首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
甜樱桃(Prunus avium L.)品种S基因型鉴定   总被引:10,自引:0,他引:10  
陈晓流  陈学森  束怀瑞 《遗传学报》2004,31(10):1142-1148
根据蔷薇科S-RNase基因(S基因)高度保守区C2和RC4区设计一对特异引物PruC2和PruC4R,对甜樱桃品种的基因组DNA进行S基因特异PCR扩增。克隆S基因的扩增片段,核酸序列在GenBank上搜索,确定了4种S基因的核酸序列和大小。结果表明,在琼脂糖凝胶上位置相同的扩增带其核酸序列相同,是同一种S基因。4种S基因扩增片段的大小分别是:S1为677bp,S3为762bp,S4为945bp,S6为456bp。参试的自交不亲和品种的S基因型分别是:红灯、红艳、早红宝石和先锋相同,为S1S3;抉择、红丰和那翁相同,为S3S4;大紫为S1S6;长把红为S1S4;养老为S2S6;自交亲和品种外引7号和斯太拉为S3S4。  相似文献   

4.
Shoot regeneration was achieved from leaves of in vitro cultures of Prunus avium L. cv. 'Lapins' and 'Sweetheart' using woody plant medium (WPM) supplemented with 1-naphthalene-acetic acid (NAA) and thidiazuron (TDZ) or benzyladenine (BA). Percent regeneration was influenced by plant growth regulators and by explant type, orientation and wounding. Optimal regeneration was observed with whole-leaf explants wounded by transverse cuts along the midrib and incubated abaxial surfaces uppermost, on media supplemented with 2.27 or 4.54 µM TDZ plus 0.27 µM NAA. The percent regeneration of the two cultivars was not significantly different. Optimum conditions for regeneration resulted in 71.4% of 'Lapins' and 54% of 'Sweetheart' explants producing one or more shoots per explant.  相似文献   

5.
The timing of flowering in perennial plants is crucial for their survival in temperate climates and is regulated by the duration of bud dormancy. Bud dormancy release and bud break depend on the perception of cumulative chilling during endodormancy and heat during the bud development. The objectives of this work were to identify candidate genes involved in dormancy and flowering processes in sweet cherry, their mapping in two mapping progenies ‘Regina’ × ‘Garnet’ and ‘Regina’ × ‘Lapins’, and to select those candidate genes which co-localized with quantitative trait loci (QTLs) associated with temperature requirements for bud dormancy release and flowering. Based on available data on flowering processes in various species, a list of 79 candidate genes was established. The peach and sweet cherry orthologs were identified and primers were designed to amplify sweet cherry candidate gene fragments. Based on the amplified sequences of the three parents of the mapping progenies, SNPs segregations in the progenies were identified. Thirty five candidate genes were genetically mapped in at least one of the two progenies and all were in silico mapped. Co-localization between candidate genes and QTLs associated with temperature requirements and flowering date were identified for the first time in sweet cherry. The allelic composition of the candidate genes located in the major QTL for heat requirements and flowering date located on linkage group 4 have a significant effect on these two traits indicating their potential use for breeding programs in sweet cherry to select new varieties adapted to putative future climatic conditions.  相似文献   

6.

The pollination of self-incompatible diploid sweet cherry is determined by the S-locus alleles. We resolved the S-alleles of 50 sweet cherry cultivars grown in Estonia and determined their incompatibility groups, which were previously unknown for most of the tested cultivars. We used consensus primers SI-19/20, SI-31/32, PaConsI, and PaConsII followed by allele-specific primers and sequencing to identify sweet cherry S-genotypes. Surprisingly, 48% (24/50) of the tested cultivars, including 17 Estonian cultivars, carry the rare S-allele S17, which had initially been described in wild sweet cherries in Belgium and Germany. The S17-allele in Estonian cultivars could originate from ‘Leningradskaya tchernaya’ (S6|S17), which has been extensively used in Estonian sweet cherry breeding. Four studied cultivars carrying S17 are partly self-compatible, whereas the other 20 cultivars with S17 have not been reported to be self-compatible. The recommended pollinator of seven self-incompatible sweet cherries is of the same S-genotype, including four with S17-allele, suggesting heritable reduced effectiveness of self-infertility. We classified the newly genotyped sweet cherry cultivars into 15 known incompatibility groups, and we proposed four new incompatibility groups, 64–67, for S-locus genotypes S3|S17, S4|S17, S5|S17, and S6|S17, respectively, which makes them excellent pollinators all across Europe. Alternatively, the frequency of S17 might be underestimated in Eastern European populations and some currently unidentified sweet cherry S-alleles might potentially be S17.

