首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isoniazid resistance in Mycobacterium tuberculosis (MBT) is associated with point mutations in codon 315 of the katG gene. Two PCR technique were developed for detection of point mutations in codon 315. Most frequent point mutations (AGC → ACC and AGC → AGA) were identified in codon 315 by using two sets of primers, either of which included an additional competitive blocking primer with a 3′-terminal phosphate group in order to prevent nonspecific amplification. PCR with a set of two primers, one of which contained five locked nucleic acid monomers (LNA), permits one to detect any of six known mutations in codon 315 of katG and, thereby, discriminate between isoniazid-sensitive and resistant MBT isolates. The structure and purity of the 17-nt long LNA-containing oligonucleotides were characterized by MALDI-TOF mass spectrometry; and the 17 bp duplex formed by two LNA-containing complementary oligonucleotides was analyzed by thermal denaturation.  相似文献   

2.
Two types of techniques for detection of single nucleotide polymorphism in 315 codon of katG gene of MTB are developed. Isoniazid resistance of MTB is associated with point mutations in the mentioned codon. Two primer sets with additional competitive blocking primer containing 3'-terminal phosphate group (for elimination of unspecific amplification) allow detecting the most frequent point mutations AGC --> ACC and AGC --> AGA in 315 codon of katG gene. PCR with primer set of two primers one of which contains five LNA-monomers allows to determine an occurrence of any type from six known mutations in 315 codon of katG gene, i.e. to differentiate wild type and isoniazid-resistant MTB. Purity and structure of 17 bp long primers with LNA-modified nucleotides were characterized by time-of-flight MALDI-mass spectrometry. Duplex of 17 bp length formed by two complementary oligonucleotides with LNA-monomers was studied using melting.  相似文献   

3.
Point mutations associated with isoniazid resistance in Mycobacterium tuberculosis (MTB) have been analyzed in codon 315 of the katG gene by conventional polymerase chain reaction (PCR) using primers containing locked nucleic acid (LNA) modified nucleotides. Purity and structure of primers containing 5 LNA monomers of 17 nucleotides in length were characterized by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) and a 17-mer duplex formed by two complementary oligonucleotides was characterized by the method of thermal denaturation. The duplex containing five LNA monomers per each strand was characterized by a higher melting temperature than it was expected using extrapolation of theoretical calculation for nucleotide modification of one strand of the duplex. Detection of any of six possible mutations in katG codon 315 (i.e. discrimination between sensitive and resistant MTB) requires just one PCR employing a set of two primers with one LNA-modified primer; this is an important advantage of oligonucleotides containing LNA over unmodified nucleotides: employment of multiplex PCR would require up to 12 primers. Problems of control of oligonucleotide modification by LNA monomers are discussed.  相似文献   

4.
Forty three isoniazid (INH)-resistant Mycobacterium tuberculosis isolates were characterized on the basis of the most common INH associated mutations, katG315 and mabA −15C→T, and phenotypic properties (i.e. MIC of INH, resistance associated pattern, and catalase activity). Typing for resistance mutations was performed by Multiplex Allele-Specific PCR and sequencing reaction. Mutations at either codon were detected in 67.5% of isolates: katG315 in 37.2, mabA −15C→T in 27.9 and both of them in 2.4%, respectively. katG sequencing showed a G insertion at codon 325 detected in 2 strains and leading to amino acid change T326D which has not been previously reported. Distribution of each mutation, among the investigated strains, showed that katG S315T was associated with multiple-drug profile, high-level INH resistance and loss or decreased catalase activity; whereas the mabA −15C→T was more prevalent in mono-INH resistant isolates, but it was not only associated with a low-level INH resistance. It seems that determination of catalase activity aids in the detection of isolates for which MICs are high and could, in conjunction with molecular methods, provide rapid detection of most clinical INH-resistant strains.  相似文献   

