首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae), has been a major economic pest of small grains in the western United States since its introduction in 1986. Recently, a new Russian wheat aphid biotype was discovered in southeastern Colorado that damaged previously resistant wheat, Triticum aestivum L. Biotype development jeopardizes the durability of plant resistance, which has been a cornerstone for Russian wheat aphid management. Our objective was to assess the relative amount of biotypic diversity among Russian wheat aphid populations collected from cultivated wheat and barley, Hordeum vulgare L. We conducted field surveys from May through June 2002 and August 2003 from seven counties within Texas, Kansas, Nebraska, and Wyoming. Based upon a foliar chlorosis damage rating, three new Russian wheat aphid biotypes were identified, one of which was virulent to all characterized sources of Russian wheat aphid resistance. The future success of Russian wheat aphid resistance breeding programs will depend upon the continual monitoring of extant biotypic diversity and determination of the ecological and genetic factors underlying the development of Russian wheat aphid biotypes.  相似文献   

2.
Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) was recorded for the first time in South Africa in 1978. In 2005, a second biotype, RWASA2, emerged, and here we report on the emergence of yet another biotype, found for the first time in 2009. The discovery of new Russian wheat aphid biotypes is a significant challenge to the wheat, Triticum aestivum L., industry in South Africa. Russian wheat aphid resistance in wheat, that offered wheat producers a long-term solution to Russian wheat aphid control, may no longer be effective in areas where the new biotypes occur. It is therefore critical to determine the diversity and extent of distribution of biotypes in South Africa to successfully deploy Russian wheat aphid resistance in wheat. Screening of 96 Russian wheat aphid clones resulted in identification of three Russian wheat aphid biotypes. Infestations of RWASA1 caused susceptible damage symptoms only in wheat entries containing the Dn3 gene. Infestations of RWASA2 caused susceptible damage symptoms in wheat entries containing Dn1, Dn2, Dn3, and Dn9 resistant genes. Based on the damage-rating scores for the seven resistance sources, a new biotype, which caused damage rating scores different from those for RWASA1 and RWASA2, was evident among the Russian wheat aphid populations tested. This new biotype is virulent to the same resistance sources as RWASA2 (Dn1, Dn2, Dn3, and Dn9), but it also has added virulence to Dn4, whereas RWASA2 is avirulent to this resistance source.  相似文献   

3.
The Russian wheat aphid, Diuraphis noxia (Kurdjumov), is a small grains pest of worldwide economic importance. The Russian wheat aphid is polyphagous and may encounter differential selective pressures from noncultivated grass hosts. Aphid biotypic diversity can disrupt the progress of plant breeding programs, leading to a decreased ability to manage this pest. The goal of this research was to quantify Russian wheat aphid biotype 2 (RWA2) reproductive and development rates on five common noncultivated grass hosts to gain information about host quality, potential refuges, and sources of selection pressure. First, RWA2 reproduction was compared on crested wheatgrass (Agropyron cristatum, (L.) Gaertn.), intermediate wheatgrass (Elytrigia intermedia, (Host) Nevski), slender wheatgrass (Elymus trachycaulus, (Link) Gould ex Shinners), western wheatgrass (Pascopyrum smithi, (Rydb.) A. L?ve), and foxtail barley (Hordeum jubatum, (L.) Tesky) at 18–24°C. Second, RWA2 reproduction was compared on intermediate and crested wheatgrass at three temperature regimes 13–18°C, 18–24°C, and 24–29°C. At moderate temperatures (18–24°C), the intrinsic rate of increase values for all five hosts ranged from 0.141 to 0.199, indicating the possibility for strong population sources on all tested hosts. Aphids feeding on crested and intermediate wheatgrass at the 13–18°C temperature had lower fecundity, less nymph production days, longer generational times, and lower intrinsic rate of increase than aphids feeding at the 18–24°C temperature regime. Aphids feeding at 24–29°C did not survive long enough to reproduce. The positive intrinsic rates of increase in Russian wheat aphid on the wheatgrasses suggest that these grasses can support aphid populations at moderate to low temperatures.  相似文献   

