首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Gal (galectin)-8 is a tandem-repeat Gal containing N-CRDs (Nterminal carbohydrate-recognition domains) and C-CRDs (C-terminal carbohydrate-recognition domains) with differential glycan-binding specificity fused by a linker peptide. Gal-8 has two distinct effects on CD4 T-cells: at high concentrations it induces antigen-independent proliferation, whereas at low concentrations it co-stimulates antigen-specific responses. Associated Gal-8 structural requirements were dissected in the present study. Recombinant homodimers N-N (two N-terminal CRD chimaera) and C-C (two C-terminal CRD chimaera), but not single C-CRDs or N-CRDs, induced proliferation; however, single domains induced co-stimulation. These results indicate that the tandem-repeat structure was essential only for the proliferative effect, suggesting the involvement of lattice formation, whereas co-stimulation could be mediated by agonistic interactions. In both cases, C-C chimaeras displayed higher activity than Gal-8, indicating that the C-CRD was mainly involved, as was further supported by the strong inhibition of proliferation and co-stimulation in the presence of blood group B antigen, specifically recognized by this domain. Classic Gal inhibitors (lactose and thiodigalactoside) prevented proliferation but not co-stimulatory activity, which was inhibited by 3-O-β-D-galactopyranosyl-D-arabinose. Interestingly, Gal-8 induced proliferation of na?ve human CD4 T-cells, varying from non- to high-responder individuals, whereas it promoted cell death of phytohaemagglutinin or CD3/CD28 pre-activated cells. The findings of the present study delineate the differential molecular requirements for Gal-8 activities on T-cells, and suggest a dual activity relying on activation state.  相似文献   

4.
Ubiquinone (UQ) is a lipid found in most biological membranes and is a co-factor in many redox processes including the mitochondrial respiratory chain. UQ has been implicated in protection from oxidative stress and in the aging process. Consequently, it is used as a dietary supplement and to treat mitochondrial diseases. Mutants of the clk-1 gene of the nematode Caenorhabditis elegans are fertile and have an increased life span, although they do not produce UQ but instead accumulate a biosynthetic intermediate, demethoxyubiquinone (DMQ). DMQ appears capable to partially replace UQ for respiration in vivo and in vitro. We have produced a vertebrate model of cells and tissues devoid of UQ by generating a knockout mutation of the murine orthologue of clk-1 (mclk1). We find that mclk1-/- embryonic stem cells and embryos accumulate DMQ instead of UQ. As in the nematode mutant, the activity of the mitochondrial respiratory chain of -/- embryonic stem cells is only mildly affected (65% of wild-type oxygen consumption). However, mclk1-/- embryos arrest development at midgestation, although earlier developmental stages appear normal. These findings indicate that UQ is necessary for vertebrate embryonic development but suggest that mitochondrial respiration is not the function for which UQ is essential when DMQ is present.  相似文献   

5.
Changes in cell shape and position drive morphogenesis in epithelia and depend on the polarized nature of its constituent cells. The spectrin-based membrane skeleton is thought to be a key player in the establishment and/or maintenance of cell shape and polarity. We report that apical beta(Heavy)-spectrin (beta(H)), a terminal web protein that is also associated with the zonula adherens, is essential for normal epithelial morphogenesis of the Drosophila follicle cell epithelium during oogenesis. Elimination of beta(H) by the karst mutation prevents apical constriction of the follicle cells during mid-oogenesis, and is accompanied by a gross breakup of the zonula adherens. We also report that the integrity of the migratory border cell cluster, a group of anterior follicle cells that delaminates from the follicle epithelium, is disrupted. Elimination of beta(H) prevents the stable recruitment of alpha-spectrin to the apical domain, but does not result in a loss of apicobasal polarity, as would be predicted from current models describing the role of spectrin in the establishment of cell polarity. These results demonstrate a direct role for apical (alphabeta(H))(2)-spectrin in epithelial morphogenesis driven by apical contraction, and suggest that apical and basolateral spectrin do not play identical roles in the generation of apicobasal polarity.  相似文献   