5.
An important aim for improving TB treatment is to shorten the period of antibiotic therapy without increasing relapse rates or encouraging the development of antibiotic-resistant strains. In any M. tuberculosis population there is a proportion of bacteria that are drug-tolerant; this might be because of pre-existing populations of slow growing/non replicating bacteria that are protected from antibiotic action due to the expression of a phenotype that limits drug activity. We addressed this question by observing populations of either slow growing (constant 69.3h mean generation time) or fast growing bacilli (constant 23.1h mean generation time) in their response to the effects of isoniazid exposure, using controlled and defined growth in chemostats. Phenotypic differences were detected between the populations at the two growth rates including expression of efflux mechanisms and the involvement of antisense RNA/small RNA in the regulation of a drug-tolerant phenotype, which has not been explored previously for M. tuberculosis. Genotypic analyses showed that slow growing bacilli develop resistance to isoniazid through mutations specifically in katG codon Ser315 which are present in approximately 50–90% of all isoniazid-resistant clinical isolates. The fast growing bacilli persisted as a mixed population with katG mutations distributed throughout the gene. Mutations in katG codon Ser315 appear to have a fitness cost in vitro and particularly in fast growing cultures. Our results suggest a requirement for functional katG-encoded catalase-peroxide in the slow growers but not the fast-growing bacteria, which may explain why katG codon Ser315 mutations are favoured in the slow growing cultures.  相似文献   

6.
We studied the frequency of occurrence and combinations of mutations in rpoB, katG, inhA, and oxyR-ahpC genes of Mycobacterium tuberculosis (MTB) DNA isolated from patients of Moscow region. In isoniazid monoresistant MTB isolates, Ser315Thr mutation in the katG gene prevails (15.8%), whereas the most frequent mutations in multidrug-resistant MTB isolates were Ser531Leu in the rpoB gene, Ser315Thr in the katG gene (26.3%), and their combination with C(-15)T in the inhA gene (5.3%). The efficiency of TB-Biochip (OOO Biochip-IMB Russia), Xpert MTB/RIF (Cepheid, United States), and GenoType MTBDRplus (Hain Lifescience, Germany) test systems was analyzed and compared with the efficiency of luminescent microscopy and phenotypic drug-susceptibility testing in BACTEC? MGIT? 960 automated system (Becton, Dickinson and Company, United States). Using Xpert MTB/RIF, TB-Biochip, and GenoType MTBDRplus systems, MTB DNA was detected in sputum from patients in 92, 78, and 49% of all culturepositive cases, respectively. Standard cultural data match the test results of the susceptibility of MTB for Xpert MTB/RIF (rifampicin resistance) and for TB-Biochip and GenoType MTBDRplus (resistance to rifampicin and isoniazid) by 100, 97, and 100%, respectively. Thus, Xpert MTB/RIF system is the most efficient in primary MTB DNA detection, and TB-Biochip is the only one sensitive enough for both MTB DNA detection and determination of MTB multidrug resistance in sputum. Multidrug resistance is considered as resistance to both rifampicin and isoniazid.  相似文献   

7.
To select the molecular genetic markers related to egg performance of Wanjiang white goose, prolactin receptor gene (PRLR) was adopted to be a candidate gene in our study. Five pairs of primers (P1–P5) were designed to detect the SNPs of PRLR gene by PCR-SSCP method. The results revealed that polymorphisms were discovered in the PCR products amplified with P4 primers in PRLR exon 10, three genotypes were found: AA, AB and AC. The sequence of AB genotype is the same as original sequence (DQ660982) in NCBI. There are five mutations in AA genotype: C → A at 840 bp, C → T at 862 bp, T → C at 875 bp, T → A at 963 bp, A → T at 989 bp, resulting in amino acid mutations: His → Asn, Thr → Ile, Asn → Lys, Thr → Ser, and synonymous mutation at 875 bp. Sequencing revealed five mutations in AC genotype: G → T at 816 bp, A → T at 861 bp, C → T at 862 bp, T → C at 875 bp, A → G at 948 bp, causing amino acid mutations of Val → Phe, Thr → Phe, synonymous mutations at 875 and 963 bp. Besides, there are an N-glycosylation site (NQSR), three casein kinase II phosphorylation sites including SIIE, SKTE, and SLMD in AA genotype; three casein kinase II phosphorylation sites including SIIE, SKTE, and TLMD in AB genotype; three casein kinase II phosphorylation sites including SIFE, SKTE, and TLMD in AC genotype. The annual egg yielding of AB genotype geese are significantly more than those of AA and AC genotype geese on the average (P < 0.05). It is suggested for the first time that PRLR is a promising candidate gene that can affect egg performance in Wanjiang white goose.  相似文献   