4.
Wheat, Triticum aestivum L., with Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) resistance based on the Dn4 gene has been important in managing Russian wheat aphid since 1994. Recently, five biotypes (RWA1-RWA5) of this aphid have been described based on their ability to differentially damage RWA resistance genes in wheat. RWA2, RWA4, and RWA5 are of great concern because they can kill wheat with Dn4 resistance. In 2005, 365 Russian wheat aphid clone colonies were made from collections taken from 98 fields of wheat or barley, Hordeum vulgare L., in Oklahoma, Texas, New Mexico, Colorado, Kansas, Nebraska, and Wyoming to determine their biotypic status. The biotype of each clone was determined through its ability to differentially damage two resistant and two susceptible wheat entries in two phases of screening. The first phase determined the damage responses of Russian wheat aphid wheat entries with resistance genes Dn4, Dn7, and susceptible 'Custer' to infestations by each clone to identify RWA1 to RWA4. The second phase used the responses of Custer and 'Yuma' wheat to identify RWA1 and RWA5. Only two biotypes, RWA1 and RWA2, were identified in this study. The biotype composition across all collection sites was 27.2% RWA1 and 72.8% RWA2. RWA biotype frequency by state indicated that RWA2 was the predominant biotype and composed 73-95% of the biotype complex in Texas, Oklahoma, Colorado, and Wyoming. Our study indicated that RWA2 is widely distributed and that it has rapidly dominated the biotype complex in wheat and barley within its primary range from Texas to Wyoming. Wheat with the Dn4 resistance gene will have little value in managing RWA in the United States, based on the predominance of RWA2.  相似文献   

5.
Biotypic diversity of the greenbug, Schizaphis graminum (Rondani) (Hemiptera: Aphididae), was assessed among populations collected from cultivated wheat, Triticum aestivum L., and sorghum, Sorghum bicolor (L.) Moench, and their associated noncultivated grass hosts. Greenbugs were collected during May through August 2002 from 30 counties of Kansas, Nebraska, Oklahoma, and Texas. Discounting the presumptive biotype A, five of the remaining nine letter-designated greenbug biotypes were collected; however, biotypes C, F, J, and K were not detected. Biotypes E and I exhibited the greatest host range and were the only biotypes collected in all four states. Sixteen greenbug clones, collected from eight plant species, exhibited unique biotype profiles. Eleven were collected from noncultivated grasses, three from wheat, and two from sorghum. The most virulent biotypes were collected from noncultivated hosts. The great degree of biotypic diversity among noncultivated grasses supports the contention that the greenbug species complex is composed of host-adapted races that diverged on grass species independently of, and well before, the advent of modern agriculture.  相似文献   

6.
In 1986, the Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae), became an invasive species of United States. Nearly 20 yr later, new biotypes appeared that were capable of overcoming most sources of resistance and became a renewed threat to wheat, Triticum aestivum L., production. Cyclical (CP) and obligate (OP) parthenogenesis enables aphids to both adapt to changing environments and exploit host resources. We documented these forms of reproduction for Russian wheat aphid in wheat and wild grasses in the Central Great Plains and Rocky Mountain regions during falls 2004-2009. Colonies from sample sites also were held under unheated greenhouse conditions and observed for the presence of sexual morphs and eggs through the winter. Russian wheat aphid populations were mainly OP and attempted to overwinter as adults, regardless of region sampled. A few populations contained oviparae but no males (gynocyclic) and were not specific to any particular region. Observation of the Russian wheat aphid colonies under greenhouse conditions failed to produce males or eggs. In spring 2007, CP was confirmed in a small population of Russian wheat aphid that eclosed from eggs (fundatricies) on wild grasses and wheat near Dove Creek, CO, in the Colorado Plateau region where other aphid species undergo CP. Lineages from ninety-three fundatricies were screened against 16 resistant and susceptible cereal entries to determine their biotypic classification. A high degree of biotypic diversity (41.4%) was detected in this population. Although CP was a rare in Russian wheat aphid populations, genetic recombination during the sexual cycle creates new biotypes and can have significant effects on population genetics.  相似文献   

