首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
EH domains are protein–protein interaction domains that function in vesicular trafficking and endocytosis. Here, we report the NMR spectral assignments of the high-affinity complex between the second EH domain of Eps15 and a stonin 2 peptide—providing the basis for the characterization of a two-site binding mode.  相似文献   

2.
High-fidelity replication guarantees the stable inheritance of genetic information stored in the DNA of living organisms. The minichromosome maintenance (MCM) complex functions as replicative DNA-unwinding helicase and has been identified as one key player in the replication process of archea and eukarya. Despite the availability of considerable structural information on archeal MCMs, such information was missing for their C-terminal domain. In order to obtain more detailed structural information, we assigned the NMR chemical shifts for backbone and side chain nuclei for the MCM C-terminal winged helix domains of the archeal species Methanothermobacter thermautrophicus and Sulfolobus solfataricus.  相似文献   

3.
The ζ-COP is one subunit of the COP I coatomer, which mediates the protein trafficking from the cis-Golgi complex to the endoplasmic reticulum and also functions in the intra-Golgi trafficking. The NMR assignments of the ζ-COP are essential for its solution structure determination.  相似文献   

4.
Galectin-1 is an important regulator of leukocyte function and tumor angiogenesis. Recently, this lectin has been identified as a molecular target for the potent angiogenesis inhibitor anginex. Here, we report 1H, 13C, and 15N chemical shift assignments for human galectin-1 as determined by using heteronuclear triple resonance NMR spectroscopy.  相似文献   

5.
Human interferon-stimulated gene 15 protein (ISG15), also called ubiquitin cross-reactive protein (UCRP), is the first identified ubiquitin-like protein containing two ubiquitin-like domains fused in tandem. The active form of ISG15 is conjugated to target proteins via the C-terminal glycine residue through an isopeptide bond in a manner similar to ubiquitin. The biological role of ISG15 is strongly associated with the modulation of cell immune function, and there is mounting evidence suggesting that many viral pathogens evade the host innate immune response by interfering with ISG15 conjugation to both host and viral proteins in a variety of ways. Here we report nearly complete backbone 1HN, 15N, 13C′, and 13Cα, as well as side chain 13Cβ, methyl (Ile-δ1, Leu, Val), amide (Asn, Gln), and indole N–H (Trp) NMR resonance assignments for the 157-residue human ISG15 protein. These resonance assignments provide the basis for future structural and functional solution NMR studies of the biologically important human ISG15 protein.  相似文献   

6.
Almost complete assignment of backbone 1H, 13C, 15N and side chain 13Cβ resonances for the immune-regulatory cytokine IL-10 is reported. The protein was overexpressed in Escherichia coli and was refolded from inclusion bodies. The point mutation C149Y was introduced to suppress incorrect disulfide bond formation and to improve protein refolding.  相似文献   

7.
8.
As part of our NMR structure determination of the human Interleukin-1α, we report nearly complete NMR chemical shift assignments for the 1H, 13C and 15N nuclei.  相似文献   

9.
Alpha(1)-antitrypsin is a 45-kDa (394-residue) serine protease inhibitor synthesized by hepatocytes, which is released into the circulatory system and protects the lung from the actions of neutrophil elastase via a conformational transition within a dynamic inhibitory mechanism. Relatively common point mutations subvert this transition, causing polymerisation of α(1)-antitrypsin and deficiency of the circulating protein, predisposing carriers to severe lung and liver disease. We have assigned the backbone resonances of α(1)-antitrypsin using multidimensional heteronuclear NMR spectroscopy. These assignments provide the starting point for a detailed solution state characterization of the structural properties of this highly dynamic protein via NMR methods.  相似文献   

10.
Summary The 1H, 13C and 15N NMR assignments of the backbone and side-chain resonances of rat S100 were made at pH 6.5 and 37°C using heteronuclear multidimensional NMR spectroscopy. Analysis of the NOE correlations, together with amide exchange rate and 1H, 13C and 13C chemical shift data, provided extensive secondary structural information. Thus, the secondary structure of S100 was determined to comprise four helices (Leu3-Ser18, helix I; Lys29-Leu40, helix II; Gln50-Glu62, helix III; and Phe70-Ala83, helix IV), four loops (Gly19-His25, loop I; Ser41-Glu49, loop II; Asp63-Gly66, loop III; and Cys84-Glu91, loop IV) and two -strands (Lys26-Lys28, -strand I and Glu67-Asp69, -strand II). The -strands were found to align in an antiparallel manner to form a very small -sheet. This secondary structure is consistent with predictions that S100 contains two helix-loop-helix Ca2+-binding motifs known as EF-hands. The alignment of the -sheet, which brings the two EF-hand domains of S100 into close proximity, is similar to that of several other Ca2+ ion-binding proteins.  相似文献   

11.
The agglutinin-like-sequence (ALS) family of adhesion proteins are a key virulence factor for C. albicans. These proteins have been implicated in several functions, notably adhesion and invasion of different cell types, as well as binding to peptides and proteins in the cell surface and extracellular matrix. In order to understand their binding mechanism and en route to a full structural determination by NMR, here we report the resonance assignments of backbone atoms plus Ile, Leu and Val methyls for residues 18–329 of ALS1, which comprises the 33.5 kDa binding domain.  相似文献   

