首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of ligands deemed to be ATP analogues with renal Na(+),K(+)-ATPase suggests that two ATP binding sites coexist on each functional unit. Previous studies in which fluorescein 5-isothiocyanate (FITC) was used to label the high affinity ATP site and 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-diphosphate (TNP-ADP) was used to probe the low affinity site suggested that the two sites coexist on the same alphabeta protomer. Other studies in which FITC labeled the high affinity site and erythrosin-5-isothiocyanate (ErITC) labeled the low affinity site led to the conclusion that the high and low affinity sites exist on separate interacting protomers in a functional diprotomer. We report here that at 100% inhibition of ATPase activity by FITC, each alphabeta protomer of duck nasal gland enzyme has a single bound FITC. Both TNP-ADP and ErITC interact with FITC-bound protomers, which unambiguously demonstrates that putative high and low affinity ATP sites coexist on the same protomer. In unlabeled nasal gland enzyme, TNP-ADP and ErITC inhibit both ATPase activity and p-nitrophenyl phosphatase activity, functions attributed to the putative high and low affinity ATP site, respectively, by interacting with a single site with characteristics of the high affinity ATP binding site. In FITC-labeled enzyme, TNP-ADP and ErITC inhibit p- nitrophenyl phosphatase activity but at much higher concentrations than with the unmodified enzyme. Low affinity sites do not exist on the unmodified enzyme but can be detected only after the high affinity site is modified by FITC.  相似文献   

2.
Fluorescence energy transfer between nucleotide binding sites in an F-actin filament was measured using 1-N6-ethenoadenosine diphosphate (epsilon-ADP) as a fluorescent donor and 2'(or 3')-O-(2,4,6-trinitrophenyl)adenosine 5'-diphosphate (TNP-ADP) as an acceptor, both of which were bound to F-actin. Taking into consideration the helical structure of the F-actin filament, the radial coordinate of the nucleotide binding site was calculated to be 25 A, which corresponds to a distance between these sites along the long-pitch helix of 56.3 A and along the genetic helix of 56.7 A.  相似文献   

3.
M A Jacobson  R F Colman 《Biochemistry》1984,23(17):3789-3799
The distance between the catalytic site on bovine liver glutamate dehydrogenase labeled with 4-(iodoacetamido)salicylic acid (ISA) and the adenosine 5'-diphosphate (ADP) activatory site occupied by the analogue 2',3'-O-(2,4,6-trinitrocyclohexadienylidene)adenosine 5'-diphosphate (TNP-ADP) was evaluated by energy transfer. Native enzyme and enzyme containing about 1 mol of acetamidosalicylate/mol of subunit bind about 0.5 mol of TNP-ADP/mol of subunit, and TNP-ADP competes for binding with ADP to native and modified enzyme, indicating that the analogue is a satisfactory probe of the ADP site. From the quenching of acetamidosalicylate donor fluorescence upon addition of TNP-ADP, an average distance of 33 A was determined between the catalytic and ADP sites. The fluorescent nucleotide analogue 5'-[p-(fluorosulfonyl)benzoyl]-2-aza-1,N6-ethenoadenosine (5'-FSBa epsilon A) reacts covalently with glutamate dehydrogenase to about 1 mol/peptide chain. As compared to native enzyme, the SBa epsilon A-enzyme exhibits decreased sensitivity to GTP inhibition but retains its catalytic activity as well as its ability to be activated by ADP and inhibited by high concentrations of NADH. Complete protection against decreased sensitivity to GTP inhibition is provided by GTP in the presence of NADH. It is concluded that 5'-FSBa epsilon A modifies a GTP site on glutamate dehydrogenase. The distance of 23 A between the catalytic site labeled with ISA and a GTP site labeled with 5'-FSBa epsilon A was measured from the quenching of salicylate donor fluorescence in the presence of the SBa epsilon A acceptor on a doubly labeled enzyme. The average distance between the ADP and GTP sites was previously measured as 18 A [Jacobson, M. A., & Colman, R. F. (1983) Biochemistry 22, 4247-4257], indicating that the regulatory sites of glutamate dehydrogenase are closer to each other than to the catalytic site.  相似文献   