7.
The Russian wheat aphid, Diuraphis noxia (Mordvilko), is a serious worldwide pest of wheat and barley. Russian wheat aphid populations from Hungary, Russia, and Syria have previously been identified as virulent to D. noxia (Dn) 4, the gene in all Russian wheat aphid-resistant cultivars produced in Colorado. However, the virulence of Russian wheat aphid populations from central Europe, North Africa, and South America to existing Dn genes has not been assessed. Experiments with plants containing several different Dn genes demonstrated that populations from Chile, the Czech Republic, and Ethiopia are also virulent to Dn4. The Czech population was also virulent to plants containing the Dnx gene in wheat plant introduction PI220127. The Ethiopian population was also virulent to plants containing the Dny gene in the Russian wheat aphid-resistant 'Stanton' produced in Kansas. The Chilean and Ethiopian populations were unaffected by the antibiosis resistance in Dn4 plants. There were significantly more nymphs of the Chilean population on plants of Dn4 than on Dn6 plants at both 18 and 23 d postinfestation, and the Ethiopian population attained a significantly greater weight on Dn4 plants than on plants containing Dn5 or Dn6. These newly characterized virulent Russian wheat aphid populations pose a distinct threat to existing or proposed wheat cultivars possessing Dn4.  相似文献   

8.
Biotype 2 of the Russian wheat aphid, Diuraphis noxia (Mordvilko), was identified in the United States in 2003 and is virulent to all commercially available cultivars of winter wheat, Triticum aestivum L., that are resistant to biotype 1. We compared the development and reproduction of biotype 2 D. noxia at 21.7 +/- 0.12 degrees C on 'Trego' (PI 612576), a susceptible commercial cultivar, and on lines CI 2401 and 03GD1378027 that represent putative resistance sources. CI 2401 is a pure wheat line originating in the former USSR (Tajikistan), whereas 03GD1378027 is a USDA-ARS breeding line originally developed from crosses with a South African line that carried a large rye translocation conferring D. noxia resistance. Both lines previously showed resistance to biotype 1 and are currently being used in the development of D. noxia-resistant wheat cultivars. Both solitary apterous virginoparae of biotype 2 and their progeny experienced a reduction in survival and prolonged developmental times on CI 2401 and 03GD1378027 compared with Trego, but the former lines did not differ significantly from each other with respect to either measure of aphid performance. Progeny developed faster than did their foundress mothers on CI 2401 and Trego, but not on 03GD1378027. Mean foundress fecundity did not differ between CI 2401 and 03GD1378027 but was reduced on these lines relative to Trego. Foundresses also were more often found off plants of CI 2401 and 03GD1378027 than Trego. Estimates of intrinsic rate of increase were higher on Trego than on either CI 2401 or 03GD1378027, the latter two lines yielding similar values. The negative impacts of CI 2401 and 03GD1378027 on development and reproduction of biotype 2 indicate that these lines represent sources of resistance effective against this biotype.  相似文献   

9.
The woolly apple aphid Eriosoma lanigerum (Hausmann) is one of the most damaging apple pests in South Africa. Information on its genetic diversity is lacking and this study, in which the genetic structure of parthenogenetic E. lanigerum populations was characterized in the Western Cape Province of South Africa, represents the first local study of its kind. A total of 192 individuals from four different regions were collected and analysed using amplified fragment length polymorphism (AFLP). Using five selective AFLP primer pairs, 250 fragments were scored for analysis. Results indicated that a low level of genetic variation was apparent in E. lanigerum populations in the Western Cape (H = 0.0192). Furthermore, populations collected from geographically distant regions were very closely related, which can partly be explained by the fact that agricultural practices were responsible for dissemination of populations from a common ancestor to geographically distant areas. The low level of variation found indicated that the possibility of controlling E. lanigerum in the Western Cape using host plant resistance is favourable. This is the first report of AFLP being used to characterize the genetic structure of an aphid species. Results indicate that this marker may be useful for analysis of other aphid species.  相似文献   