12.
Nanobodies are single chain antibodies that are uniquely produced in Camelidae, e.g. camels and llamas. They have the desirable features of small sizes (Mw < 14 kDa) and high affinities against antigens (Kd ~ nM), making them ideal as structural probes for biomedically relevant motifs both in vitro and in vivo. We have previously shown that nanobody binding to amyloidogenic human lysozyme variants can effectively inhibit their aggregation, the process that is at the origin of systemic amyloid disease. Here we report the NMR assignments of a new nanobody, termed NbSyn2, which recognises the C-terminus of the intrinsically disordered protein, human α-synuclein (aS), whose aberrant self-association is implicated in Parkinson’s disease.  相似文献   

13.
The small α-domain of Lon protease is thought to carry the substrate-recognition, nucleotide-binding, and DNA-binding sites. Here we report the complete resonance assignment of the α-domain for Bacillus subtilis Lon protease (Bs-Lon α-domain).  相似文献   

14.
The giant protein titin is the third most abundant protein of vertebrate striated muscle. The titin molecule is >1 μm long and spans half the sarcomere, from the Z-disk to the M-line, and has important roles in sarcomere assembly, elasticity and intracellular signaling. In the A-band of the sarcomere titin is attached to the thick filaments and mainly consists immunoglobulin-like and fibronectin type III-like domains. These are mostly arranged in long-range patterns or ‘super-repeats’. The large super-repeats each contain 11 domains and are repeated 11 times, thus forming nearly half the titin molecule. Through interactions with myosin and C-protein, they are involved in thick filament assembly. The importance of titin in muscle assembly is highlighted by the effect of mutations in the A-band portion, which are the commonest cause of dilated cardiomyopathy, affecting ~1 in 250 (Herman et al. in N Engl J Med 366:619–628, 2012). Here we report backbone 15N, 13C and 1H chemical shift and 13Cβ assignments for the A59–A60 domain tandem from the titin A59–A69 large super-repeat, completed using triple resonance NMR. Since, some regions of the backbone remained unassigned in A60 domain of the complete A59–A60 tandem, a construct containing a single A60 domain, A60sd, was also studied using the same methods. Considerably improved assignment coverage was achieved using A60sd due to its lower mass and improved molecular tumbling rate; these assignments also allowed the analysis of inter-domain interactions using chemical shift mapping against A59–A60.  相似文献   

15.
Protein disulfide isomerase (PDI) participates in protein folding and catalyses formation of disulfide bonds. The b′ domain of human PDI contributes to binding unfolded proteins; its structure is stabilized by the b domain. Here, we report NMR chemical shift assignments for the bb′ fragment.  相似文献   

16.
The sequence specific 1H, 13C and 15N resonance assignments of hahellin in 8 M urea-denatured state have been accomplished by NMR spectroscopy. Secondary chemical shift analysis reveals the native-like propensities for β-rich conformation in the denatured state.  相似文献   

17.
NOXO1 (Nox Organizer 1) is a homolog of the NAPDH oxidase protein p47 phox . NADPH oxidases transfer electrons from NADPH to molecular oxygen, generating the superoxide anion. NOXO1 contains an N-terminal PX (phox homology) domain and is one of several PX domain-containing proteins found in the cytosolic subunits of the NADPH oxidase complex. These PX domains bind to membrane lipids and target the protein to membranes, recruiting other cytosolic components to the membrane bound components and aiding formation of a active enzyme complex. This recruitment represents a level of regulation of these oxidases. Here we report the backbone assignments of NOXO1β PX.  相似文献   

18.
Human regenerating (Reg) genes belong to the C-type lectin superfamily and express secretory proteins in various tissues. Reg Iα, also named lithostathine, has multiple roles in numerous biological events such as cytokines, anti-apoptotic factors and the calcium carbonate crystals inhibitor. Under physiological pH, Reg Iα becomes largely insoluble after a self-proteolysis process, and the N-terminally truncated form readily polymerizes into fibrils, which leads to neurodegenerative diseases. Reg Iα may form protofibril via lateral hydrophobic interactions with a native-like conformation. The structural basis from the native to fibril form, as well as the carbohydrate binding sites on Reg Iα, remain unknown. Here we present the NMR backbone and side-chain assignments of Reg Iα for use in further NMR investigations.  相似文献   

19.
Vta1 and Vps60 are two ESCRT associated proteins, their direct interaction enhances Vps4 ATPase activity. The N-terminal domain of Vta1 (residues 1–167aa, named as Vta1NTD) contains two tandem MIT domains, which specifically recognize Vps60 and Did2 but not other ESCRT-III subunits. The fragment Vps60 (128–186aa) was reported to display full activity of Vps60, which stimulates Vps4 ATPase in a Vta1-dependent manner. To study the structural basis for the interaction between Vta1 and Vps60, as a first step, here, we report the resonance assignments of the sequential backbone atoms and the side chains of the residues in the two components of Vta1NTD/Vps60128–186 complex at pH 7.0 and 20 °C (BMRB No. 18521).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号