相似文献   

8.
9.
Toll-like receptors (TLRs), which are essential components of the innate immune response, play an important role in acute kidney injury (AKI). Toll-like receptor 2 (TLR2) is constitutively expressed in tubular epithelial cells of the kidney and participates in cisplatin-induced AKI. The autophagy is a dynamic catabolic process that maintains intracellular homeostasis, which is involved in the pathogenesis of AKI. Recent studies demonstrate that PI3K/Akt signaling pathway regulates autophagy in response to various stimuli. Therefore, we propose that cisplatin might activate TLR2, which subsequently phosphorylates PI3K/Akt, leading to enhanced autophagy of renal tubular epithelial cells and protecting cisplatin-induced AKI. We found that TLR2 expression was significantly increased in the kidney after the cisplatin treatment. TLR2-deficient mice exacerbated renal injury in cisplatin-induced AKI, with higher serum creatinine and blood urea nitrogen, more severe morphological injury compared with that of wild-type mice. In vitro, we found that inhibition of TLR2 reduced tubular epithelial cell autophagy after the cisplatin treatment. Mechanistically, TLR2 inhibited autophagy via activating PI3K/Akt signaling pathway in renal tubular epithelial cells after the cisplatin treatment. Take together, these results suggest that TLR2 may protect cisplatin-induced AKI by activating autophagy via PI3K/Akt signaling pathway.  相似文献   

10.
The ability of cisplatin (cis‐diamminedichloroplatinum II) toxicity to induce acute kidney injury (AKI) has attracted people's attention and concern for a long time, but its molecular mechanisms are still widely unknown. We found that the expression of transforming growth factor‐β (TGF‐β)‐activated kinase 1 (TAK1) could be increased in kidneys of mice administrated with cisplatin. Autophagy is an evolutionarily conserved catabolic pathway and is involved in various acute and chronic injuries. Moreover, p38 MAPK (mitogen‐activated protein kinase) and ERK regulate autophagy in response to various stimuli. Therefore, our hypothesis is that cisplatin activates TAK1, which phosphorylates p38 and ERK, leading to excessive autophagy of tubular epithelial cells and thus exacerbating kidney damage. Here, BALB/c mice were intraperitoneally injected with a TAK1 inhibitor and were then administrated with sham or cisplatin at 20 mg/kg by intraperitoneal injection. Compared with mice in the vehicle cisplatin group, mice intraperitoneally injected with a TAK1 inhibitor were found to have lower serum creatinine and less tubular damage following cisplatin‐induced AKI. Furthermore, inhibition of TAK1 reduced p38 and Erk phosphorylation, decreased expression of LC3II and reversed the down‐regulation of P62 expression induced by cisplatin. The hypothesis was verified with tubular epithelial cells administrated with cisplatin in vitro. Finally, p38 inhibitor or ERK inhibitor abated autophagy activation and cell viability reduction in tubular epithelial cells treated with cisplatin plus TAK1 overexpression vector. Taken together, our results show that cisplatin activates TAK1, which phosphorylates p38 and ERK, leading to excessive autophagy of tubular epithelial cells that exacerbates kidney damage.  相似文献   

11.
12.
In this study, the effect of hematopoietic cytokines, i.e., granulocyte-colony stimulating factor (G-CSF), stem cell factor (SCF), and granulocyte-macrophage-colony stimulating factor (GM-CSF), on renal function was studied in cisplatin-induced acute renal failure in mice. Treatment with G-CSF significantly ameliorated both BUN and serum creatinine increase induced by cisplatin administration with concomitant alleviation in the degree of necrotic change, enhancement in DNA synthesis, and decrease in apoptosis of renal tubular cells. There was no significant change observed among these parameters following treatment with SCF or with GM-CSF. Serum hepatocyte growth factor level was significantly lower in mice treated with cisplatin and G-CSF compared with that in those treated with cisplatin only. In conclusion, G-CSF, but not SCF or GM-CSF, acts to accelerate regeneration and prevent apoptosis of renal tubular epithelial cells and leads to reduced renal injury in cisplatin-induced acute renal failure in mice.  相似文献   