  相似文献   

7.
8.
Linkage maps are valuable tools in genetic and genomic studies. For sweet cherry, linkage maps have been constructed using mainly microsatellite markers (SSRs) and, recently, using single nucleotide polymorphism markers (SNPs) from a cherry 6K SNP array. Genotyping-by-sequencing (GBS), a new methodology based on high-throughput sequencing, holds great promise for identification of high number of SNPs and construction of high density linkage maps. In this study, GBS was used to identify SNPs from an intra-specific sweet cherry cross. A total of 8,476 high quality SNPs were selected for mapping. The physical position for each SNP was determined using the peach genome, Peach v1.0, as reference, and a homogeneous distribution of markers along the eight peach scaffolds was obtained. On average, 65.6% of the SNPs were present in genic regions and 49.8% were located in exonic regions. In addition to the SNPs, a group of SSRs was also used for construction of linkage maps. Parental and consensus high density maps were constructed by genotyping 166 siblings from a ‘Rainier’ x ‘Rivedel’ (Ra x Ri) cross. Using Ra x Ri population, 462, 489 and 985 markers were mapped into eight linkage groups in ‘Rainier’, ‘Rivedel’ and the Ra x Ri map, respectively, with 80% of mapped SNPs located in genic regions. Obtained maps spanned 549.5, 582.6 and 731.3 cM for ‘Rainier’, ‘Rivedel’ and consensus maps, respectively, with an average distance of 1.2 cM between adjacent markers for both ‘Rainier’ and ‘Rivedel’ maps and of 0.7 cM for Ra x Ri map. High synteny and co-linearity was observed between obtained maps and with Peach v1.0. These new high density linkage maps provide valuable information on the sweet cherry genome, and serve as the basis for identification of QTLs and genes relevant for the breeding of the species.  相似文献   

9.
10.
采用数码照相、电镜扫描、联苯胺-过氧化氢测试及去雄套袋等技术手段,对烟台甜樱桃(Cerasus avium)花期不同发育阶段柱头的可授性、形态特征和坐果状况进行了观察。结果表明,烟台甜樱桃在套袋状态下,柱头可授期从开花前1天开始可持续5–7天。从杯状花期到花瓣平展期,柱头逐渐有乳突细胞破裂并呈现分泌液,出现渐强的可授性;从花瓣平展期到花瓣脱落期,柱头由暗黄渐变至暗黑,逐渐萎缩并丧失可授性。去雄套袋及人工授粉实验结果显示,在大蕾期、杯状花期、花瓣展放期、花瓣平展期和花瓣脱落期进行人工授粉,烟台甜樱桃的坐果率分别为60.50%、58.33%、62.08%、57.14%和39.13%。在自然条件下烟台甜樱桃的坐果率一般为30%–42%,传粉成功的最佳期主要发生在杯状花期至花瓣平展期。  相似文献   

11.
烟台甜樱桃柱头的可授性、形态特征与坐果率   总被引:2,自引:0,他引:2  
采用数码照相、电镜扫描、联苯胺-过氧化氢测试及去雄套袋等技术手段, 对烟台甜樱桃(Cerasus avium)花期不同发育阶段柱头的可授性、形态特征和坐果状况进行了观察。结果表明, 烟台甜樱桃在套袋状态下, 柱头可授期从开花前1天开始可持续5–7天。从杯状花期到花瓣平展期, 柱头逐渐有乳突细胞破裂并呈现分泌液, 出现渐强的可授性; 从花瓣平展期到花瓣脱落期, 柱头由暗黄渐变至暗黑, 逐渐萎缩并丧失可授性。去雄套袋及人工授粉实验结果显示, 在大蕾期、杯状花期、花瓣展放期、花瓣平展期和花瓣脱落期进行人工授粉, 烟台甜樱桃的坐果率分别为60.50%、58.33%、62.08%、57.14%和39.13%。在自然条件下烟台甜樱桃的坐果率一般为30%–42%, 传粉成功的最佳期主要发生在杯状花期至花瓣平展期。  相似文献   

12.
Somatic embryogenesis in wild cherry (Prunus avium)   总被引:3,自引:0,他引:3  
Indirect somatic embryogenesis was obtained inPrunus avium L. from either somatic or zygotic embryos. An embryogenic line was established by reinduction of embryogenic calluses from somatic embryos. The line was maintained for more than 3 years through 6 generations of embryogenic cultures. In the last 2 generations, more than 50% of the explants were embryogenic. Embryos at different stages of development were produced. Among cotyledonary-stage embryos, 50% had two cotyledons and a distinct hypocotyl, 43% had one or more than 2 cotyledons and 7% had fused cotyledons. Most of the embryos were translucent and conversion into plantlets was very rare. Secondary embryos could be observed to occur with low frequency from cultured somatic embryos and from embryos emerging from calluses. Indirect somatic embryogenesis was also induced from immature zygotic embryos. From one donor tree, 51% of the explants were embryogenic when cultured on a medium containing 0.9 μM kinetin, 0.9 μM BA and 0.5 μM NAA. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Sharka caused by plum pox virus (PPV) is a disease spread in France since 1970, and causing severe damages essentially on apricot but also on plums and peach. Cherry is generally considered as not infected by PPV. Experimental transmissions by chip budding or aphids allowed to show that 3 isolates of PPV can multiply inside three cherry rootstocks (P. Mahaleb cv.‘SL 64′, P. avium cv.‘F 12-1′, and P. avium*P. pseudocerasus cv. ‘Colt') (Tables 1 and 2). But generally, the virus remained localized to the infection site and disappeared quickly (Table 3). Typical symptoms of chlorotic ringspot or vein clearing are also limited to the leaves probed by the aphids. The fact that no translocation was detected is discussed.  相似文献   

