首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recently, a human ortholog of mouse calcyclin (S100A6)-binding protein (CacyBP) called SIP (Siah-1-interacting protein) was shown to be a component of a novel ubiquitinylation pathway regulating beta-catenin degradation (Matsuzawa, S., and Reed, J. C. (2001) Mol. Cell 7, 915-926). In murine brain, CacyBP/SIP is expressed at a high level, but S100A6 is expressed at a very low level. Consequently we carried out experiments to determine if CacyBP/SIP binds to other S100 proteins in this tissue. Using CacyBP/SIP affinity chromatography, we found that S100B from the brain extract binds to CacyBP/SIP in a Ca2+-dependent manner. Using a nitrocellulose overlay assay with 125I-CacyBP/SIP and CacyBP/SIP affinity chromatography, we found that this protein binds purified S100A1, S100A6, S100A12, S100B, and S100P but not S100A4, calbindin D(9k), parvalbumin, and calmodulin. The interaction of S100 proteins with CacyBP/SIP occurs via its C-terminal fragment (residues 155-229). Co-immunoprecipitation of CacyBP/SIP with S100B from brain and with S100A6 from Ehrlich ascites tumor cells suggests that these interactions are physiologically relevant and that the ubiquitinylation complex involving CacyBP/SIP might be regulated by S100 proteins.  相似文献   

2.
The expression of a novel calcyclin (S100A6) binding protein (CacyBP) in different rat tissues was determined by Western and Northern blotting. Polyclonal antibodies against recombinant CacyBP purified from E. coli exhibited the highest reaction in the brain and weaker reaction in liver, spleen, and stomach. CacyBP immunoreactivity was also detected in lung and kidney. Densitometric analysis showed that the concentration of CacyBP in the soluble fractions of total brain and cerebellum is approximately 0.17 and 0. 34 ng/microg protein, respectively. Northern blotting with a specific cDNA probe confirmed the high level of CacyBP expression in the rat brain and lower levels in other tissues examined. Immunohistochemistry and in situ hybridization of rat brain sections revealed strong expression of CacyBP in neurons of the cerebellum, hippocampus, and cortex. The in situ hybridization detected CacyBP in hippocampus as early as P7 (postnatal day 7) and a peak of expression at P21, and the expression signal was preserved until adulthood. In the entorhinal cortex, the peak of expression was observed at P7, whereas in the cerebellum it was seen at P21. The results presented here show that CacyBP is predominantly a neuronal protein. (J Histochem Cytochem 48:1195-1202)  相似文献   

3.
S100A6 is a member of the S100 subfamily of EF-hand Ca (2+) binding proteins that has been shown to interact with calcyclin binding protein/Siah-1 interacting protein (CacyBP/SIP or SIP), a subunit of an SCF-like E3 ubiquitin ligase complex (SCF-TBL1) formed under genotoxic stress. SIP serves as a scaffold in this complex, linking the E2-recruiting module Siah-1 to the substrate-recruiting module Skp1-TBL1. A cell-based functional assay suggests that S100A6 modulates the activity of SCF-TBL1. The results from the cell-based experiments could be enhanced if it were possible to selectively inhibit S100A6-SIP interactions without perturbing any other functions of the two proteins. To this end, the structure of the S100A6-SIP complex was determined in solution by NMR and the strength of the interaction was characterized by isothermal titration calorimetry. In an initial step, the minimal S100A6 binding region in SIP was mapped to a 31-residue fragment (Ser189-Arg219) in the C-terminal domain. The structure of the S100A6-SIP(189-219) complex revealed that SIP(189-219) forms two helices, the first of which (Met193-Tyr200) interacts with S100A6 in a canonical binding mode. The second helix (Met207-Val216) lies over the S100A6 dimer interface, a mode of binding to S100A6 that has not previously been observed for any target bound to an S100 protein. A series of structure-based SIP mutations showed reduced S100A6 binding affinity, setting the stage for direct functional analysis of S100A6-SIP interactions.  相似文献   

4.
5.