4.
Luminescence energy transfer measurements have been used to determine the distances between the two high affinity Ca2+ binding-transport sites of the (Ca2+ + Mg2+)-ATPase of skeletal muscle sarcoplasmic reticulum. The lanthanide Tb3+ situated at one high affinity Ca2+ site was used as the transfer donor, and acceptors at the other Ca2+ site were the lanthanides Nd3+, Pr3+, Ho3+, or Er3+. Terbium bound to the enzyme was excited directly with a pulsed dye laser. Analysis of the changes in the terbium luminescence lifetime due to the presence of the acceptor indicates that the distance between the Ca2+ sites is 10.7 A. The distance between the Ca2+ sites and the nucleotide-binding catalytic site was determined using Tb3+ at the Ca2+ sites and either trinitrophenyl nucleotides (TNP-N) or fluorescein 5-isothiocyanate (FITC) in the catalytic site as energy acceptors. The R0 values for the Tb-acceptor pairs are approximately 30 and approximately 40 A for TNP-N and FITC, respectively. The distance between Tb3+ at the Ca2+ sites and TNP-ATP at the nucleotide site is approximately 35 A and that between the Ca2+ sites and the FITC labeling site is approximately 47 A. Considerations of the molecular dimensions of the ATPase polypeptide indicate that while the two Ca2+ sites are close to each other, the Ca2+ sites and the nucleotide site are quite remote in the three-dimensional structure of the enzyme.  相似文献   

5.
The separation between the two reactive thiols SH1 (Cys-704) and SH2 (Cys-694) and that between SH1 and the active site of myosin subfragment-1 were further investigated by F?rster energy transfer techniques. The SH1-SH2 distance was determined with the probe 5-[[2-[(iodoacetyl)amino]ethyl] amino]naphthalene-1-sulfonic acid (AEDANS) attached to SH1 as the energy donor and 5-(iodoacetamido)fluorescein (IAF) attached to SH2 as energy acceptor. The results derived from measurements of donor lifetimes yielded a donor-acceptor separation in the range 26-52 A, with the distance R(2/3) based on rapid and isotropic probe motions being 40 A. These parameters were not sensitive to added MgADP, in agreement with previous results obtained by using the steady-state method. The SH1-SH2 distance was also determined with AEDANS attached to SH1 and N-(4-dimethylamino-3,5-dinitrophenyl)maleimide (DDPM) attached to SH2. The range in R for the AEDANS/DDPM pair was 12-36 A, with R(2/3) equal to 27 A. The transfer efficiency between these two probes increased by an average of 38% upon addition of MgADP. These results are in agreement with those previously reported (Dalbey, R.E., Weiel, J. and Yount, R.G. (1983) Biochemistry 22, 4696-4706), but the uncertainty in choosing an appropriate value of the orientation factor to describe the AEDANS-DDPM separation does not allow a unique interpretation of the observed increase in energy transfer because it could reflect either an increase in the average orientation factor or a decrease in the donor-acceptor separation. Nevertheless, the results are consistent with the notion that nucleotide binding induces structural perturbations that can be sensed by SH1 and SH2. The distance between SH1 and the ATPase site was determined with AEDANS linked to SH1 and the nucleotide analogue 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-diphosphate (TNP-ADP) noncovalently bound to the active site as energy acceptor. The bound TNP-ADP was highly immobilized, with a depolarization factor approaching unity. The separation between AEDANS at SH1 and TNP-ADP at the active site was in the range 15-44 A. The actual minimal separation between SH1 and the active site is probably less than 15 A, which suggests that direct interaction between the two sites cannot be ruled out from energy transfer results.  相似文献   

