首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The logic of using nucleic acids as pharmaceutical reagents is in part based on their capacity to interact with high affinity and specificity with other biological components. Considerable progress has been made over the past 10 years in the development of nucleic acid-based drug molecules using a variety of different technologies. One approach is a combinatorial technology that involves an iterative Darwinian-type in vitro evolution process, which has been termed SELEX for 'systematic evolution of ligands by exponential enrichment'. The procedure is a highly efficient method of identifying rare ligands from combinatorial nucleic acid libraries of very high complexity. It allows the selection of nucleic acid molecules with desired functions and it has been instrumental in the identification of a number of synthetic DNA and RNA molecules, so-called aptamers that recognise ligands of different chemical origin. The method is fast, it does not require special equipment and the selected aptamers typically bind their target with high affinity and high specificity. Here we summarise the recent examples of the SELEX technique within the context of identifying high-affinity ligands against parasite target molecules.  相似文献   

2.
Vester B  Wengel J 《Biochemistry》2004,43(42):13233-13241
Locked nucleic acid (LNA) is a nucleic acid analogue containing one or more LNA nucleotide monomers with a bicyclic furanose unit locked in an RNA mimicking sugar conformation. LNA oligonucleotides display unprecedented hybridization affinity toward complementary single-stranded RNA and complementary single- or double-stranded DNA. Structural studies have shown that LNA oligonucleotides induce A-type (RNA-like) duplex conformations. The wide applicability of LNA oligonucleotides for gene silencing and their use for research and diagnostic purposes are documented in a number of recent reports, some of which are described herein.  相似文献   

3.
Summary In the preceding paper, a method to detect specific DNA sequences with mercurated nucleic acid probes and sulfhydryl-hapten ligands has been described. Due to the instability of the bond between mercury and a negatively charged sulfhydryl-hapten ligand (trinitrophenyl-glutathione), the in situ formed hybrid could not be detected. On basis of model system experiments it was suggested that this mercury-sulfhydryl bond could be stabilized by an extra polar interaction between ligand and nucleic acid. This was achreved by reversing the net charge of the ligand. Such ligands were synthesized by reacting aliphatic diamines to the carboxyl groups of Tnp-glutathione using a water soluble carbodiimide. Gel chromatographic analysis of mercurated polynucleotide-ligand complexes showed that the stability of the mercury-sulfhydryl bond is increased by the reversal of the net charge of the ligand.In situ hybridized mercurated mouse satellite DNA to mouse liver nuclei and mercurated kinetoplast cRNA hybridized to Crithidia fasciculata were immunocytochemically detected after the introduction of these positively charged ligands.The described method is applicable for RNA and DNA probes. It has a sensitivity comparable to other non-autoradiographic methods, is relatively simple to perform and can be carried out with ordinary laboratory chemicals.This investigation was supported by the Netherlands Foundation for Medical Research Fungo (grant nr 13-54-21)  相似文献   

4.
Some of the most serious diseases are characterized by the presence of a specific secondary structure within DNA or RNA, often in the promoter or the coding region of the responsible gene, that enhances or disrupts expression of the protein. Structural elements that impact cellular function may also be formed in other genomic regions such as telomeres. Compounds that interact with such structural elements may be useful in diagnosis or treatment of patients. In this report, we present a FRET melting assay that allows testing of libraries of compounds against four different nucleic acid structures. Compounds are tested to determine whether they stabilize preformed secondary structures (i.e., whether they cause an increase in melting temperature (T(m))). This property is described by the ΔT(m) parameter, which is the difference between the T(m) of the compound-stabilized structure and the T(m) of the unbound structure. Model oligonucleotides are labeled with FAM as a fluorescent donor and TAMRA as an acceptor. The intensity of FAM fluorescence is recorded as a function of temperature. Melting temperatures are determined by the FRET method in 96-well plates; this assay could easily be converted into 384-well format.  相似文献   

5.
Sequence and structural selectivity of nucleic acid binding ligands   总被引:22,自引:0,他引:22  
Ren J  Chaires JB 《Biochemistry》1999,38(49):16067-16075
The sequence and structural selectivity of 15 different DNA binding agents was explored using a novel, thermodynamically rigorous, competition dialysis procedure. In the competition dialysis method, 13 different nucleic acid structures were dialyzed against a common ligand solution. More ligand accumulated in the dialysis tube containing the structural form with the highest ligand binding affinity. DNA structural forms included in the assay ranged from single-stranded forms, through a variety of duplex forms, to multistranded triplex and tetraplex forms. Left-handed Z-DNA, RNA, and a DNA-RNA hybrid were also represented. Standard intercalators (ethidium, daunorubicin, and actinomycin D) served as control compounds and were found to show structural binding preferences fully consistent with their previously published behavior. Standard groove binding agents (DAPI, distamycin, and netropsin) showed a strong preference for AT-rich duplex DNA forms, along with apparently strong binding to the poly(dA)-[poly(dT)](2) triplex. Thermal denaturation studies revealed the apparent triplex binding to be complex, and perhaps to result from displacement of the third strand. Putative triplex (BePI, coralyne, and berberine) and tetraplex [H(2)TmPyP, 5,10,15, 20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine, and N-methyl mesoporphyrin IX] selective agents showed in many cases less dramatic binding selectivity than anticipated from published reports that compared their binding to only a few structural forms. Coralyne was found to bind strongly to single-stranded poly(dA), a novel and previously unreported interaction. Finally, three compounds (berenil, chromomycin A, and pyrenemethylamine) whose structural preferences are largely unknown were examined. Pyrenemethylamine exhibited an unexpected and unprecedented preference for duplex poly(dAdT).  相似文献   