Background

Women live about 4 years longer due to lower prevalence of cardiovascular complication with ageing. However, the mechanisms involved in the preservation of heart functionality in women have not been fully elucidated.The endocannabinoid system fulfils a significant role in the regulation of cardiovascular system functioning. Cannabinoids, acting through specific receptors (CB1 and CB2), influence on blood pressure, heart rate and myocardial contractility. The function of cardiac muscle cells is strictly dependent on calcium ions. Calcium homeostasis in cardiomyocytes is subjected to complex regulation via calcium-binding proteins. Among them, increasing attention has been paid to the recently discovered S100A6 and CacyBP/SIP.In order to better understand sex differences in the regulation of cardiomyocyte function during ageing, we undertook the present research aimed at immunohistochemical identification and comparative evaluation of cannabinoid receptors, S100A6 and CacyBP/SIP, in the myocardium of ageing men and women.

Methods

The study was conducted on the hearts of 12 men and 10 women (organ donors) without a history of cardiovascular disease. The subjects were divided into two age groups: subjects older than 50 years and subjects under 50 years old. Paraffin heart sections were processed by immunohistochemistry for detection of cannabinoids receptors, S100A6 and CacyBP/SIP. In the heart samples from each study, participant’s expression of genes coding for CB1, CB2, S100A6 and CacyBP/SIP using real-time PCR method was measured.

Results

CB1 and CB2 immunoreactivity in the cytoplasm of cardiomyocytes in the heart of subjects over 50 was weaker than in younger individuals. In the heart of younger men, CB1-immunoreactivity was weaker and CB2-immunoreaction was stronger compared to women. In the hearts of older men, the CB1-immunostaining was more intense and CB2-immunoreactivity was weaker than in women. Immunodetection of CB1 shoved the presence of receptor in the intercalated discs, but only in the hearts of individuals over the 50 years old. In the hearts of older individuals, stronger immunolabelling was observed for S100A6 and CacyBP/SIP. Male hearts had greater S100A6-immunoreactivity (both age groups) but less CacyBP/SIP immunostaining (individuals over 50 years) compared to the age-matched women. The expression of genes coding CB1, CB2, S100A6 and CacyBP/SIP in the human heart was sex and age-dependent. Observed changes between men and women as well as between subject under and over 50 years were consistent with immunohistochemically stated changes in peptide content.

Conclusion

Together, the data presented here indicate a close interaction between ageing and sex on the distribution and levels of cannabinoid receptors (CB1, CB2), S100A6 and CacyBP/SIP in the human heart.
  相似文献   

6.
7.
Myocardial ischemia during cardiopulmonary bypass terminated by reperfusion generally leads to different degrees of damage of the cardiomyocytes induced by transient cytosolic Ca(2+) overload. Recently, much attention has been paid to the role of heart-specific Ca(2+)-binding proteins in the pathogenesis of myocardial ischemia-reperfusion injury. S100A1 is a heart-specific EF-hand Ca(2+)-binding protein that is directly involved in a variety of Ca(2+)-mediated functions in myocytes. The aim of our study was to investigate the localization and translocation of S100A1 in the human heart under normal (baseline) conditions and after prolonged ischemia and reperfusion of the myocardium. Our data suggest that S100A1 is directly involved in the transient perioperative myocardial damage caused by ischemia during open heart surgery in humans. Given its role in the contractile function of muscle cells, this S100 protein could be an important "intracellular link" in ischemia-reperfusion injury of the heart.  相似文献   

8.
Rosenfeld AB 《PloS one》2011,6(9):e25116
Controlling translation is crucial for the homeostasis of a cell. Its deregulation can facilitate the development and progression of many diseases including cancer. Poly (A) binding protein interacting protein 2 (Paip2) inhibits efficient initiation of translation by impairing formation of the necessary closed loop of mRNA. The over production of Paip2 in the presence of a constitutively active form of hRas(V12) can reduce colony formation in a semi-solid matrix and focus formation on a cell monolayer. The ability of Paip2 to bind to Pabp is required to suppress the transformed phenotype mediated by hRas(V12). These observations indicate that Paip2 is able to function as a tumor suppressor.  相似文献   

