首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
WANG  Jun  ZHANG  LiXin  LIANG  HouGuo 《Photosynthetica》1998,34(1):141-145
A peptide ranging from residues 229 to 240 (ENESANEGYRFG) of D1 protein was synthesized by stepwise solid-phase method. Resolution enhancement techniques were combined with band curve-fitting procedures to quantitate the FTIR spectra in the amide I' region (1700-1600 cm-1). FTIR analysis showed that DCMU induced drastic structural modification with a relative decrease of the unordered structure and turns, and a substantial increase of α-helix, which indicated that a much more compact structure was formed when DCMU was applied. The results may reflect molecular information for the protective effect of DCMU against photoinhibition.  相似文献   

2.
A.L. Etienne 《BBA》1974,333(2):320-330
We have studied the 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) action on the different S states by oxygen, fluorescence and luminescence measurements.We show that no oxygen is evolved during a flash following the addition of DCMU to centers in their S3 state. This suggests that oxygen inhibition cannot be attributed solely to a blocking between Q and A. For all the photoinactive states, the only remaining pathway for the quencher reoxidation, in the presence of DCMU, appears to proceed through a back reaction. Therefore, the complete quencher regeneration still occurring when the fourth positive charge is formed in the presence of DCMU is also an indication of an action by DCMU at the donor side.The data well fit the model in which the oscillations of the fluorescence yield and their damping are attributed to a fast equilibrium between two forms of the centers: a photoactive and a photoinactive form, both of which are quenchers. The equilibrium constant depends on the number of positive charges stored and DCMU changes the characteristics of this equilibrium.  相似文献   

3.
Ryo Nagao  Sho Kitazaki  Takumi Noguchi 《BBA》2018,1859(2):129-136
Light-induced Fourier transformed infrared (FTIR) difference spectroscopy is a powerful method to study the structures and reactions of redox cofactors involved in the photosynthetic electron transport chain. So far, most of the FTIR studies of the reactions of oxygenic photosynthesis have been performed using isolated photosystem I (PSI) and photosystem II (PSII) preparations, which, however, could be modified during isolation procedures. In this study, we developed a methodology to evaluate the photosynthetic activities of thylakoids using FTIR spectroscopy. FTIR difference spectra upon successive flashes using thylakoids from spinach exhibited signals typical of the S-state cycle at the Mn4CaO5 cluster and QB reactions in PSII with period-four and -two oscillations, respectively. Similar measurement in the presence of an artificial quinone as an exogenous electron acceptor showed features specific to the S-state cycle. Simulations of the oscillation patterns provided the quantum efficiencies of the S-state cycle and electron transfer in PSII. Moreover, FTIR measurement under continuous illumination on thylakoids in the presence of DCMU showed signals due to QA reduction and P700 oxidation simultaneously. From the relative amplitudes of marker bands of QA? and P700+, the molar ratio of photoactive PSII and PSI centers in thylakoids was estimated. FTIR analyses of the photo-reactions in thylakoids, which are more intact than isolated photosystems, will be useful in investigations of the photosynthetic mechanism especially by genetic modification of photosystem proteins.  相似文献   

4.
O. Lumpkin  Z. Hillel 《BBA》1973,305(2):281-291
Using a simple He-Ne (632.8-nm) laser phosphoroscope steady-state luminescence from Chlorella pyrenoidosa was studied from 50 μs to 1.1 ms between 1 ms long exciting flashes. The following results were obtained: (1) prior freezing or ultraviolet irradiation changed the time course of the luminescence to a rapid decay with a half-time of about 110 μs; (2) 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) suppressed the 110-μs luminescence; (3) spectrally, all observed luminescence was, within possible error, identical to fluorescence; (4) no effect on the luminescence intensity from pulsed magnetic fields up to 30 kgauss was observed; (5) the relative fluorescence yield, measured simultaneously with luminescence, was found to be constant.Our principal conclusions, supported mainly by experiments with DCMU, are: (1) the 110-μs decay is a distinct component of the total steady-state luminescence; (2) prior freezing or ultraviolet irradiation isolates this component of the luminescence by suppressing all other components; (3) the half-time and intensity of this component are temperature independent in the interval 0–22 °C.  相似文献   