13.
BackgroundCisplatin-induced acute kidney injury (AKI) is a severe clinical complication with no satisfactory therapies in the clinic. Tumor necrosis factor receptor (TNFR)-associated factor 1 (TRAF1) plays a vital role in both inflammation and metabolism. However, the TRAF1 effect in cisplatin induced AKI needs to be evaluated.MethodsWe observed the role of TRAF1 in eight-week-old male mice and mouse proximal tubular cells both treated with cisplatin by examining the indicators associated with kidney injury, apoptosis, inflammation, and metabolism.ResultsTRAF1 expression was decreased in cisplatin-treated mice and mouse proximal tubular cells (mPTCs), suggesting a potential role of TRAF1 in cisplatin-associated kidney injury. TRAF1 overexpression significantly alleviated cisplatin-triggered AKI and renal tubular injury, as demonstrated by reduced serum creatinine (Scr) and urea nitrogen (BUN) levels, as well as the ameliorated histological damage and inhibited upregulation of NGAL and KIM-1. Moreover, the NF-κB activation and inflammatory cytokine production enhanced by cisplatin were significantly blunted by TRAF1. Meanwhile, the increased number of apoptotic cells and enhanced expression of BAX and cleaved Caspase-3 were markedly decreased by TRAF1 overexpression both in vivo and vitro. Additionally, a significant correction of the metabolic disturbance, including perturbations in energy generation and lipid and amino acid metabolism, was observed in the cisplatin-treated mice kidneys.ConclusionTRAF1 overexpression obviously attenuated cisplatin-induced nephrotoxicity, possibly by correcting the impaired metabolism, inhibiting inflammation, and blocking apoptosis in renal tubular cells.General significanceThese observations emphasize the novel mechanisms associated to metabolism and inflammation of TRAF1 in cisplatin-induced kidney injury.  相似文献   

14.
Peripheral neuropathy following cisplatin treatment is a major limiting factor in cisplatin chemotherapy of cancer patients. We investigated the pathomechanism underlying cisplatin neuropathy using a mouse dorsal root ganglion neuron-neuroblastoma hybrid cell line (N18D3) developed in our laboratory. DNA fragmentation, a characteristic feature of apoptosis, was induced in hybrid neurons following treatment with cisplatin. Accumulation of p53, Fas, and Fas ligand (Fas-L) was also demonstrated in these neurons. Preincubation with N-acetylcysteine (NAC), a precursor of glutathione, blocked cisplatin-induced apoptosis completely, whereas Trolox, a vitamin E analogue, blocked it partially. Cisplatin-induced p53 accumulation was suppressed by NAC treatment, whereas p53 accumulation was retarded by Trolox treatment. In contrast, neither NAC nor Trolox showed any inhibitory effect on cisplatin-induced Fas/Fas-L accumulation. These results suggest that the neuroprotective effects of antioxidants against cisplatin-induced neurotoxicity in hybrid neurons are mediated mainly through the inhibition of p53 accumulation but not of Fas/Fas-L accumulation by these antioxidants.  相似文献   

15.
16.
Cisplatin is one of the most effective anti-cancer drugs; however, the use of cisplatin is limited by its toxicity in normal tissues, particularly injury of the kidneys. The mechanisms underlying the therapeutic effects of cisplatin in cancers and side effects in normal tissues are largely unclear. Recent work has suggested a role for p53 in cisplatin-induced renal cell apoptosis and kidney injury; however, the signaling pathway leading to p53 activation and renal apoptosis is unknown. Here we demonstrate an early DNA damage response during cisplatin treatment of renal cells and tissues. Importantly, in the DNA damage response, we demonstrate a critical role for ATR, but not ATM (ataxia telangiectasia mutated) or DNA-PK (DNA-dependent protein kinase), in cisplatin-induced p53 activation and apoptosis. We show that ATR is specifically activated during cisplatin treatment and co-localizes with H2AX, forming nuclear foci at the site of DNA damage. Blockade of ATR with a dominant-negative mutant inhibits cisplatin-induced p53 activation and renal cell apoptosis. Consistently, cisplatin-induced p53 activation and apoptosis are suppressed in ATR-deficient fibroblasts. Downstream of ATR, both Chk1 and Chk2 are phosphorylated during cisplatin treatment in an ATR-dependent manner. Interestingly, following phosphorylation, Chk1 is degraded via the proteosomal pathway, whereas Chk2 is activated. Inhibition of Chk2 by a dominant-negative mutant or gene deficiency attenuates cisplatin-induced p53 activation and apoptosis. In vivo in C57BL/6 mice, ATR and Chk2 are activated in renal tissues following cisplatin treatment. Together, the results suggest an important role for the DNA damage response mediated by ATR-Chk2 in p53 activation and renal cell apoptosis during cisplatin nephrotoxicity.  相似文献   