6.
Fu X  Sun H  Klein WH  Mu X 《Developmental biology》2006,299(2):424-437
During vertebrate retinal development, the seven retinal cell types differentiate sequentially from a single population of retinal progenitor cells (RPCs) and organize themselves into a distinct laminar structure. The purpose of this study was to determine whether beta-catenin, which functions both as a nuclear effector for the canonical Wnt signaling pathway and as a regulator of cell adhesion, is required for retinal neurogenesis or lamination. We used the Cre-loxP system to either eliminate beta-catenin or to express a constitutively active form during retinal neurogenesis. Eliminating beta-catenin did not affect cell differentiation, but did result in the loss of the radial arrangement of RPCs and caused abnormal migration of differentiated neurons. As a result, the laminar structure was massively disrupted in beta-catenin-null retinas, although all retinal cell types still formed. In contrast to other neural tissues, eliminating beta-catenin did not significantly reduce the proliferation rate of RPCs; likewise, activating beta-catenin ectopically in RPCs did not result in overproliferation, but loss of neural retinal identity. These results indicate that beta-catenin is essential during retinal neurogenesis as a regulator of cell adhesion but not as a nuclear effector of the canonical Wnt signaling pathway. The results further imply that retinal lamination and retinal cell differentiation are genetically separable processes.  相似文献   

7.
1. Parasitoid wasps sting and inject venom into arthropod hosts, which alters host metabolism and development while keeping the host alive for several days, presumably to induce benefits for the parasitoid young. 2. This study investigates the consequences of host envenomation on development and fitness of wasp larvae in the ectoparasitoid Nasonia vitripennis, by comparing wasps reared on live unstung, previously stung, and cold‐killed hosts. Developmental arrest and suppression of host response to larvae are major venom effects that occur in both stung and cold‐killed hosts, but not in unstung hosts, whereas cold‐killed hosts lack venom effects that require a living host. Thus, cold‐killed hosts mimic some of the effects of venom, but not others. 3. Eggs placed on live unstung hosts have significantly higher mortality during development; however, successfully developing wasps from these hosts have similar lifetime fecundity to that of wasps from cold‐killed or stung hosts. Therefore, although venom is beneficial, it is not required for wasp survival. 4. While wasps developing on both cold‐killed and stung hosts have similar fitness levels, rearing multiple generations on cold‐killed hosts results in significant fitness reductions of wasps. 5. It is concluded that the largest benefits of venom are induction of host developmental arrest and suppression of host response to larva (e.g. immune responses), although more subtle benefits may accrue across generations or under stressful conditions.  相似文献   

8.
9.
Vitamin E (alpha-tocopherol) was discovered 80 years ago to be an indispensable nutrient for reproduction in the female. However, it has not been clarified when or where vitamin E is required during pregnancy. We examined the role of alpha-tocopherol in pregnancy using alpha-tocopherol transfer protein (Ttpa)-deficient mice fed specific alpha-tocopherol diets that led to daily, measurable change in plasma alpha-tocopherol levels from nearly normal to almost undetectable levels. A dietary supplement of alpha-tocopherol to pregnant Ttpa-/- (homozygous null) mice was shown to be essential for maintenance of pregnancy from 6.5 to 13.5 days postcoitum but found not to be crucial before or after this time span, which corresponds to initial development and maturation of the placenta. In addition, exposure to a low alpha-tocopherol environment after initiation of placental formation might result in necrosis of placental syncytiotrophoblast cells, followed by necrosis of fetal blood vessel endothelial cells. When Ttpa(-/-)-fertilized eggs were transferred into Ttpa+/+ (wild-type) recipients, plasma alpha-tocopherol concentrations in the Ttpa-/- fetuses were below the detection limit but the fetuses grew normally. These results indicate that alpha-tocopherol is indispensable for the proliferation and/or function of the placenta but not necessary for development of the embryo itself.  相似文献   

10.
11.

Background

Clathrin is a multimeric protein involved in vesicle coat assembly. Recently clathrin distribution was reported to change during the cell cycle and was found to associate with the mitotic spindle. Here we test whether the recruitment of clathrin to the spindle is indicative of a critical functional contribution to mitosis.

Methodology/Principal Findings

Previously a chicken pre-B lymphoma cell line (DKO-R) was developed in which the endogenous clathrin heavy chain alleles were replaced with the human clathrin heavy chain under the control of a tetracycline-regulatable promoter. Receptor-mediated and fluid-phase endocytosis were significantly inhibited in this line following clathrin knockout, and we used this to explore the significance of clathrin heavy chain expression for cell cycle progression. We confirmed using confocal microscopy that clathrin colocalised with tubulin at mitotic spindles. Using a propidium iodide flow cytometric assay we found no statistical difference in the cell cycle distribution of the knockout cells versus the wild-type. Additionally, we showed that the ploidy and the recovery kinetics following cell cycle arrest with nocodazole were unchanged by repressing clathrin heavy chain expression.