10.
Economic threshold for soybean aphid (Hemiptera: Aphididae)   总被引:9,自引:0,他引:9  
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), reached damaging levels in 2003 and 2005 in soybean, Glycine max (L.) Merrill, in most northern U.S. states and Canadian provinces, and it has become one of the most important pests of soybean throughout the North Central region. A common experimental protocol was adopted by participants in six states who provided data from 19 yield-loss experiments conducted over a 3-yr period. Population doubling times for field populations of soybean aphid averaged 6.8 d +/- 0.8 d (mean +/- SEM). The average economic threshold (ET) over all control costs, market values, and yield was 273 +/- 38 (mean +/- 95% confidence interval [CI], range 111-567) aphids per plant. This ET provides a 7-d lead time before aphid populations are expected to exceed the economic injury level (EIL) of 674 +/- 95 (mean +/- 95% CI, range 275-1,399) aphids per plant. Peak aphid density in 18 of the 19 location-years occurred during soybean growth stages R3 (beginning pod formation) to R5 (full size pod) with a single data set having aphid populations peaking at R6 (full size green seed). The ET developed here is strongly supported through soybean growth stage R5. Setting an ET at lower aphid densities increases the risk to producers by treating an aphid population that is growing too slowly to exceed the EIL in 7 d, eliminates generalist predators, and exposes a larger portion of the soybean aphid population to selection by insecticides, which could lead to development of insecticide resistance.  相似文献   

11.
Susceptible and resistance wheat cultivars, Triticum aestivum L, were presented to two biotypes of Russian wheat aphid, Diuraphis noxia (Mordvilko), in multiple choice tests to assay their relative acceptability as host plants. Both apterae (third and fourth instars) and alate adults were offered plants at the two-leaf stage in different cultivar combinations at 22±1℃ and 16:8 (L: D) hour photoperiod. Apterae were released from Petri dishes in the center of a circle of test plants, whereas alatae dispersed from a mature aphid colony to settle on plants arranged in rows. Both alatae and apterous nymphs of both biotypes readily colonized all cultivars tested:‘2137', ‘Akron',‘Ankor’,‘ Halt’ ,‘ Jagger’ ,‘ Prairie Red’ , ‘Stanton',‘TAM 107',‘TAM 110',‘Trego', ‘ Yuma', and ‘Yumar'. Fewer biotype I apterae responded (settled and fed) in the combination containing more resistant (Dn4- and Dny-expressing) cultivars, compared to the combinations that had fewer. The reverse was true for biotype 2 apterae; more aphids responded in the combination containing the largest number of Dn4 expressing cultivars. Differential colonization of cultivars was observed in only one combination, in which biotype 2 apterae colonized Akron and Yumar in larger numbers than they did Stanton and Yuma. A separate experiment confirmed that, 48 hours after infestation, more biotype 2 apterae abandoned plants of Yuma than plants of Yumar. This differential response was likely due to genetic differences between the two ' near isogenic' lines that include the lack of Dn4 expression in Yuma. Choice tests with alatae did not result in differential rates of cultivar colonization by either biotype in any combination tested. These results suggest that young wheat plants appear to lack any meaningful antixenosis toward D. noxia, even though the aphids appear to perceive, and sometimes respond to, certain differences in cultivar suitability.  相似文献   

12.
Plant damage and yield response to the Russian wheat aphid, Diuraphis noxia (Mordvilko), were evaluated on a susceptible (TAM 107) and a resistant (RWA E1) winter wheat, Triticum aestivum L., in three Colorado locations in the 1993 and 1994 crop years. Russian wheat aphid was more abundant on TAM 107 than on RWA E1. Russian wheat aphid days per tiller were greater at the higher infestation levels. Yield losses as a result of Russian wheat aphid infestation occurred most of the time with TAM 107 but rarely with RWA E1. Seed densities were reduced at higher infestation levels in TAM 107 at two locations. Russian wheat aphids per tiller had a negative relationship to yield in TAM 107 but not in RWA E1. In TAM 107 yield decreased as aphid densities increased, but yield remained constant regardless of initial aphid abundance on RWA E1 in all environments. Seed densities were reduced at higher infestation levels in TAM 107 at two locations. The resistance conferred by the Dn4 gene seems to be an effective management approach across a range of field conditions.  相似文献   