8.
Zhang SL  Qi H  Qiu DL  Li DX  Zhang J  Du CM  Wang GB  Yang ZR  Sun Q 《Biochemical genetics》2007,45(3-4):281-290
DNA sequencing analysis was used to investigate genetic alterations in the rpoB, katG, and inhA regulatory region and embB in 66 Mycobacterium tuberculosis isolates recovered from Central China. Of the 36 multidrug-resistant isolates, 33 (92%) had mutations in the amplified region of rpoB. The most frequent mutation (58%, 19/36) was S531L (TCG→TTG). At least one mutation was found in the katG and inhA regulatory region in 83% (30/36) of the multidrug-resistant isolates, and mutations at katG codon 315 were identified in 78% (28/36). Alterations at embB306 may not confer resistance to EMB, and embB306 mutants were more frequently accompanied by rpoB mutations (100%, 16/16) than by katG 315 mutations (75%, 12/16). Our results show that geographic variation in the molecular genetic mechanism is responsible for drug resistance in multidrug-resistant M. tuberculosis. This observation will facilitate the development of a rapid molecular drug resistance screening approach for drug-resistant M. tuberculosis.  相似文献   

9.
Most of isoniazid-resistant Mycobacterium tuberculosis evolved due to mutation in the katG gene encoding catalase-peroxidase. A set of new mutations, namely T1310C, G1388T, G1481A, T1553C, and A1660G, which correspond to amino acid substitutions of L437P, R463L, G494D, I518T, and K554E, in the katG gene of the L10 clinical isolate M. tuberculosis was identified. The wild-type and mutant KatG proteins were expressed in Escherichia coli BL21(DE3) as a protein of 80 kDa based on sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis. The mutant KatG protein exhibited catalase and peroxidase activities of 4.6% and 24.8% toward its wild type, respectively, and retained 19.4% isoniazid oxidation activity. The structure modelling study revealed that these C-terminal mutations might have induced formation of a new turn, perturbing the active site environment and also generated new intramolecular interactions, which could be unfavourable for the enzyme activities.  相似文献   

10.
Antimicrobial resistance was studied in 100 Mycobacterium tuberculosis strains selected randomly from sputum cultures of newly diagnosed tuberculosis patients. Resistance of the isolates to rifampicin, isoniazid, and ethambutol was tested by both drug susceptibility testing (DST) and allele-specific PCR (AS-PCR). A total of 19 (19%) isolates were found resistant to at least one of the antituberculosis drugs investigated by PCR compared with 14 (14%) resistant isolates detected by DST. Eleven mutations were detected by AS-PCR in the rpoB gene (codons 516, 526, and 531), associated with rifampicin resistance, a marker of multidrug-resistant tuberculosis (MDR-TB), 14 mutations in the katG gene codon 315 that confers resistance to isoniazid, and nine mutations in the embB gene codon 306 that confers resistance to ethambutol. Mutations in the six multidrug-resistant isolates were confirmed by DNA sequencing. Results were compared with phenotypic DST data. Nineteen different mutation types to at least one of the drugs were found; six isolates (6%) were classified as MDR-TB, defined as resistance to at least rifampicin and isoniazid. The rates of concordance of the PCR with the phenotypic susceptibility test were 71.4, 54.5, and 44.4 for isoniazid, rifampicin, and ethambutol, respectively. These results highlight the importance of molecular epidemiology studies of tuberculosis in understudied regions with a tuberculosis burden to uncover the true prevalence of the MDR-TB.  相似文献   