Conclusions/Significance

We conclude that the association of clathrin with the mitotic spindle and the contribution of clathrin to endocytosis are evolutionarily conserved. However we find that the contribution of clathrin to mitosis is less robust and dependent on cellular context. In other cell-lines silencing RNA has been used by others to knockdown clathrin expression resulting in an increase in the mitotic index of the cells. We show an effect on the G2/M phase population of clathrin knockdown in HEK293 cells but show that repressing clathrin expression in the DKO-R cell-line has no effect on the size of this population. Consequently this work highlights the need for a more detailed molecular understanding of the recruitment and function of clathrin at the spindle, since the localisation but not the impact of clathrin on mitosis appears to be robust in plants, mammalian and chicken B-cells.  相似文献   

12.
13.
Transforming growth factor-beta1 is essential to maintain T cell homeostasis, as illustrated by multiorgan inflammation in mice deficient in TGF-beta1 signaling. Despite the physiological importance, the mechanisms that TGF-beta1 uses to regulate T cell expansion remain poorly understood. TGF-beta1 signals through transmembrane receptor serine/threonine kinases to activate multiple intracellular effector molecules, including the cytosolic signaling transducers of the Smad protein family. We used Smad3(-/-) mice to investigate a role for Smad3 in IL-2 production and proliferation in T cells. Targeted disruption of Smad3 abrogated TGF-beta1-mediated inhibition of anti-CD3 plus anti-CD28-induced steady state IL-2 mRNA and IL-2 protein production. CFSE labeling demonstrated that TGF-beta1 inhibited entry of wild-type anti-CD3 plus anti-CD28-stimulated cells into cycle cell, and this inhibition was greatly attenuated in Smad3(-/-) T cells. In contrast, disruption of Smad3 did not affect TGF-beta1-mediated inhibition of IL-2-induced proliferation. These results demonstrate that TGF-beta1 signals through Smad3-dependent and -independent pathways to inhibit T cell proliferation. The inability of TGF-beta1 to inhibit TCR-induced proliferation of Smad3(-/-) T cells suggests that IL-2 is not the primary stimulus driving expansion of anti-CD3 plus anti-CD28-stimulated T cells. Thus, we establish that TGF-beta1 signals through multiple pathways to suppress T cell proliferation.  相似文献   

14.
The Drosophila protein DEAF-1 is a sequence-specific DNA binding protein that was isolated as a putative cofactor of the Hox protein Deformed (Dfd). In this study, we analyze the effects of loss or gain of DEAF-1 function on Drosophila development. Maternal/zygotic mutations of DEAF-1 largely result in early embryonic arrest prior to the expression of zygotic segmentation genes, although a few embryos develop into larvae with segmentation defects of variable severity. Overexpression of DEAF-1 protein in embryos can induce defects in migration/closure of the dorsal epidermis, and overexpression in adult primordia can strongly disrupt the development of eye or wing. The DEAF-1 protein associates with many discrete sites on polytene chromosomes, suggesting that DEAF-1 is a rather general regulator of gene expression.  相似文献   

15.
The Drosophila homolog of Aut1 is essential for autophagy and development   总被引:1,自引:0,他引:1  
Juhász G  Csikós G  Sinka R  Erdélyi M  Sass M 《FEBS letters》2003,543(1-3):154-158
The Drosophila homolog of yeast Aut1, CG6877/Draut1, is a ubiquitously expressed cytosolic protein. Draut1 loss of function was achieved by expression of an inverted repeat transgene inducing RNA interference. The effect is temperature-dependent and resembles an allelic series as described by Fortier, E. and Belote, J.M. (Genesis 26 (2000) 240-244). Draut1 loss of function larvae are unable to induce autophagy and heterophagy in fat body cells before pupariation and die during metamorphosis. To our knowledge, this is the first report of a multicellular animal lacking the function of a gene participating in the protein conjugation systems of autophagy.  相似文献   

16.
Drosophila N-cadherin (CadN) is an evolutionarily conserved, atypical classical cadherin, which has a large complex extracellular domain and a catenin-binding cytoplasmic domain. We have previously shown that CadN regulates target selection of R7 photoreceptor axons. To determine the functional domains of CadN, we conducted a structure-function analysis focusing on its in vitro adhesive activity and in vivo function in R7 growth cones. We found that the cytoplasmic domain of CadN is largely dispensable for the targeting of R7 growth cones, and it is not essential for mediating homophilic interaction in cultured cells. Instead, the cytoplasmic domain of CadN is required for maintaining proper growth cone morphology. Domain swapping with the extracellular domain of CadN2, a related but non-adhesive cadherin, revealed that the CadN extracellular domain is required for both adhesive activity and R7 targeting. Using a target-mosaic system, we generated CadN mutant clones in the optic lobe and examined the target-selection of genetically wild-type R7 growth cones to CadN mutant target neurons. We found that CadN, but neither LAR nor Liprin-alpha, is required in the medulla neurons for R7 growth cones to select the correct medulla layer. Together, these data suggest that CadN mediates homophilic adhesive interactions between R7 growth cones and medulla neurons to regulate layer-specific target selection.  相似文献   