9.
Calcyclin (S100A6) binding protein/Siah‐1 interacting protein (CacyBP/SIP) is mainly a cytoplasmic protein; however, some literature data suggested its presence in the nucleus. In this work we examined more precisely the nuclear localization and function of CacyBP/SIP. By applying mass spectrometry, we have identified several nuclear proteins, among them is nucleophosmin (NPM1), that may interact with CacyBP/SIP. Subsequent assays revealed that CacyBP/SIP forms complexes with NPM1 in the cell and that the interaction between these two proteins is direct. Interestingly, although CacyBP/SIP exhibits phosphatase activity, we have found that its overexpression favors phosphorylation of NPM1 on S125. In turn, the RNA immunoprecipitation assay indicated that the altered CacyBP/SIP level has an impact on the amount of 28S and 18S rRNA bound to NPM1. The overexpression of CacyBP/SIP resulted in a significant increase in the binding of 28S and 18S rRNA to NPM1, whereas silencing of CacyBP/SIP expression decreased 28S rRNA binding and had no effect on the binding of 18S rRNA. Further studies have shown that under oxidative stress, CacyBP/SIP overexpression alters NPM1 distribution in cell nuclei. In addition, staining for a nucleolar marker, fibrillarin, revealed that CacyBP/SIP is indispensable for maintaining the nucleolar structure. These results are in agreement with data obtained by western blot analysis, which show that upon oxidative stress the NPM1 level decreases but that CacyBP/SIP overexpression counteracts the effect of stress. Altogether, our results show for the first time that CacyBP/SIP binds to and affects the properties of a nuclear protein, NPM1, and that it is indispensable for preserving the structure of nucleoli under oxidative stress.  相似文献   

10.
Calcyclin-binding protein (CacyBP)/Siah-1 interacting protein (SIP), a component of ubiquitin-mediated proteolysis, could bind the Skp1-Cul1-F box protein complex. Although CacyBP/SIP was implicated in p53-induced beta-catenin degradation, its exact function was still unknown. Our previous studies showed that CacyBP/SIP could modulate the multidrug-resistant phenotype of gastric cancer cells and was highly expressed in gastric cancer tissues compared with that in non-cancerous tissues. In this study, CacyBP/SIP protein expression profile in a broad range of human normal tissues and carcinomas was analyzed by immunohistochemistry staining with anti-CacyBP/SIP monoclonal antibody first produced in our laboratory. CacyBP/SIP was generally localized in the cytoplasm/nucleus. Positive staining of CacyBP/SIP was found in brain, heart, lymph node, and esophagus. Weak staining was shown in the rectum and kidney. No CacyBP/SIP was detected in other normal tissues. However, CacyBP/SIP was ubiquitously detected in all kinds of tumor tissues and was highly expressed in nasopharyngeal carcinoma, osteogenic sarcoma, and pancreatic cancer. To our knowledge, this is the first study on the CacyBP/SIP expression pattern in a broad range of human normal and tumor tissues. The data presented should serve as a useful reference for other investigators in future studies of CacyBP/SIP functions. Hopefully, this knowledge will lead to discovery of more roles of CacyBP/SIP in tumorigenesis.  相似文献   

11.
Flow dialysis measurements of calcium binding to bovine brain S100 alpha alpha, S100a (alpha beta), and S100b (beta beta) proteins in 20 mM Tris-HCl buffer at pH 7.5 and 8.3 revealed that S100 proteins bind specifically 4 Ca2+ eq/mol of protein dimer. The specific calcium-binding sites had, therefore, been assigned to typical amino acid sequences on the alpha and beta subunit. The protein affinity for calcium is much lower in the presence of magnesium and potassium. Potassium strongly antagonizes calcium binding on two calcium-binding sites responsible for most of the Ca2+-induced conformational changes on S100 proteins (probably site II alpha and site II beta). Zinc-binding studies in the absence of divalent cations revealed eight zinc-binding sites/mol of S100b protein dimer that we assumed to correspond to 4 zinc-binding sites/beta subunit. Zinc binding to S100b studied with UV spectroscopy methods showed that the occupation of the four higher affinity sites and the four lower affinity sites on the protein dimer were responsible for different conformational changes in S100b structure. Zinc binding on the higher affinity sites regulates calcium binding to S100b by increasing the protein affinity for calcium and decreasing the antagonistic effect of potassium on calcium binding. Zinc-binding studies on S100a and S100 alpha alpha protein showed that the Trp-containing S100 proteins bind zinc more weakly than S100b protein. Calcium-binding studies on zinc-bound S100a proved that calcium- and zinc-binding sites were distinct although there was no increase in zinc-bound S100a affinity for calcium, as in S100b protein. Finally we provide evidence that discrepancies between previously published results on the optical properties of S100b protein probably result from oxidation of the sulfhydryl groups in the protein.  相似文献   