6.
D J Moss  D R Trentham 《Biochemistry》1983,22(23):5261-5270
F?rster energy-transfer techniques have been applied to labeled myosin subfragment 1 from rabbit skeletal muscle to determine an intramolecular distance and whether this distance changes during magnesium-dependent ATPase activity. The alkali one light chain was labeled at Cys-177 with N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine (1,5-IAEDANS) and then exchanged into subfragment 1. High specificity of labeling was indicated by high-performance liquid chromatography analysis of a tryptic digest of the labeled light chain. 2'(3')-O-(2,4,6-Trinitrophenyl)adenosine 5'-diphosphate (TNP-ADP) was bound to the labeled protein at the ATPase active site. The efficiency of energy transfer between the probes was 0.09 when measured by both steady-state and time-resolved fluorescence. Anisotropy measurements of the bound AEDANS indicated considerable freedom of motion of the probe. The probable distance between the probes was 57 A. This distance was unchanged during triphosphatase activity. Two further sites of TNP-ADP interaction with subfragment 1 were found. The effect of these interactions on the energy-transfer measurements was reduced to a minimum by careful choice of reaction conditions.  相似文献   

7.
The effect of 2'(3')-O-(2,4,6-trinitrophenyl)-adenosine 5'-diphosphate (TNP-ADP) on photophosphorylation and on the proton conductivity of the thylakoid membrane has been investigated. The results show that TNP-ADP is a potent competitive inhibitor of photophosphorylation (Ki = 1-2 microM). Moreover, in the absence of ADP and Pi, TNP-ADP accelerates basal electron transport of chloroplasts. Addition of ADP, which promotes release of the analogue from CF1, completely reverses this effect of TNP-ADP; likewise Pi alone reverses stimulation of electron transport by TNP-ADP. Dicyclohexylcarbodiimide treatment, which is known to close CF0 to H+, completely abolishes the effect of TNP-ADP. The measurements of the alkalization of the medium and the acidification of the thylakoid lumen following single turnover flashes showed that binding of TNP-ADP to CF1 increased membrane permeability for H+. Further results suggest that binding of TNP-ADP to the catalytic site of CF1 opens the CF0-CF1 complex for H+. Since ADP, as well as Pi alone, reverses the effect, it is concluded that TNP-ADP induces a conformation of the CF0-CF1 complex similar to the one triggered by simultaneous binding of ADP plus Pi. This may be achieved by interaction of the TNP residue with the Pi binding site. Thus it seems that the status of the catalytic site(s) in CF1 can be transmitted to the CF0 part to control proton flux through the ATPase complex in an economically reasonable way.  相似文献   

8.
T Tao  M Lamkin 《Biochemistry》1981,20(17):5051-5055
Excitation energy transfer studies were carried out to determine the distance between the adenosinetriphosphatase (ATPase) site and a unique "fast-reacting" sulfhydryl (referred to as SH1) in myosin subfragment 1. The fluorescent moiety of the probe N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylene-diamine was used as the donor attached at SH1. The chromophoric nucleotide analogue 2'(3')-0-(2,4,6-trinitrophenyl)adenosine 5'-diphosphate was used as the acceptor noncovalently bound at the ATPase site. The energy transfer efficiency was found to be 56% by measuring the decrease in donor fluorescence lifetime. The critical transfer distance, R0(2/3), was determined to be 40.3 A. Since both donor and acceptor are likely to be rigidly attached, a statistical interpretation of the data was applied (Hillel, Z., & Wu, C.-W. (1976) Biochemistry 15, 2105] to determine distances. The method yielded the following conclusions: most probable distance = 38.7 A; maximum possible distance = 52 A; 10% probability for the distance to be less than 20 A; 3% probability to be less than 15 A. It may be concluded that despite the great influence that the two sites exert on each other, it is not likely that SH1 interacts directly with the ATPase site in myosin subfragment 1. This conclusion is in agreement with the findings of Wiedner et al. [Wiedner, H., Wetzel, R., & Eckstein, F. (1978) J. Biol. Chem. 253, 2763] and Botts et al. [Botts, J., Ue., K., Hozumi, T., & Samet, J. (1979) Biochemistry 18, 5157].  相似文献   