13.
14.
The impact of natural enemies on cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), populations in cotton, Gossypium hirsutum L., production systems in the southeastern United States was evaluated over 3 yr in irrigated commercial cotton fields. Fungal epizootics caused by the entomopathogen Neozygites fresenii (Nowakowski) Batko reduced aphid numbers to subthreshold levels in 1999, 2000, and 2001 and occurred consistently in early to mid-July in all 3 yr. Scymnus spp. were the most abundant aphidophagous predators, although other coccinellid species and generalist predators such as spiders, fire ants, heteropterans, and neuropterans also were present. Studies using arthropod exclusion cages demonstrated little impact of predators or parasitoids on aphid populations before fungal epizootics. Arthropod natural enemies were most abundant after epizootics and may have suppressed aphid populations late in the season. Seed cotton yield, and lint quality were not affected by aphicide applications in any year of the study. Implications of these findings for aphid management in the southeastern United States are discussed.  相似文献   

15.
Russian wheat aphid, Diuraphis noxia (Mordvilko), feeding injury on 'Betta' wheat isolines with the Dn1 and Dn2 genes was compared by assessing chlorophyll and carotenoid concentrations, and aphid fecundity. The resistant Betta isolines (i.e., Betta-Dn1 and Betta-Dn2) supported similar numbers of aphids, but had significantly fewer than the susceptible Betta wheat, indicating these lines are resistant to aphid feeding. Diuraphis noxia feeding resulted in different responses in total chlorophyll and carotenoid concentrations among the Betta wheat isolines. The infested Betta-Dn2 plants had higher levels of chlorophylls and carotenoids in comparison with uninfested plants. In contrast, infested Betta-Dn1 plants had the same level of chlorophyll and carotenoid in comparison with uninfested plants. Our data provide essential information on the effect of D. noxia feeding on chlorophyll and carotenoid concentrations for Betta wheat and its isolines with D. noxia-resistant Dn1 and Dn2 genes.  相似文献   

16.
The reproductive rates of Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae), Biotype 1 (RWA 1) and Biotype 2 (RWA 2) were compared in the laboratory at three temperature regimes on a Russian wheat aphid resistant cultivar ('Prairie Red') and a susceptible cultivar ('TAM 107'). The objective of this study was to expose RWA 1 and RWA 2 to three temperature regimes and two levels of resistance to find whether there were reproductive differences that may occur within each biotype as well as differences in reproduction between biotypes. In addition, temperature effects of the Dn4 gene on biotype reproduction were noted. Differences in reproductive rates between the two biotypes seem to be driven by temperature. For both biotypes, longevity and reproductive rate parameters, except for intrinsic rate of increase, were lower at the 24-29 degree C temperature regime than the 13-18 degree C and 18-24 degree C temperature regimes. The intrinsic rate of increase was higher for both biotypes at the 18-24 degree C and 24-29 degree C temperature regimes than at the 13-18 degree C temperature regime. Reproductive rates between biotypes were similar at the two higher temperature regimes, but the fecundity for RWA 1 was less than RWA 2 at the 13-18 degree C temperature. The change in fecundity rates between RWA 1 and RWA 2 at lower temperatures could have ecological and geographical implications for RWA 2.  相似文献   