11.
The molecular basis of β-thalassemia was investigated at the DNA level in 28 Belgians from 14 unrelated families. All the patients were heterozygous for β-thalassaemia. Seven different mutations were identified using a combination of dot-blot hybridization with allele-specific oligonucleotide probes and direct automated fluorescence-based DNA sequencing. Among these mutations, four are commonly found in the Mediterraneans – codon 8 (–AA), IVS-I-1 (G→A), IVS-I-6 (T→C) and codon 39 (C→T) – and two have occasionally been reported – initiation codon (T→C) and codon 35 (C→A). The last mutation, a –CC deletion at codons 38/39, appears to be a novel mutation and can routinely be investigated by AvaII restriction on amplified DNA. We report our findings, discuss the diversity of the mutations found in Belgium and show the usefulness of direct DNA sequencing in a population in which the molecular defects of β-thalassaemia have yet to be characterized and in which screening is hampered by the wide range of potential mutations. Received: 8 December 1995 / Revised: 7 February 1996  相似文献   

12.
Conjugates of the antituberculosis drug isoniazid (isonicotinyl hydrazine) and isomeric hydrazides of nicotinic and α-picolinic acid with glycoside steviolbioside from the Stevia rebaudiana plant and the product of its acid hydrolysis, diterpenoid isosteviol, were synthesized. In addition, isosteviol hydrazide and hydrazone derivatives as well as conjugates containing two isosteviol moieties joined by a dihydrazide linker were obtained. The parental compounds and their synthetic derivatives were found to inhibit the in vitro growth of Mycobacterium tuberculosis (H37RV). The measured minimal concentrations of stevio-side and steviolbioside, at which the growth of M. tuberculosis was inhibited by 100% (MIC), were 7.5 and 3.8 μg/ml, respectively. MIC values for steviolbioside and isosteviol conjugates with hydrazides of pyridine carbonic acid were within the ranges of 5–10 and 10–20 μg/ml, respectively. The maximal inhibitory effect against M. tuberculosis was shown by the isosteviol conjugates with adipic acid dihydrazide (MIC 1.7 and 3.1 μg/ml). Antituberculosis activities of the tested compounds were higher than the activity of antituberculosis drug Pyrizanamide (MIC 20 μg/ml) but lower than that of antituberculosis drug isoniazid (MIC 0.02–0.04 μg/ml).  相似文献   

13.
More than 100 mutations have been reported till date in the rhodopsin gene in patients with retinitis pigmentosa. The present study was undertaken to detect the reported rhodopsin gene point mutations in Indian retinitis pigmentosa patients. We looked for presence or absence of codon 345 and 347 mutations in exon 5 of the gene using the technique of allele-specific polymerase chain reaction by designing primers for each mutation. We have examined 100 patients from 76 families irrespective of genetic categories. Surprisingly, in our sample the very widely reported highly frequent mutations of codon 347 (P → S/A/R/Q/L/T) were absent while the codon 345 mutation V → M was seen in three cases in one family (autosomal dominant form) and in one sporadic case (total two families). This is the first report on codon 345 and 347 mutation in Indian retinitis pigmentosa subjects.  相似文献   

14.
We determined frequency/types of K-ras mutations in colorectal/lung cancer. ADx-K-ras kit (real-time/double-loop probe PCR) was used to detect somatic tumor gene mutations compared with Sanger DNA sequencing using 583 colorectal and 244 lung cancer paraffin-embedded clinical samples. Genomic DNA was used in both methods; mutation rates at codons 12/13 and frequency of each mutation were detected and compared. The data show that 91.4% colorectal and 59.0% lung carcinoma samples were detected conclusively by DNA sequencing, whereas 100% colorectal and lung samples were detected by ADx-K-ras kit. K-ras gene mutations were detected in 32.9–27.4% colorectal samples using kit and sequencing methods, respectively. Whereas 10.6–8.3% lung cancer samples were positively detected by kit and sequencing methods, respectively. Notably, 172/677 showed mutations and 467/677 showed wild type by both methods; 38 samples showed mutations with kit but wild type with sequencing. Mutations in colorectal samples were as follows: GGT → GAT/codon-12 (35.1%); GGC → GAC/codon-13 (26.6%); GGT → GTT/codon-12 (18.2%); and GGT → GCT/codon-12 (1.6%). Mutations in lung samples were as follows: GGT > GTT/codon-12 (40.9%) and GGT > GCT/codon-12 (4.5%). In conclusion, K-ras mutations involved 32.2% colorectal and 10.6% lung samples among this cohort. ADx-K-ras real-time PCR showed higher detection rates (P < 0.05). The kit method has good clinical applicability as it is simple, fast, less prone to contamination and hence can be used effectively and reliably for clinical screening of somatic tumor gene mutations.  相似文献   