9.
Nd3+ binding to sarcoplasmic reticulum (SR) was detected by inhibition of ATPase activity and directly by a fluorimetric assay. Both methods indicated that Nd3+ inhibited the ATPase activity by binding in the high-affinity Ca2+ binding sites. The stoichiometry of binding was about 11 nmol of Nd3+ bound per mg of SR proteins at pNd = 6.5. At higher [Nd3+], substantial nonspecific binding occurred. The association constant for Nd3+ binding to the high-affinity Ca2+ binding sites was estimated to be near 2 X 10(9) M-1. When the CaATPase was inactivated with fluorescein isothiocyanate (FITC), 5.3 nmol were bound per mg of SR protein. This fluorescent probe is known to bind in the ATP binding site. The stoichiometry of Nd3+ binding to FITC-labeled CaATPase was the same, within experimental error, as to the unlabeled CaATPase. Fluorescence energy transfer between FITC in the ATP site and Nd3+ in the Ca2+ sites was found to be very small. This donor-acceptor pair has a critical distance of 0.93 nm and the distance between the ATP site and the closest Ca2+ was estimated to be greater than 2.1 nm. Parallel measurements with FITC-labeled SR and Co2+, an acceptor with a critical distance 1.2 nm, suggested the ATP and Ca2+ binding sites are greater than 2.6 nm apart.  相似文献   

10.
The temperature dependence of fluorescence polarization and F?rster-type resonance energy transfer (FRET) was analyzed in the Ca2(+)-ATPase of sarcoplasmic reticulum using protein tryptophan and site-specific fluorescence indicators such as 5-[2-[iodoacetyl)amino)ethyl]aminonaphthalene-1-sulfonic acid (IAEDANS), fluorescein 5'-isothiocyanate (FITC), 2',3'-O-(2,4,3-trinitrophenyl)adenosine monophosphate (TNP-AMP) or lanthanides (Pr3+, Nd3+) as probes. The normalized energy transfer efficiency between AEDANS bound at cysteine-670 and -674 and FITC bound at lysine-515 increases with increasing temperature in the range of 10-37 degrees C, indicating the existence of a relatively flexible structure in the region of the ATPase molecule that links the AEDANS to the FITC site. These observations are consistent with the theory of Somogyi, Matko, Papp, Hevessy, Welch and Damjanovich (Biochemistry 23 (1984) 3403-3411) that thermally induced structural fluctuations increase the energy transfer. Structural fluctuations were also evident in the energy transfer between FITC linked to the nucleotide-binding domain and Nd3+ bound at the putative Ca2+ sites. By contrast the normalized energy transfer efficiency between AEDANS and Pr3+ was relatively insensitive to temperature, suggesting that the region between cysteine-670 and the putative Ca2+ site monitored by the AEDANS-Pr3+ pair is relatively rigid. A combination of the energy transfer data with the structural information derived from analysis of Ca2(+)-ATPase crystals yields a structural model, in which the location of the AEDANS-, FITC- and Ca2+ sites are tentatively identified.  相似文献   

11.
Chemical modification of potato apyrase suggests that tryptophan residues are close to the nucleotide binding site. Kd values (+/- Ca2+) for the complexes of apyrase with the non-hydrolysable phosphonate adenine nucleotide analogues, adenosine 5'-(beta,gamma-methylene) triphosphate and adenosine 5'-(alpha,beta-methylene) diphosphate, were obtained from quenching of the intrinsic enzyme fluorescence. Other fluorescent nucleotide analogues (2'(3')-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate, 2'(3')-O-(2,4,6-trinitrophenyl) adenosine 5'-diphosphate. 1,N6-ethenoadenosine triphosphate and 1,N6-ethenoadenosine diphosphate) were hydrolysed by apyrase in the presence of Ca2+, indicating binding to the active site. The dissociation constants for the binding of these analogues were calculated from both the decrease of the protein (tryptophan) fluorescence and enhancement of the nucleotide fluorescence. Using the sensitised acceptor (nucleotide analogue) fluorescence method, energy transfer was observed between enzyme tryptophans and ethene-derivatives. These results support the view that tryptophan residues are present in the nucleotide-binding region of the protein, appropriately oriented to allow the energy transfer process to occur.  相似文献   