5.
B.R. Velthuys  J. Amesz 《BBA》1974,333(1):85-94
A study was made of the reactions between the primary and secondary electron acceptors of Photosystem 2 by measurements of the increase of chlorophyll fluorescence induced in darkness by dithionite or by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). The experiments were done either with chloroplasts to which hydroxylamine or carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP) was added, or with chloroplasts treated with tris(hydroxymethyl)aminomethane (Tris) to which phenylenediamine and ascorbate were added as donor system. Under these conditions the fluorescence increase induced by dithionite or DCMU added after illumination with short light flashes was dependent on the flash number with a periodicity of two; it was large after an uneven number of flashes, and small after a long darktime or after an even number of flashes. The results are interpreted in terms of a model which involves a hypothetical electron carrier situated between Q and plastoquinone; this electron carrier is thought to equilibrate with plastoquinone in a two-electron transfer reaction; the results obtained with DCMU are explained by assuming that its midpoint potential is lowered by this inhibitor.  相似文献   

6.
Soukupová  J.  Lukavská  A.  Lukavský  J.  Nedbal  L. 《Photosynthetica》1999,37(2):209-216
The sensitivity of marine algal biotest ISO 10253 to the photosystem 2 (PS2) herbicide diuron (DCMU) was determined. Using the diatom Phaeodactylum tricornutum, we found that the algal growth rate was reduced to 50 % of the control value (EC50) for ca. 200 nM DCMU. This value is too high to allow a practical application of the biotest for concentrations of the PS2 herbicides found in natural waters. The mechanisms causing the low sensitivity of the biotest to the PS2 herbicide were investigated by measuring parameters of photosynthetic apparatus in the diatom prior and during the biotest. The apparent dissociation constant for DCMU in P. tricornutum found by measurements of inhibition of oxygen evolution and of variable fluorescence was in the range 60–90 nM. This should lead to a much higher sensitivity of the biotest than found in our experiments. The low biotest sensitivity is caused by an acclimation to sub-lethal DCMU concentrations. The acclimation is manifested by the chlorophyll content per cell that is increasing with the DCMU concentration. During a prolonged exposure to sub-lethal herbicide concentrations, we observed also a selection of DCMU resistant organisms indicating that also an adaptation may decrease the test sensitivity. The biotest sensitivity may increase when the acclimation and adaptation are limited by shortening of the experiment duration. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
8.
Jane M. Bowes  Antony R. Crofts 《BBA》1981,637(3):464-472
(1) If DCMU is added to chloroplasts which have been preilluminated (0–8 flashes) the turnover of the water-splitting enzyme is limited to one further transition upon continuous illumination. (2) The intensity of millisecond delayed fluorescence measured in the presence of mediators of cyclic electron transport around Photosystem I and of DCMU added after pre-flashing is stimulated above the level in the presence of DCMU alone and varies according to the number of pre-flashes (Bowes, J.M. and Crofts, A.R. (1978) Z. Naturforsch 33c, 271–275). (3) Separate contributions of the following energetic terms to the induction kinetics and extent of millisecond delayed fluorescence under these conditions have been examined with a view to assessing their involvement in and the mechanism of the stimulation of the emission above the level in dark-adapted chloroplasts in the presence of DCMU: (a) the initial pH of the phase in equilibrium with the water-splitting enzyme; (b) the change in internal pH which occurred when Photosystem I acted as a proton pump; (c) the electrical potential difference across the membrane resulting from rapid charging of the membrane capacitance. (4) It was confirmed that delayed light was stimulated as a result of the interaction of the intrathylakoid pH (3a and b) with the equilibria of the S-states involving proton release according to the model in which this occurs on all except the transition S1 → S2; the stimulation was qualitatively proportional to the number of protons released. (5) There was no marked variation of the membrane potential as a function of the number of pre-flashes.  相似文献   