15.
Several existing molecular tests for multidrug-resistant tuberculosis (MDR-TB) are limited by complexity and cost, hindering their widespread application. The objective of this proof of concept study was to develop a simple Nucleic Acid Lateral Flow (NALF) immunoassay as a potential diagnostic alternative, to complement conventional PCR, for the rapid molecular detection of MDR-TB. The NALF device was designed using antibodies for the indirect detection of labeled PCR amplification products. Multiplex PCR was optimized to permit the simultaneous detection of the drug resistant determining mutations in the 81-bp hot spot region of the rpoB gene (rifampicin resistance), while semi-nested PCR was optimized for the S315T mutation detection in the katG gene (isoniazid resistance). The amplification process additionally targeted a conserved region of the genes as Mycobacterium tuberculosis (Mtb) DNA control. The optimized conditions were validated with the H37Rv wild-type (WT) Mtb isolate and Mtb isolates with known mutations (MT) within the rpoB and katG genes. Results indicate the correct identification of WT (drug susceptible) and MT (drug resistant) Mtb isolates, with the least limit of detection (LOD) being 104 genomic copies per PCR reaction. NALF is a simple, rapid and low-cost device suitable for low resource settings where conventional PCR is already employed on a regular basis. Moreover, the use of antibody-based NALF to target primer-labels, without the requirement for DNA hybridization, renders the device generic, which could easily be adapted for the molecular diagnosis of other infectious and non-infectious diseases requiring nucleic acid detection.  相似文献   

16.
In cultivated tetraploid peanut (2n = 4x = 40, AABB), the conversion of oleic acid to linoleic acid is mainly catalyzed by the Δ12 fatty acid desaturase (FAD). Two homoeologous genes (FAD2A and FAD2B) encoding for the desaturase are located on the A and B genomes, respectively. Abolishing or reducing the desaturase activity by gene mutation can significantly increase the oleic acid/linoleic acid ratio. F435-derived high-oleate peanut cultivars contain two key mutations within the Δ12 fatty acid desaturase gene which include a 1-bp substitution of G:C→A:T in the A genome and a 1-bp insertion of A:T in the B genome. Both of these mutations contribute to abolishing or reducing the desaturase activity, leading to accumulation of oleate versus linoleate. Currently, detection of FAD2 alleles can be achieved by a cleaved amplified polymorphic sequence marker for the A genome and a real-time polymerase chain reaction (PCR) marker for the B genome; however, detection of these key mutations has to use different assay platforms. Therefore, a simple PCR assay for detection of FAD2 alleles on both genomes was developed by designing allele-specific primers and altering PCR annealing temperatures. This assay was successfully used for detecting FAD2 alleles in peanut. Gas chromatography (GC) was used to determine fatty acid composition of PCR-assayed genotypes. The results from the PCR assay and GC analysis were consistent. This PCR assay is quick, reliable, economical, and easy to use. Implementation of this PCR assay will greatly enhance the efficiency of germplasm characterization and marker-assisted selection of high oleate in peanut.  相似文献   

17.
Li M  Gu P  Kang J  Wang Y  Wang Q  Qi Q 《Folia microbiologica》2012,57(3):209-214
Multiple gene knockouts play an important role in metabolic engineering. The flanked homology length, homologous to the region adjacent to the target gene, of the knockout fragments has a great effect on the efficiency of multiple gene knockouts, whereas the existing gene knockout methods can only supply a very short homology. This article presents a strategy of easily extending homologous sequence based on the available strain library through one-step PCR amplification (the one-step PCR method). In this approach, the library of single gene mutants was used as the templates for PCR to amplify knockout fragments. Thus, the flanked homology can be extended as long as possible by designing primers upstream and downstream far from the target gene. Based on the one-step PCR method, we studied the effect of the homology length and the number of mutations on the efficiency of multiple gene knockouts. Our results indicated that the one-step PCR method permitted rapid and efficient construction of multiple mutants continuously or simultaneously, and a length of 200–300 bp homologous sequence was equal for multiple gene knockouts.  相似文献   