12.
Highly reactive sulfhydryls, previously labeled with an iodoacetamide spin label on the Ca-ATPase of sarcoplasmic reticulum, were labeled with the fluorescent probe, 5-(2-[iodoacetyl)amino)ethyl)aminonaphthalene-1-sulfonic acid (IAEDANS), without loss of enzymatic activity. We have selectively measured the apparent distance of the more reactive site, relative to other site-specific probes at both the nucleotide and the high affinity calcium binding sites. Fluorescence energy transfer efficiencies from the donor IAEDANS to two acceptors: fluorescein 5'-isothiocyanate or 2',3'-O-(2,4,3-trinitrophenyl)adenosine monophosphate, situated at or near the nucleotide site, were measured using fluorescence lifetimes and yields. Fluorescence on polyacrylamide gels shows that the IAEDANS and fluorescein 5'-isothiocyanate labels are both associated with the B tryptic fragment. The energy transfer measurements are consistent with distances of 56 and 68 A between IAEDANS and these respective binding sites. On the other hand, energy transfer measurements using the lanthanide, praseodymium (Pr3+), as an acceptor indicate that IAEDANS is located 16-18 A from the binding site(s) of this calcium analog. Pr3+ is shown to be a good analog for calcium binding to the high affinity sites on the enzyme since it competitively displaces calcium, as evidenced by the reversal of the specific calcium-dependent intrinsic fluorescent signal and inactivation of ATPase activity, over the same narrow range in Pr3+ concentration where energy transfer is observed. Our observations suggest that the portion of the B fragment spanning the cytoplasmic portion of the ATPase is folded onto the A fragment, bringing the IAEDANS label in close proximity to the high affinity calcium binding domain.  相似文献   

13.
Structural mapping of chloroplast coupling factor   总被引:2,自引:0,他引:2  
B Snyder  G G Hammes 《Biochemistry》1984,23(24):5787-5795
Fluorescence resonance energy transfer measurements have been used to investigate the spatial relationships between the nucleotide binding sites and the gamma-subunit of the H+-ATPase from chloroplasts and the orientation of these sites with respect to the membrane surface. Fluorescent maleimides reacted covalently at specific sulfhydryl sites on the gamma-subunit served as energy donors. One sulfhydryl site can be labeled only under energized conditions on the thylakoid membrane surface (light site). The two gamma-sulfhydryls exposed after catalytic activation served as a second donor site (disulfide site). In one set of experiments, the nucleotide analogue 2'(3')-(trinitrophenyl)adenosine triphosphate, selectively bound at each of the three nucleotide binding sites of the solubilized coupling factor, was used as an energy acceptor; in another, octadecylrhodamine with its acyl chain inserted in the vesicle bilayer and the rhodamine fluorophore exposed along the membrane surface was the energy acceptor. The distance between the sulfhydryl and disulfide sites was also obtained by sequentially labeling the sites with coumarin (donor) and fluorescein (acceptor) maleimide derivatives, respectively. The results indicate that all three nucleotide sites are approximately equal to 50 A from the light-labeled gamma-sulfhydryl. Two of the nucleotide sites are very far from the gamma-disulfide (greater than 74 A), while the third site, which binds nucleotides reversibly under all conditions, is 62 A from this sulfhydryl. The light-labeled sulfhydryl and disulfide sites are about 42-47 A apart. Finally, the distance of closest approach between the membrane surface of the reconstituted system and the gamma-disulfide is 31 A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Interactions between the high affinity binding sites on mitochondrial F1 were analysed by combined use of the nucleotide analogues 3'-O-(1-naphthoyl)-ADP (N-ADP) and 2'-3'-O-(2,4,6-trinitrophenyl)-ADP (TNP-ADP). The binding behaviour of F1 with respect to these ligands was studied by measuring the fluorescence of F1 and of TNP-ADP and the fluorescence anisotropy of N-ADP. A total of 3 high affinity binding sites can be occupied by TNP-ADP. By exchange experiments, it could be shown that binding of TNP-ADP to such a site considerably accelerates the dissociation of a ligand bound to a neighbouring site. These results support the notion that the functional behaviour of F1 is symmetric: during the catalytic cycle any individual site can successively assume different affinity states as has been predicted by hypotheses such as the binding change model.  相似文献   