9.
Using steady-state relaxation spectrophotometric technique a P700 component (t 12 ~20 ms) has been detected which was sensitized by low concentration (10?7M) DCMU in isolated broken chloroplasts of pea. The relative quantum yield of electron flux through DCMU-sensitized P700 was similar to that with methyl viologen or NADP as terminal electron acceptor and water as electron donor. Kinetic analysis showed that a small fraction (10%) of the total P700 reaction centers was sensitized by low DCMU.  相似文献   

10.
A peptide ranging from residue 229 to 240 of the D1 protein of Photosystem (PS) II was synthesized and lanthanides were used as candidates of calcium. Fluorescence and FTIR spectroscopy were used to test the conformational adaptation after lanthanide additions. Fluorescence spectroscopy showed that the synthetic peptide provides lanthanide binding site, and that glutamic acids are involved in lanthanide binding. Resolution enhancement techniques were combined with band curve-fitting procedures to quantitate the FTIR spectral information from the amide 1 bands. The relative areas of these component bands indicate that lanthanide induced a substantial decrease in the amount of unordered structure and turns, while a corresponding increase in the amount of -helix and open loop was also observed. This indicates that a relatively compact structure of the synthetic peptide is formed if lanthanides are applied. The results may reflect on the physiological and biochemical function of calcium in PS II, including preventing D1 from trypsin digestion.Abbreviations DCMU 3-(3,4-Dichlorophenyl)-1,1-dimethylurea - FTIR Fourier transform infrared - FSD Fourier self-deconvolution - PS Photosystem - QB Secondary plastoquinone electron acceptor of PS II  相似文献   

11.
Jérôme Lavergne 《BBA》1982,679(1):12-18
Chloroplasts were submitted to a sequence of saturating short flashes and then rapidly mixed with dichlorophenyldimethylurea (DCMU). The amount of singly reduced secondary acceptor (B?) present was estimated from the DCMU-induced increase in fluorescence in the dark caused by the reaction: QB?
Q?B. By varying the time interval between the preillumination and the mixing, the time course of B? reoxidation by externally added benzoquinone was investigated. It was found that benzoquinone oxidizes B? in a bimolecular reaction, and does not interact directly with Q?. When a sufficient delay after the preillumination was allowed in order to let benzoquinone reoxidize B? before the injection of DCMU, the fluorescence increase caused by one subsequent flash fired in the presence of DCMU was followed by a fast decay phase (t12 ? 100 μs). The amplitude of this phase was proportional to the amount of B? produced by the preillumination. This fast decay was observed only after the first flash in the presence of DCMU. These results are interpreted by assuming a binding of the singly reduced benzoquinone to Photosystem II where it acts as an efficient, DCMU-insensitive, secondary (exogenous) acceptor.  相似文献   

12.
In bicarbonate-depleted chloroplasts, the chlorophyll a fluorescence decayed with a halftime of about 150 ms after the third flash, and appreciably faster after the first and second flash of a series of flashes given after a dark period. After the fourth to twentieth flashes, the decay was also slow. After addition of bicarbonate, the decay was fast after all the flashes of the sequence. This indicates that the bicarbonate depletion inhibits the reoxidation of the secondary acceptor R2− by the plastoquinone pool; R is the secondary electron acceptor of pigment system II, as it accepts electrons from the reduced form of the primary electron acceptor (Q). This conclusion is consistent with the measurements of the DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea)-induced chlorophyll a fluorescence after a series of flashes in the presence and the absence of bicarbonate, if it is assumed that DCMU not only causes reduction of Q if added in the state QR, but also if added in the state QR2−.  相似文献   

13.
G. Girault  J.M. Galmiche 《BBA》1974,333(2):314-319
The restoration by silicotungstic acid of the reversible light-induced pH rise mediated by pyocyanine in EDTA-treated chloroplasts corresponds to an irreversible fixation of the acid. The proton uptake is linearly related to the amount of fixed acid (4 protons per molecule of acid) as long as the amount of silicotungstic acid does not exceed 200 nmoles/mg of chlorophyll.In the same conditions silicotungstic acid partly restores ferricyanide reduction and O2 evolution in chloroplasts suspensions supplemented with DCMU. These photoreactions are observed only with chloroplasts and these chloroplasts must have an unimpaired water-splitting mechanism.Silicotungstic acid does not impair DCMU fixation on the specific sites. More likely in its presence the properties of the membrane change and ferricyanide can accept electrons from a part of the electron transport chain, between the Photosystem II reaction center and the block of the electron flow by DCMU.  相似文献   