6.
The olefinic peptide nucleic acid analogues (OPA) monomers containing the bases thymine and adenine were synthesised in 11 steps. Fully modified oligomers containing these units were prepared and their pairing properties assessed by means of UV-melting experiments.  相似文献   

7.
Two pyrimidine alpha-LNA nucleoside monomers have been synthesised and incorporated into alpha-configured oligonucleotides. A fully modified mixed alpha-LNA sequence displays unprecedented parallel stranded hybridisation with complementary RNA and a remarkable selectivity for RNA over DNA. Modelling shows alpha-LNA:RNA to form an extended duplex with a very broad major groove.  相似文献   

8.
Various types of sequences in the human genome are known to play important roles in different aspects of genomic functioning. Among these sequences, palindromic nucleic acid sequences are one such type that have been studied in detail and found to influence a wide variety of genomic characteristics. For a nucleotide sequence to be considered as a palindrome, its complementary strand must read the same in the opposite direction. For example, both the strands i.e the strand going from 5'' to 3'' and its complementary strand from 3'' to 5'' must be complementary. A typical nucleotide palindromic sequence would be TATA (5'' to 3'') and its complimentary sequence from 3'' to 5'' would be ATAT. Thus, a new method has been developed using dynamic programming to fetch the palindromic nucleic acid sequences. The new method uses less memory and thereby it increases the overall speed and efficiency. The proposed method has been tested using the bacterial (3891 KB bases) and human chromosomal sequences (Chr-18: 74366 kb and Chr-Y: 25554 kb) and the computation time for finding the palindromic sequences is in milli seconds.  相似文献   

9.
Mercurated nucleic acid probes can be used for non-radioactive in situ hybridization. The principle of the method is based on the reaction of the mercurated pyrimidine residues of the in situ hybridized probe with the sulfhydryl group of a ligand which contains a hapten. Next, the hapten is immunocytochemically detected. Previous experiments showed that stable coupling of the sulfhydryl ligands could only be obtained when positively charged amino groups are present in the ligand. On basis of this finding, ligands were synthesized containing a sulfhydryl group, two lysyl residues and hapten groups such as trinitrophenyl, fluorescyl and biotinyl. The ligands, free or bound to mercurated nucleic acids, were immunochemically characterized in ELISAs. The method was shown to be specific and sensitive in the detection of target DNA in situ on microscopic preparations and in dot-blot hybridization reactions on nitrocellulose.  相似文献   

10.
Aminopropyl nucleic acids are constitutionally simple nucleic acids alternatives with one chiral center per nucleotide and with the constitutional potential to hybridize with RNA. Both R and S isomers of the 3'-or 2'-aminopropyl nucleosides were incorporated either into DNA or likewise were used for fully modified sequences. The (R)-adenine analogue, yielding (S)-APNA, can be considered as a candidate for universal base pairing.  相似文献   

11.
The remarkable binding properties of LNA (Locked Nucleic Acid) and alpha-L-LNA (the alpha-L-ribo configured diastereoisomer of LNA) are summarized, and hybridization results for LNA/2'-O-Me-RNA chimera and LNAs with a "dangling" nucleotide are introduced. In addition, results from NMR investigations on the furanose conformations of the individual nucleotide monomers in different duplexes are presented. All these data are discussed with focus on the importance of conformational steering of unmodified nucleotides in partly modified LNA and alpha-L-LNA sequences in relation to the unprecedented binding properties of LNA and alpha-L-LNA.  相似文献   