15.
The glycosidic bond torsion angles and the conformations of the ribose of Mg2+ATP, Mg2+ADP and Mg2+AdoPP[NH]P (magnesium adenosine 5'-[beta, gamma-imido]triphosphate) bound to Ca2+ATPase, both native and modified with fluorescein isothiocyanate (FITC), in intact sarcoplasmic reticulum have been determined by the measurement of proton-proton transferred nuclear Overhauser enhancements by 1H-NMR spectroscopy. This method shows clearly the existence of a low-affinity ATP binding site after modification of the high-affinity site with FITC. For all three nucleotides bound to both the high-affinity (catalytic) site and the low-affinity site, we find that the conformation about the glycosidic bond is anti, the conformation of the ribose 3'-endo of the N type and the conformation about the ribose C4'-C5' bond either gauche-trans or trans-gauche. The values for the glycosidic bond torsion angles chi (O4'-C1'-N9-C4) for Mg2+ATP, Mg2+ADP and Mg2+AdoPP[NH]P bound to the low-affinity site of FITC-modified Ca2+ATPase are approximately equal to 270 degrees, approximately equal to 260 degrees and approximately equal to 240 degrees respectively. In the case of the nucleotides bound to the high-affinity (catalytic) site of native Ca2+ATPase, chi lies in the range 240-280 degrees.  相似文献   

16.
To localize and characterize the regulatory nucleotide site of skeletal muscle sarcoplasmic reticulum Ca2+-ATPase, we have investigated the effects of ADP, ATP, and analogues of these nucleotides on the rate of dephosphorylation of both native ATPase and ATPase modified with fluorescein 5'-isothiocyanate (FITC), a reagent which hinders access of nucleotides to the ATPase catalytic site without affecting phosphorylation from Pi. Dephosphorylation of the phosphoenzyme formed from Pi was monitored by rapid filtration or stopped-flow fluorescence, mostly at 20 degrees C, pH 6.0, and in the absence of potassium. Fluorescence measurements were made possible through the use of 8-bromo-ATP, which selectively quenched certain tryptophan residues of the ATPase, thereby allowing the intrinsic fluorescence changes associated with dephosphorylation to be measured in the presence of bound nucleotide. ATP, 8-bromo-ATP, and trinitrophenyladenosine diand triphosphate, but not ADP, enhanced the rate of dephosphorylation of native ATPase 2-3-fold when added in the absence of divalent cations. Millimolar concentrations of Mg2+ eliminated the accelerating effects. Acceleration in the absence of Mg2+ was observed at relatively low concentrations of ATP and 8-bromo-ATP (0.01-0.1 mM) and binding of metal-free ATP and ADP, but not Mg.ATP, to the phosphoenzyme in this concentration range was demonstrated directly. Modification of the ATPase with FITC blocked nucleotide binding in the submillimolar concentration range and eliminated the nucleotide-induced acceleration of dephosphorylation. These results show that dephosphorylation, under these conditions, is regulated by ATP but not by Mg.ATP or ADP, and that the catalytic site is the locus of this "regulatory" ATP binding site.  相似文献   

17.
Curcumin is a compound derived from the spice, tumeric. It is a potent inhibitor of the SERCA Ca2+ pumps (all isoforms), inhibiting Ca2+-dependent ATPase activity with IC50 values of between 7 and 15 microm. It also inhibits ATP-dependent Ca2+-uptake in a variety of microsomal membranes, although for cerebellar and platelet microsomes, a stimulation in Ca2+ uptake is observed at low curcumin concentrations (<10 microm). For the skeletal muscle isoform of the Ca2+ pump (SERCA1), the inhibition of curcumin is noncompetitive with respect to Ca2+, and competitive with respect to ATP at high curcumin concentrations ( approximately 10-25 microm). This was confirmed by ATP binding studies that showed inhibition in the presence of curcumin: ATP-dependent phosphorylation was also reduced. Experiments with fluorescein 5'-isothiocyanate (FITC)-labelled ATPase also suggest that curcumin stabilizes the E1 conformational state. The fact that FITC labels the nucleotide binding site of the ATPase (precluding ATP from binding), and the fact that curcumin affects FITC fluorescence indicate that curcumin must be binding to another site within the ATPase that induces a conformational change to prevent ATP from binding. This observation is interpreted, with the aid of recent structural information, as curcumin stabilizing the interaction between the nucleotide-binding and phosphorylation domains, precluding ATP binding.  相似文献   