17.
Sc1 is an extracellular matrix-associated protein whose function is unknown. During early embryonic development, Sc1 is widely expressed, and from embryonic day 12 (E12), Sc1 is expressed primarily in the developing nervous system. This switch in Sc1 expression at E12 suggests an importance for nervous-system development. To gain insight into Sc1 function, we used gene targeting to inactivate mouse Sc1. The Sc1-null mice showed no obvious deficits in any organs. These mice were born at the expected ratios, were fertile, and had no obvious histological abnormalities, and their long-term survival did not differ from littermate controls. Therefore, the function of Sc1 during development is not critical or, in its absence, is subserved by another protein.  相似文献   

18.
Epiregulin, an epidermal growth factor family member, acts as a local signal mediator and shows dual biological activity, stimulating the proliferation of fibroblasts, hepatocytes, smooth muscle cells, and keratinocytes while inhibiting the growth of several tumor-derived epithelial cell lines. The epiregulin gene (Ereg) is located on mouse chromosome 5 adjacent to three other epidermal growth factor family members, epigen, amphiregulin, and betacellulin. Gene targeting was used to insert a lacZ reporter into the mouse Ereg locus and to ablate its function. Although epiregulin is broadly expressed and regulated both spatially and temporally, Ereg null mice show no overt developmental defects, reproductive abnormalities, or altered liver regeneration. Additionally, in contrast to previous hypotheses, Ereg deficiency does not alter intestinal cancer susceptibility, as assayed in the ApcMin model, despite showing robust expression in developing tumors. However, Ereg null mice are highly susceptible to cancer-predisposing intestinal damage caused by oral administration of dextran sulfate sodium.  相似文献   

19.
Bak but not Bax is essential for Bcl-xS-induced apoptosis   总被引:2,自引:0,他引:2  
Bcl-x(S), a proapoptotic member of the Bcl-2 protein family, is localized in the mitochondria and induces apoptosis in a caspase- and BH3-dependent manner by a mechanism involving cytochrome c release. The way in which Bcl-x(S) induces caspase activation and cytochrome c release, as well as the relationship between Bcl-x(S) and other proapoptotic members of the Bcl-2 family, is not known. Here we used embryonic fibroblasts derived from mice deficient in the multidomain proapoptotic members of the Bcl-2 family (Bax and Bak) and the apoptotic components of the apoptosome (Apaf-1 and caspase-9) to unravel the cascade of events by which Bcl-x(S) promotes apoptosis. Our results show that Bak but not Bax is essential for Bcl-x(S)-induced apoptosis. Bcl-x(S) induced activation of Bak, which in turn promoted apoptosis by apoptosome-dependent and -independent pathways. These findings provide the first evidence that a proapoptotic Bcl-2 family protein induces apoptosis exclusively via Bak.  相似文献   

20.
The proto-oncogene c-myc is a key player in cell-cycle regulation and is deregulated in a broad range of human cancers and cell proliferation disorders. Here we reported that overexpression of c-myc in human embryonic lung fibroblasts (HEL) that have low endogenous c-myc enriched S phase cells with increased expression of cyclin D3, E, A, Cdk2, and Cdk4, and decreased expression of p21 and p27. To the opposite, using RNAi to downregulate c-myc expression in A549 cells that have high endogenous c-myc enriched G1 phase cells with decreased expression of cyclin D3, E, A, Cdk2, Cdk4, and increased expression of p21 and p27. We found that cyclin A expression was the most susceptive to changes in c-myc levels and essential in c-myc-modulated cell cycle pathway via co-transfection, however, cyclin D1 showed no change between treated and control groups in either HEL or A549 cells. Our results indicated that upregulation of c-myc expression promotes cell cycling in HEL cells, whereas downregulation of c-myc expression causes G1 phase arrest in A549 cells, and the c-myc-mediated cell-cycle regulation pathway was dependent on cyclin A and involved cyclin D3, E, Cdk2, Cdk4, p21, and p27, but not cyclin D1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号