14.
K Jarni  B De Cuyper  R Brus 《PloS one》2012,7(7):e41231
Microsatellite markers were used to describe the genetic variability of four seed stands of wild cherry (Prunus avium L.). One hundred and thirty one individuals were genotyped at ten nuclear microsatellite loci. Total genetic diversity was high (H E = 0.704), while differences between stands were small but significant (F ST = 0.053, G′ ST = 0.234). There was a significant amount of clonal reproduction in one stand, with only 11 genotypes identified among 36 trees. One stand showed a significant excess (F IS = −0.044) of heterozygosity, and one showed a deficit (F IS = 0.044). Our results demonstrate the importance of taking into account the biological and genetic characteristics of species in forest management, especially when determining a new seed stand. The small genetic differences found between seed stands indicate that a large number of stands are not required. However, they should be carefully selected and should possess adequate genetic variability to ensure low relatedness between seed trees.  相似文献   

15.
16.
A glycosidic fraction was extracted from fresh cherry leaves and treated with commercial β-glucosidase and the acetone powder from cherry leaves. After enzymatic hydrolysis, the formation of moderately antifungal benzaldehyde, benzyl alcohol, 2-phenylethanol and coumarin was confirmed by GLC and GC-MS. Thus, it was expected that the precursors of antifungal substances existed as glycosides in the leaves and would be hydrolyzed by the endogenous hydrolytic enzymes when the leaves were damaged. A survey of the constituents in the glycosidic fraction revealed the presence of benzyl p-D-glucoside and 2-phenylethyl β-D-glucoside, and of mandelonitrile β-D-glucosides, sambunigrin and prunasin.  相似文献   

17.
18.
Prunus avium L. (diploid, AA, 2n=2x=16), Prunus cerasus L. (allotetraploid, AAFF, 2n=4x=32) species, and their hybrid Prunus x gondouinii Rehd., constitute the most widely cultivated cherry tree species. P. cerasus is supposed to be an hybrid species produced by the union of unreduced P. avium gametes and normal P. fruticosa gametes. A continuum of morphological traits between these three species makes their assignation difficult. The aim of this paper is to study the genetic relationships between tetraploid and diploid cherry species. In all, 114 genotypes belonging to these species were analyzed using 75 AFLP markers. The coordinates of these genotypes on the first axis of a correspondence analysis allowed us to clearly distinguish each species, to identify misclassifications and to assign unknown genotypes to one species. We showed that there are specific alleles in P. cerasus, which are not present in the A genome of P. avium and which probably come from the F genome of P. cerasus. The frequencies of each marker in the A and the F genomes were estimated in order to identify A and F specific markers. We discuss the utility of these specific markers for finding the origin of the A and F genomes in the allopolyploid species.  相似文献   

19.
20.
The breakdown of self-incompatibility, which could result from the accumulation of non-functional S-haplotypes or competitive interaction between two different functional S-haplotypes, has been studied extensively at the molecular level in tetraploid Rosaceae species. In this study, two tetraploid Chinese cherry (Prunus pseudocerasus) cultivars and one diploid sweet cherry (Prunus avium) cultivar were used to investigate the ploidy of pollen grains and inheritance of pollen-S alleles. Genetic analysis of the S-genotypes of two intercross-pollinated progenies showed that the pollen grains derived from Chinese cherry cultivars were hetero-diploid, and that the two S-haplotypes were made up of every combination of two of the four possible S-haplotypes. Moreover, the distributions of single S-haplotypes expressed in self- and intercross-pollinated progenies were in disequilibrium. The number of individuals of the two different S-haplotypes was unequal in two self-pollinated and two intercross-pollinated progenies. Notably, the number of individuals containing two different S-haplotypes (S1- and S5-, S5- and S8-, S1- and S4-haplotype) was larger than that of other individuals in the two self-pollinated progenies, indicating that some of these hetero-diploid pollen grains may have the capability to inactivate stylar S-RNase inside the pollen tube and grow better into the ovaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号