14.
15.
Gerald T. Babcock  Kenneth Sauer 《BBA》1975,376(2):329-344
Rapid light-induced transients in EPR Signal IIf (F?+) are observed in 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated, Tris-washed chloroplasts until the state F P680 Q? is reached. In the absence of exogenous redox mediators several flashes are required to saturate this photoinactive state. However, the Signal IIf transient is observed on only the first flash following DCMU addition if an efficient donor to Signal IIf, phenylenediamine or hydroquinone, is present. Complementary polarographic measurements show that under these conditions oxidized phenylenediamine is produced only on the first flash of a series. The DCMU inhibition of Signal IIf can be completely relieved by oxidative titration of a one-electron reductant with E08.0 = +480 mV. At high reduction potentials the decay time of Signal IIf is constant at about 300 ms, whereas in the absence of DCMU the decay time is longer and increases with increasing reduction potential.A model is proposed in which Q?, the reduced Photosystem II primary acceptor, and D, a one-electron 480 mV donor endogenous to the chloroplast suspension, compete in the reduction of Signal IIf (F?+). At high potentials D is oxidized in the dark, and the (Q? + F?+) back reaction regenerates the photoactive F P680 Q state. The electrochemical and kinetic evidence is consistent with the hypothesis that the Signal IIf species, F, is identical with Z, the physiological donor to P680.  相似文献   

16.
A.L. Etienne 《BBA》1974,333(3):497-508
The effects of NH2OH and carbonyl cyanide m-chlorophenylhydrazone (CCCP) on 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated algae and chloroplasts were studied. In the presence of DCMU, the photochemically separated charges can only disappear through a recombination back reaction; both substances induce an irreversible reduction of the donor side and after sufficient illumination their action in the presence of DCMU leads to the formation of a permanent fluorescent state.

In the DCMU + CCCP system, a fast fluorescence induction curve is observed. The fluorescence yield is brought to its maximum by two flashes. The luminescence emission is strongly inhibited and most centers reach their permanent fluorescent state after one flash.

In the DCMU + NH2OH system, a slow fluorescence rise is observed and several saturating flashes are needed for the fluorescence yield to reach its maximum. The exhaustion of the NH2OH oxidizing capacity and the complete transformation to a permanent fluorescent state also require a large number of flashes.

The reduction pathway catalyzed by CCCP appears to be a good competitor to the back reaction, while NH2OH seems to be a relatively inefficient donor.

In addition the action of NH2OH and CCCP on fluorescence suggests that the donor side influences the quenching properties of Photosystem II centers. A possible mechanism is proposed.  相似文献   


17.
The effects of DCMU and NaN3 were studied on menadione-mediated photophosphorylation in broken spinach chloroplasts kept in low oxygen tension in Tricine or HEPES buffers at either high or reduced irradiances. – (A) At high irradiance (131 W. m?2) and absence of NaN3 the ATP formation was inhibited by DCMU regardless of the type of buffer used. – (B) At high irradiance and presence of NaN3 some concentrations of DCMU stimulated, whilst others inhibited the ATP formation in a HEPES buffer. The ATP formation was predominantly inhibited by DCMU in a Tricine buffer. – (C) At reduced irradiance (57 W. m?2) the chloroplasts in a HEPES buffer were almost insensitive towards DCMU both in the presence and absence of NaN3. – (D) Chloroplasts in a Tricine buffer were slightly stimulated in their ATP formation by DCMU at reduced irradiance either with or without the presence of NaN3 in the experimental medium. When menadione acts as a terminal electron acceptor, oxygen is consumed on its reoxidation. The results indicate that this process may occur with oxygen released by the splitting of water as the main oxidant. – The data also demonstrate the importance of caution when selecting buffering substances as well as when choosing light intensities for experiments on photophosphorylation in chloroplasts.  相似文献   