12.
Functional S100P requires dimer formation and dimerization might form for one of the two reasons: i. producing a pair of sites for target protein binding or ii. modulation of cation binding affinity. The extent of exposed protein hydrophobicity was related to dimer formation.  相似文献   

13.
S100A6 (calcyclin), a small calcium-binding protein from the S100 family, interacts with several target proteins in a calcium-regulated manner. One target is Calcyclin-Binding Protein/Siah-1-Interacting Protein (CacyBP/SIP), a component of a novel pathway of beta-catenin ubiquitination. A recently discovered yeast homolog of CacyBP/SIP, Sgt1, associates with Skp1 and regulates its function in the Skp1/Cullin1/F-box complex ubiquitin ligase and in kinetochore complexes. S100A6-binding domain of CacyBP/SIP is in its C-terminal region, where the homology between CacyBP/SIP and Sgt1 is the greatest. Therefore, we hypothesized that Sgt1, through its C-terminal region, interacts with S100A6. We tested this hypothesis by performing affinity chromatography and chemical cross-linking experiments. Our results showed that Sgt1 binds to S100A6 in a calcium-regulated manner and that the S100A6-binding domain in Sgt1 is comprised of 71 C-terminal residues. Moreover, S100A6 does not influence Skp1-Sgt1 binding, a result suggesting that separate Sgt1 domains are responsible for interactions with S100A6 and Skp1. Sgt1 binds not only to S100A6 but also to S100B and S100P, other members of the S100 family. The interaction between S100A6 and Sgt1 is likely to be physiologically relevant because both proteins were co-immunoprecipitated from HEp-2 cell line extract using monoclonal anti-S100A6 antibody. Phosphorylation of the S100A6-binding domain of Sgt1 by casein kinase II was inhibited by S100A6, a result suggesting that the role of S100A6 binding is to regulate the phosphorylation of Sgt1. These findings suggest that protein ubiquitination via Sgt1-dependent pathway can be regulated by S100 proteins.  相似文献   

14.
Astrocytes recruitment and activation are a hallmark of many neurodegenerative diseases including Alzheimer's disease (AD). We have previously observed an overexpression for S100A6 protein, a Ca(2+)/Zn(2+) binding protein presenting more affinity for zinc than for calcium, in amyotrophic lateral sclerosis (ALS). Here we demonstrated in AD patients but also in two different AD mouse models, that astrocytic S100A6 protein was homogeneously up-regulated within the white matter. However, within the grey matter, almost all S100A6 immunoreactivity was concentrated in astrocytes surrounding the Abeta amyloid deposits of senile plaques. These S100A6 neocortex labelled astrocytes were also positive for the glial fibrillary acidic protein (GFAP) and S100B protein. Contrasting with S100A6, the distribution for S100B and GFA astrocytic labelled cells was not restricted to the Abeta amyloid deposit in grey matter, but widely distributed throughout the neocortex. Coupling the knowledge that biometals such as zinc are highly concentrated in the amyloid deposits in AD and S100A6 having a high affinity for Zn(2+) may suggest that S100A6 plays a role in AD neuropathology.  相似文献   

15.
Calcyclin (S100A6) is an S100 calcium-binding protein whose expression is up-regulated in proliferating and differentiating cells. A novel 30-kDa protein exhibiting calcium-dependent calcyclin-binding (calcyclin-binding protein, CacyBP) had been identified, purified, and cloned previously (Filipek, A., and Kuznicki, J. (1998) J. Neurochem. 70, 1793-1798). Here, we have defined the calcyclin binding region using limited proteolysis and a set of deletion mutants of CacyBP. A fragment encompassing residues 178-229 (CacyBP-(178-229)) was capable of full binding to calcyclin. CacyBP-(178-229) was expressed in Escherichia coli as a glutathione S-transferase fusion protein and purified. The protein fragment cleaved from the glutathione S-transferase fusion protein was shown by CD to contain 5% alpha-helix, 15% beta -sheet, and 81% random coil. Fluorescence spectroscopy was used to determine calcyclin dissociation constants of 0.96 and 1.2 microm for intact CacyBP and CacyBP-(178-229), respectively, indicating that the fragment can be used for characterization of calcyclin-CacyBP interactions. NMR analysis of CacyBP-(178-229) binding-induced changes in the chemical shifts of (15)N-enriched calcyclin revealed that CacyBP binding occurs at a discrete site on calcyclin with micromolar affinity.  相似文献   