18.
Fluorescence resonance energy transfer was used to measure the distances between three nucleotide binding sites on solubilized chloroplast coupling factor from spinach and between each nucleotide site and two tyrosine residues which are important for catalytic activity. The nucleotide energy donor was 1,N6-ethenoadenosine di- or triphosphate, and the nucleotide energy acceptor was 2'(3')-(trinitrophenyl)adenosine diphosphate. The tyrosine residues were specifically labeled with 7-chloro-4-nitro-2,1,3-benzoxadiazole, which served as an energy acceptor. The results obtained indicate the three nucleotide binding sites form a triangle with sides of 44, 48, and 36 A. (The assumption has been made in calculating these distances that the energy donor and acceptor rotate rapidly relative to the fluorescence lifetime.) Two of the nucleotide sites are approximately equidistant from each of the two tyrosines: one of the nucleotide sites is about 37 A and the other about 41 A from each tyrosine. The third nucleotide site is about 41 A from one of the tyrosines and greater than or equal to 41 A from the other tyrosine.  相似文献   

19.
Qu Q  Russell PL  Sharom FJ 《Biochemistry》2003,42(4):1170-1177
Drug transport mediated by P-glycoprotein (Pgp) is driven by hydrolysis of ATP at the two cytosolic nucleotide binding domains. However, little is currently known concerning the stoichiometry of nucleotide binding and how both stoichiometry and binding affinity change during the catalytic cycle of the transporter. To address this issue, we used fluorescence techniques to measure both the number of nucleotides bound to P-glycoprotein during various stages of the catalytic cycle and the affinity of nucleotide binding. Results showed that resting state P-glycoprotein bound two molecules of the fluorescent nucleotide derivative, 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate (TNP-ATP), whereas the vanadate-trapped transition state bound only one nucleotide molecule. Both resting and transition state P-glycoprotein showed similar affinity for TNP-ATP/TNP-ADP and unlabeled ATP/ADP. Following binding of various drugs, resting state P-glycoprotein displayed a higher affinity for nucleotides, up to 4-fold depending on the compound used. In contrast, the transition state showed substantially lower (up to 3-fold) nucleotide binding affinity when the drug binding site(s) is/are occupied. These results indicate that both nucleotide binding domains of P-glycoprotein are likely to be occupied with either ATP (or ADP) in the resting state and the transition state in the absence of transport substrates. Drugs alter the binding affinity to favor association of ATP with P-glycoprotein at the start of the catalytic cycle and release of ADP from the transition state following nucleotide hydrolysis.  相似文献   

20.
Ca2+-ATPase molecules were labeled in intact sarcoplasmic reticulum (SR) vesicles, sequentially with a donor fluorophore, fluorescein-5'-isothiocyanate (FITC), and with an acceptor fluorophore, eosin-5'-isothiocyanate (EITC), each at a mole ratio of 0.25-0.5 mol/mol of ATPase. The resonance energy transfer was determined from the effect of acceptor on the intensity and lifetime of donor fluorescence. Due to structural similarities, the two dyes compete for the same site(s) on the Ca2+-ATPase, and under optimal conditions each ATPase molecule is labeled either with donor or acceptor fluorophore, but not with both. There is only slight labeling of phospholipids and other proteins in SR, even at concentrations of FITC or EITC higher than those used in the reported experiments. Efficient energy transfer was observed from the covalently bound FITC to EITC that is assumed to reflect interaction between ATPase molecules. Protein denaturing agents (8 M urea and 4 M guanidine) or nonsolubilizing concentrations of detergents (C12E8 or lysolecithin) abolish the energy transfer. These results are consistent with earlier observations that a large portion of the Ca2+-ATPase is present in oligomeric form in the native membrane. The technique is suitable for kinetic analysis of the effect of various treatments on the monomer-oligomer equilibrium of Ca2+-ATPase. A drawback of the method is that the labeled ATPase, although it retains conformational responses, is enzymatically inactive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号