18.
The redox potential of Q(A) in photosystem II (PSII) is known to be lower by approximately 100 mV in the presence of phenolic herbicides compared with the presence of DCMU-type herbicides. In this study, the structural basis underlying the herbicide effects on the Q(A) redox potential was studied using Fourier transform infrared (FTIR) spectroscopy. Light-induced Q(A)(-)/Q(A) FTIR difference spectra of Mn-depleted PSII membranes in the presence of DCMU, atrazine, terbutryn, and bromacil showed a strong CO stretching peak of Q(A)(-) at 1,479 cm(-1), while binding of phenolic herbicides, bromoxynil and ioxynil, induced a small but clear downshift by approximately 1 cm(-1). The CO peak positions and the small frequency difference were reproduced in the S(2)Q(A)(-)/S(1)Q(A) spectra of oxygen-evolving PSII membranes with DCMU and bromoxynil. The relationship of the CO frequency with herbicide species correlated well with that of the peak temperatures of thermoluminescence due to S(2)Q(A)(-) recombination. Density functional theory calculations of model hydrogen-bonded complexes of plastoquinone radical anion showed that the small shift of the CO frequency is consistent with a change in the hydrogen-bond structure most likely as a change in its strength. The Q(A)(-)/Q(A) spectra in the presence of bromoxynil, and ioxynil, which bear a nitrile group in the phenolic ring, also showed CN stretching bands around 2,210 cm(-1). Comparison with the CN frequencies of bromoxynil in solutions suggested that the phenolic herbicides take a phenotate anion form in the Q(B) pocket. It was proposed that interaction of the phenolic C-O(-) with D1-His215 changes the strength of the hydrogen bond between the CO of Q(A) with D2-His214 via the iron-histidine bridge, causing the decrease in the Q(A) redox potential.  相似文献   

19.
SYNOPSIS. Symbiosis between Chlamydomonas hedleyi (Lee, Crockett, Hagen & Stone) and Archais angulatus (Fichtel & Moll) was examined during laboratory studies of primary production and light-enhanced calcification. Photosynthesis and calcification are directly proportional to light intensity in the range of 0–200 μEinsteins m-2 sec-1. Calcification in the light is directly proportional to photosynthesis and proceeds at rates that are 2–3 times that observed in the dark. The herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), in concentrations of 1–100 μM, completely inhibits photosynthesis and light-enhanced calcification. Calcification of the foraminiferan test is therefore due to the photosynthetic activity of the symbiote. Calcification rates for foraminifers incubated in the dark or with DCMU are not significantly different from the calcification rates obtained for dead foraminifers. Rates of calcification obtained with 45Ca are twice that obtained with 14C.  相似文献   

20.
The photodamage process of photosystem II by strong illumination was investigated by examining the herbicide effects on the photoinactivation of redox cofactors. O(2)-evolving photosystem II membranes from spinach in the absence of herbicide and in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and bromoxynil were subjected to strong white-light illumination at 298K, and the illumination-time dependence of the activities of Q(A), the Mn cluster, and P680 were monitored using light-induced Fourier transform infrared (FTIR) difference spectroscopy. The decrease in the Q(A) activity was suppressed and accelerated by DCMU and bromoxynil, respectively, in comparison with the sample without herbicide. The intensity change in the S(2)/S(1) FTIR signal of the Mn cluster exhibited a time course virtually identical to that in the Q(A) signal in all the three samples, suggesting that the loss of the S(1)→S(2) transition was ascribed to the Q(A) inactivation and hence the Mn cluster was inactivated not faster than Q(A). The decrease in the P680 signal was always slower than that of Q(A) keeping the tendency of the herbicide effect. Degradation of the D1 protein occurred after the P680 inactivation. These observations are consistent with the acceptor-side mechanism, in which double reduction of Q(A) triggers the formation of (1)O(2)* to promote further damage to other cofactors and the D1 protein, rather than the recently proposed mechanism that inactivation of the Mn cluster initiates the photodamage. Thus, the results of the present study support the view that the acceptor-side mechanism dominantly occurs in the photodamage to PSII by strong white-light illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号