16.
Zipper interacting protein kinase (ZIPK), also known as death associated protein kinase 3, is a serine/threonine kinase that mediates variety of cell functions. The major biologic function of ZIPK is considered to be the regulation of apoptosis and smooth muscle contraction. Recently, several other functions of ZIPK have been gradually clarified. In this review article, we summarized the recent findings on ZIPK function and ZIPK-related cell signaling. We propose that ZIPK is a potential future target for the development of pharmaceutical therapy for cancer as well as cardiovascular diseases.  相似文献   

17.
18.
The calcium-binding protein S100A4 (p9Ka) has been shown to cause a metastatic phenotype in rodent mammary tumor cells and in transgenic mouse model systems. mRNA for S100A4 (p9Ka) is present at a generally higher level in breast carcinoma than in benign breast tumor specimens, and the presence of immunocytochemically detected S100A4 correlates strongly with a poor prognosis for breast cancer patients. Recombinant S100A4 (p9Ka) has been reported to interact in vitro with cytoskeletal components and to form oligomers, particularly homodimers in vitro. Using the yeast two-hybrid system, a strong interaction between S100A4 (p9Ka) and another S100 protein, S100A1, was detected. Site-directed mutagenesis of conserved amino acid residues involved in the dimerization of S100 proteins abolished the interactions. The interaction between S100A4 and S100A1 was also observed in vitro using affinity column chromatography and gel overlay techniques. Both S100A1 and S100A4 can occur in the same cultured mammary cells, suggesting that in cells containing both proteins, S100A1 might modulate the metastasis-inducing capability of S100A4.  相似文献   

19.
S100 proteins are EF-hand calcium-binding proteins with various intracellular functions including cell proliferation, differentiation, migration, and apoptosis. Some S100 proteins are also secreted and exert extracellular paracrine and autocrine functions. Experimental results suggest that the receptor for advanced glycation end products (RAGE) plays important roles in mediating S100 protein-induced cellular signaling. Here we compared the interaction of two S100 proteins, S100B and S100A6, with RAGE by in vitro assay and in culture of human SH-SY5Y neuroblastoma cells. Our in vitro binding data showed that S100B and S100A6, although structurally very similar, interact with different RAGE extracellular domains. Our cell assay data demonstrated that S100B and S100A6 differentially modulate cell survival. At micromolar concentration, S100B increased cellular proliferation, whereas at the same concentration, S100A6 triggered apoptosis. Although both S100 proteins induced the formation of reactive oxygen species, S100B recruited phosphatidylinositol 3-kinase/AKT and NF-kappaB, whereas S100A6 activated JNK. More importantly, we showed that S100B and S100A6 modulate cell survival in a RAGE-dependent manner; S100B specifically interacted with the RAGE V and C(1) domains and S100A6 specifically interacted with the C(1) and C(2) RAGE domains. Altogether these results highlight the complexity of S100/RAGE cellular signaling.  相似文献   

20.
S100A4 (Mts1) is a Ca(2+)-binding protein of the S100 family. This protein plays an important role in promoting tumor metastasis. In order to identify S100A4 interacting proteins, we have applied the yeast two-hybrid system as an in vivo approach. By screening a mouse mammary adenocarcinoma library, we have demonstrated that S100A4 forms a heterocomplex with S100A1, another member of the S100 family. The non-covalent heterodimerization was confirmed by fluorescence spectroscopy and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mutational analysis revealed that replacement of Cys(76) and/or Cys(81) of S100A4 by Ser abolishes the S100A4/S100A1 heterodimerization, but does not affect the S100A4 homodimerization in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号