17.
In spring 2003, several outbreaks of the Russian wheat aphid, Diuraphis noxia (Mordvilko), were reported in fields of supposedly resistant wheat cultivars ('Stanton', 'Halt', and 'Prairie Red') in eastern Colorado. We conducted two laboratory experiments to compare the biological performance of this new biotype 2 (B2) to that of two D. noxia collections of biotype 1 (B1) from western Kansas by using three wheat cultivars as host plants: 'Trego', a susceptible cultivar, and Stanton and Halt, two cultivars with different genetic sources of resistance. Survival of solitary nymphs from first instar to adult for the two clones of B1 on Trego was 96 and 90%, respectively, compared with 67 and 43% on Stanton, and 65 and 57% on Halt. In contrast, B2 had 60% survival on Trego, 43% survival on Halt, and 85% survival on Stanton. One clone of B1 required longer to mature on Halt compared with Trego or Stanton, but no other differences in developmental time among cultivars were significant. The standardized fecundity of solitary foundresses of the B1 clones was 19.6 and 20.1 nymphs on Trego, compared with 4.6 and 0.9 on Stanton, and 2.8 and 1.1 on Halt, respectively, over the same period. In contrast, fecundity of B2 was 21.1, 20.8, and 19.7 on Trego, Stanton, and Halt, respectively. When larger colonies developed on individual plants over longer periods, Trego supported the largest number of B1 aphids by experiment's end, whereas Stanton and Halt yielded the largest numbers of B2. The order of overall plant damage was Trego > Stanton > Halt when infested with B1, with no significant differences for B2. Trego had more pronounced leaf rolling than other cultivars, independent of biotype. Collectively, the results suggest that D. noxia B2 from Colorado has evolved cross-virulence to both Dn4- and Dny-based resistance sources.  相似文献   

18.
Broadening the genetic base for resistance to Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae), in bread wheat, Triticum aestivum L., is desirable. To date, identified Russian wheat aphid resistance genes are either located to the D chromosomes or to rye translocation of wheat, and resistance derived from the A or B genomes of tetraploid Triticum spp. would therefore be highly beneficial. Fifty-eight synthetic hexaploid wheat, derived from interspecific crosses of Triticum dicoccum Schrank. and Aegilops tauschii (Coss.) Schmal. and their parents were evaluated for resistance to Russian wheat aphid under field conditions. Plots infested with aphids were compared with plots protected with insecticides. The T. dicoccum parents were highly resistant to Russian wheat aphids, whereas the Ae. tauschii parents were susceptible. Resistance levels observed in the synthetic hexaploids were slightly below the levels of their T. dicoccum parents when a visual damage scale was used. but no major resistance suppression was observed among the synthetics. Russian wheat aphid infestation on average reduced plant height and kernel weight at harvest in the synthetic hexaploids and the T. dicoccum parents by 3-4%, whereas the susceptible control 'Seri M82' suffered losses of above 20%. Because resistance in the synthetic hexaploid wheat is derived from their T. dicoccum parent, resistance gene(s) must be located on the A and/or B genomes. They must therefore be different from previously identified Russian wheat aphid resistance genes, which have all been located on the D genome of wheat or on translocated segments.  相似文献   

19.
20.
Illuminating the genetic relationships within soldier-producing aphid colonies is an essential element of any attempt to explain the evolution of the altruistic soldier caste. Pemphigus spyrothecae is a soldier-producing aphid that induces galls on the leaf petioles of its host (trees of the genus Populus). At least a quarter of the aphids within the clonally produced gall population are morphologically and behaviourally distinct first-instar soldiers that defend the gall population from predation. Using field trapping and microsatellites, we investigated the degree of clonal mixing within natural gall populations. Field trapping in the UK showed that all the migrants of P. spyrothecae and of two other Pemphigus species were wingless first-instar soldiers. The average degree of mixing estimated from trapping P. spyrothecae migrants was 0.68% (range = 0-15%). Microsatellite genotyping of 277 aphids from 13 galls collected in Italy revealed an average mixing level of 10.4% (range = 0-59%). Six galls contained more than one clone (range = 2-5 clones). Non-kin aphids were not restricted to the soldier caste but were evenly distributed across instars. An additional gall, from which 527 occupants were genotyped, contained 12 non-kin aphids distributed among nine clones, showing that clonal diversity can be high even when mixing is very low. These observations suggest that although soldiers migrate regularly and can moult and reproduce within foreign galls, clonal mixing in this species is generally low and is unlikely to provide a barrier to the evolution of investment by the aphid clones in an altruistic soldier caste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号