18.
The mechanisms leading to non-lethality of nonsense mutations in essential genes are poorly understood. Here, we focus on the factors influencing viability of yeast cells bearing premature termination codons (PTCs) in the essential gene SUP45 encoding translation termination factor eRF1. Using a dual reporter system we compared readthrough efficiency of the natural termination codon of SUP45 gene, spontaneous sup45-n (nonsense) mutations, nonsense mutations obtained by site-directed mutagenesis (76Q → TAA, 242R → TGA, 317L → TAG). The nonsense mutations in SUP45 gene were shown to be situated in moderate contexts for readthrough efficiency. We showed that readthrough efficiency of some of the mutations present in the sup45 mutants is not correlated with full-length Sup45 protein amount. This resulted from modification of both sup45 mRNA stability which varies 3-fold among sup45-n mutants and degradation rate of mutant Sup45 proteins. Our results demonstrate that some substitutions in the place of PTCs decrease Sup45 stability. The viability of sup45 nonsense mutants is therefore supported by diverse mechanisms that control the final amount of functional Sup45 in cells.  相似文献   

19.
We have identified a minor hemoglobin component (∼5%) in the blood of a healthy Costa Rican female, but not in her mother and two brothers (father not studied), that has an His→Arg replacement at position β77 (Hb Costa Rica). No other amino acid replacements were observed and no β- or γ-chain-like peptides were present. Hb Costa Rica has a normal stability. Sequence analyses of numerous polymerase chain reaction (PCR)-amplified segments of DNA that contain exon 2 of the β gene failed to identify a CAC→CGC (His→Arg) mutation. The same was the case when cDNA was sequenced, indicating that a β-Costa Rica-mRNA could not be detected with this procedure. Gene mapping of genomic DNA with BglII, BamHI, and HindIII gave normal fragments only and with the same intensity as observed for the fragments of a normal control. The quantities of the β chain variants Hb J-Iran and Hb Fukuyama with related mutations at β77 vary between 30% and 45% in heterozygotes, whereas that of Hb F-Kennestone with the same His→Arg mutation but in the Gγ-globin gene, is a high 40%–45% (as percentage of total Gγ) in a heterozygous newborn. These different observations exclude a heterozygosity of the A→G mutation at codon β77, as well as a deletion comparable to that of Hbs Lepore or Kenya, or a β-globin gene duplication, and point to a nontraditional inheritance of Hb Costa Rica. Allele-specific amplification of cDNA with appropriate primers identified the presence of a low level of mutated mRNA in the reticulocytes of the patient, which was confirmed by dotblot analysis of the same material with 32P-labeled probes. Comparable amplification products were not observed in genomic DNA. The A→G mutation apparently occurred in a somatic cell at a relatively early stage in the development of the hematopoietic cell system, and Hb Costa Rica accumulated through rapid cell divisions in patchy areas in the bone marrow (somatic mosaicism). An unequal distribution of Hb Costa Rica over the red cells supports this possibility. Received: 25 August 1995 / Revised: 13 December 1995  相似文献   

20.
The S gene region of the hepatitis B virus (HBV) is responsible for the expression of surface antigens and includes the ‘a’-determinant region. Thus, mutation(s) in this region would afford HBV variants a distinct survival advantage, permitting the mutant virus to escape from the immune system. The aim of this study was to search for mutations of the S gene region in different patient groups infected with genotype D variants of HBV, and to analyse the biological significance of these mutations. Moreover, we investigated S gene mutation inductance among family members. Forty HBV-DNA-positive patients were determined among 132 hepatitis B surface antigen (HbsAg) carriers by the first stage of seminested PCR. Genotypes and subtypes were established by sequencing of the amplified S gene regions. Variants were compared with original sequences of these serotypes, and mutations were identified. All variants were designated as genotype D and subtype ayw3. Ten kinds of point mutations were identified within the S region. The highest rates of mutation were found in chronic hepatitis patients and their family members. The amino acid mutations 125 (M → T) and 127 (T → P) were found on the first loop of ‘a’-determinant. The other consequence was mutation inductance in a family member. We found some mutations in the S gene region known to be stable and observed that some of these mutations affected S gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号