17.
The purpose of this study was to investigate the role of endothelial nitric-oxide synthase (eNOS), cAMP, and p38 MAPK in tumor necrosis factor-alpha (TNF-alpha) expression induced by lipopolysaccharide (LPS). LPS dose- and time-dependently induced phosphorylation of p38 MAPK and TNF-alpha expression in neonatal mouse cardiomyocytes. TNF-alpha expression was preceded by p38 MAPK phosphorylation, and selective inhibition of p38 MAPK abrogated LPS-induced TNF-alpha expression. Deficiency in eNOS decreased basal and LPS-stimulated TNF-alpha expression in cardiomyocytes. NOS inhibitor l-NAME attenuated LPS-induced p38 MAPK phosphorylation and TNF-alpha production in wild-type cardiomyocytes, whereas NO donor 2,2'-(hydroxynitrosohydrazono)bis-ethanamine (DETA-NO) (2 microm) or overexpression of eNOS by adenoviral gene transfer restored the response of eNOS(-/-) cardiomyocytes to LPS. These effects of NO were mediated through cAMP-dependent pathway based on the following facts. First, deficiency in eNOS decreased basal levels of intracellular cAMP, and DETA-NO elevated intracellular cAMP levels in eNOS(-/-) cardiomyocytes. Second, a cAMP analogue 8-Br-cAMP mimicked the effect of NO in eNOS(-/-) cardiomyocytes. Third, either inhibition of cAMP or cAMP-dependent protein kinase attenuated LPS-stimulated p38 MAPK phosphorylation and TNF-alpha production in wild-type cardiomyocytes. In conclusion, eNOS enhances LPS-stimulated TNF-alpha expression in cardiomyocytes. Activation of p38 MAPK is essential in LPS-stimulated TNF-alpha expression. Moreover, the effects of NO on LPS-stimulated TNF-alpha expression are mediated through cAMP/cAMP-dependent protein kinase-dependent p38 MAPK pathway in neonatal cardiomyocytes.  相似文献   

18.
The present study shows that ES products from plerocercoids of Spirometra erinaceieuropaei suppressed interleukin-1beta mRNA expression in lipopolysaccharide-stimulated RAW 264.7 macrophages in the absence or presence of a cyclic AMP analogue, dibutyryl cyclic AMP. Investigation using the inhibitors of mitogen-activated protein kinase (MAPK) pathways revealed that extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinase pathways are crucial for full induction of interleukin-1beta mRNA expression. ES products additionally suppressed interleukin-1beta mRNA expression in the cells treated with p38 mitogen-activated protein kinase inhibitor (SB203580) or extracellular signal-regulated protein kinase 1/2 inhibitor (PD98059). Western blot analysis showed that dibutyryl cyclic AMP enhanced lipopolysaccharide-induced phosphorylation of extracellular signal-regulated protein kinase 1/2, p38 mitogen-activated protein kinase and cyclic AMP responsive element binding protein (CREB) and, in turn, we demonstrated that ES products reduced the lipopolysaccharide and dibutyryl cyclic AMP-induced phosphorylation of extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinase, but not cyclic AMP responsive element binding protein. These data demonstrate that ES products from the plerocercoids of S. erinaceieuropaei may evade induction of interleukin-1beta mRNA by inhibiting extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinase pathways in lipopolysaccharide and/or dibutyryl cyclic AMP-stimulated macrophages.  相似文献   

19.
Background7-Hydroxycoumarin (7-HC), also known as umbelliferon, is commonly found in Chinese herbs (e.g. Eucommiae Cortex, Prunellae Spica, Radix Angelicae Biseratae). Previous laboratory studies have indicated that 7-HC has anti-inflammatory, anti-oxidative, and anti-tumor effects. Cisplatin is a widely used chemotherapeutic agent for cancer. Nephrotoxicity is one of the limiting side effects of cisplatin use.PurposeThis study aimed to evaluate the renoprotective effect of 7-HC in a cisplatin-induced acute kidney injury (AKI) mouse model.MethodsAKI was induced in male C57BL/6 mice (aged 6–8 weeks) by a single intraperitoneal injection of cisplatin at 20 mg/kg. The mice received 7-HC at 30, 60, and 90 mg/kg intraperitoneally before or after cisplatin administration. Renal function, necroptosis, and cell proliferation were measured. Mechanisms underlying the reno-protective effect of 7-HC were explored in renal tubular epithelial cells treated with or without cisplatin.ResultsIn-vivo experiments showed that 7-HC significantly improved the loss in kidney function induced by cisplatin, as indicated by lower levels of serum creatinine and blood urea nitrogen, in AKI mice. Consistent herewith, cisplatin-induced tubular damage was alleviated by 7-HC as shown by morphological (periodic acid–Schiff staining) and kidney injury marker (KIM-1) analyses. We found that 7-HC suppressed renal necroptosis via the RIPK1/RIPK3/MLKL pathway and accelerated renal repair as evidenced by the upregulation of cyclin D1 in cisplatin-induced nephropathy. In-vitro experiments showed that knockdown of Sox9 attenuated the suppressive effect of 7-HC on KIM-1 and reversed the stimulatory effect of 7-HC on cyclin D1 expression in cisplatin-treated HK-2 cells, indicating that 7-HC may protect against AKI via a Sox9-dependent mechanism.Conclusion7-HC inhibits cisplatin-induced AKI by suppressing RIPK1/RIPK3/MLKL-mediated necroptosis and promoting Sox9-mediated tubular epithelial cell proliferation. 7-HC may serve as a preventive and therapeutic agent for AKI.  相似文献   

20.
Acute kidney injury (AKI) is the main obstacle that limits the use of cisplatin in cancer treatment. Proton pump inhibitors (PPIs), the most commonly used class of medications for gastrointestinal complications in cancer patients, have been reported to cause adverse renal events. However, the effect of PPIs on cisplatin-induced AKI remains unclear. Herein, the effect and mechanism of lansoprazole (LPZ), one of the most frequently prescribed PPIs, on cisplatin-induced AKI were investigated in vivo and in vitro. C57BL/6 mice received a single intraperitoneal (i.p.) injection of cisplatin (18 mg/kg) to induce AKI, and LPZ (12.5 or 25 mg/kg) was administered 2 hours prior to cisplatin administration and then once daily for another 2 days via i.p. injection. The results showed that LPZ significantly aggravated the tubular damage and further increased the elevated levels of serum creatinine and blood urea nitrogen induced by cisplatin. However, LPZ did not enhance cisplatin-induced tubular apoptosis, as evidenced by a lack of significant change in mRNA and protein expression of Bax/Bcl-2 ratio and TUNEL staining. Notably, LPZ increased the number of necrotic renal tubular cells compared to that by cisplatin treatment alone, which was further confirmed by the elevated necroptosis-associated protein expression of RIPK1, p-RIPK3 and p-MLKL. Furthermore, LPZ deteriorated cisplatin-induced inflammation, as revealed by the increased mRNA expression of pro-inflammatory factors including, NLRP3, IL-1β, TNF-α and caspase 1, as well as neutrophil infiltration. Consistently, in in vitro study, LPZ increased HK-2 cell death and enhanced inflammation, compared with cisplatin treatment alone. Collectively, our results demonstrate that LPZ aggravates cisplatin-induced AKI, and necroptosis may be involved in the exacerbation of kidney damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号