12.
Methamphetamine (METH) abuse is a major threat in the USA and worldwide without any FDA approved medications. Anti-METH antibody antagonists block or slow the rate of METH entry into the brain and have shown efficacy in preclinical studies (Peterson, Laurenzana, Atchley, Hendrickson, & Owens, 2008 Peterson, E. C., Laurenzana, E. M., Atchley, W. T., Hendrickson, H. P. and Owens, S. M. 2008. Development and preclinical testing of a high-affinity single-chain antibody against (+)-methamphetamine. Journal of Pharmacology and Experimental Therapeutics, 08: 124133.  [Google Scholar]).?A key determinant of the antibody’s efficacy is its affinity for METH and we attempted to enhance the efficacy by designing mutations to alter the shape or the electrostatic character of the binding pocket. Towards this goal, we developed a single chain anti-METH antibody fragment (scFv6H4) from a parent IgG (1). The crystal structure of scFv-6H4 in complex with METH was determined (Celikel, Peterson, Owens, & Varughese, 2009 Celikel, R., Peterson, E. C., Owens, S. M. and Varughese, K. I. 2009. Crystal structures of a therapeutic single chain antibody in complex with two drugs of abuse-Methamphetamine and 3,4-methylenedioxymethamphetamine. Protein Science, 09: 23362345.  [Google Scholar]). Based on its elucidated binding interactions, we designed point mutations in the binding pocket to improve its affinity for METH and amphetamine (AMP), the active metabolite of METH. The mutants, scFv-S93T,-I37?M and -Y34?M were cloned, expressed in yeast and tested for affinity against METH and AMP. Two mutants showed enhanced binding affinity for METH: scFv-I37?M by 1.3-fold and scFv-S93T by 2.6-fold. Additionally, all the mutants showed increase in affinity for AMP: scFv-I37?M by 56-fold, scFv-S93T by 17-fold and scFvY34?M by 5-fold. Crystal structure for one of the high-affinity mutant, scFv-S93T, in complex with METH was determined (Figure 1). Binding pocket of the mutant is more hydrophobic in comparison with the wild type. ScFv-6H4 binds METH in a deep pocket containing two water molecules. The substitution of a serine residue by a threonine leads to the expulsion of a water molecule (Figure 2), relieving some unfavorable contacts between the hydrocarbon atoms of METH and the water molecule and increasing the affinity to sub-nanomolar range. Therefore, the present study shows that efficacy could be enhanced by altering the hydrophobicity or the shape of the binding pocket.  相似文献   

13.
A generalized procedure to generate nucleic acid structures is presented. In this procedure, the bases of a base pair are oriented first for characterization of particular DNA receptor sites. The resultant sites are then used in the study of specific molecule–DNA interactions. For example, intercalation sites, kinked DNA, and twisted and tilted bases are envisioned. Alterations of structures via antisyn orientations of bases, as well as crankshaft motion about collinear bonds, provide additional conformations without disrupting the overall backbone structure. These approaches to the generation of nucleic acid structures are envisioned as required in studies of the intercalation phenomenon, minor adjustments of DNA to accommodate denaturation, binding of carcinogens to DNA, complex formation of transition metals with DNA, and antitumor agents as ligands. For these base-pair and base orientations, backbone orientations are calculated by the AGNAS technique to yield physically meaningful conformations, namely, those conformations for which nonbonded contacts are favourable. A procedure is presented to generate dimer duplex units that are physically meaningful and to assemble these units into a polynucleotide duplex. Double helices that begin with B-DNA, undergo a transition to one of the above-mentioned receptor sites, and return to B-DNA can be assembled from a catalog of dimer duplexes. Stereographic projections of the various receptor sites already being used to model binding to DNA are presented.  相似文献   

14.
An important goal in drug development is to engineer inhibitors and ligands that have high binding affinities for their target molecules. In optimizing these interactions, the precise determination of the binding affinity becomes progressively difficult once it approaches and surpasses the nanomolar level. Isothermal titration calorimetry (ITC) can be used to determine the complete binding thermodynamics of a ligand down to the picomolar range by using an experimental mode called displacement titration. In a displacement titration, the association constant of a high-affinity ligand that cannot be measured directly is artificially lowered to a measurable level by premixing the protein with a weaker competitive ligand. To perform this protocol, two titrations must be carried out: a direct titration of the weak ligand to the target macromolecule and a displacement titration of the high-affinity ligand to the weak ligand-target macromolecule complex. This protocol takes approximately 5 h.  相似文献   

15.
Elayadi AN  Braasch DA  Corey DR 《Biochemistry》2002,41(31):9973-9981
Oligonucleotides that contain locked nucleic acid (LNA) bases have remarkably high affinity for complementary RNA and DNA sequences. This increased affinity may facilitate the recognition of nucleic acid targets inside cells and thus improve our ability to use synthetic oligonucleotides for controlling cellular processes. Here we test the hypothesis that LNAs offer advantages for inhibiting human telomerase, a ribonucleoprotein that is critical for tumor cell proliferation. We observe that LNAs complementary to the telomerase RNA template are potent and selective inhibitors of human telomerase. LNAs can be introduced into cultured tumor cells using cationic lipid, with diffuse uptake throughout the cell. Transfected LNAs effectively inhibited intracellular telomerase activity up to 40 h post-transfection. Shorter LNAs of eight bases in length are also effective inhibitors of human telomerase. The melting temperatures of these LNAs for complementary sequences are superior to those of analogous peptide nucleic acid oligomers, emphasizing the value of LNA bases for high-affinity recognition. These results demonstrate that high-affinity binding by LNAs can be exploited for superior recognition of an intracellular target.  相似文献   

16.
17.
Peptide nucleic acid (PNA) binding-mediated gene regulation   总被引:2,自引:0,他引:2  
Wang G  Xu XS 《Cell research》2004,14(2):111-116
  相似文献   

18.
Models of adsorption were considered, which describe the binding of biologically active ligands on DNA templates. The binding is described most comprehensively and in greatest detail by the distribution function, which determines the probability of detecting the preset number of adsorbed ligands on the template. In the case of noncooperative binding, this function corresponds to the Gaussian distribution and is characterized by two quantities: the mean value of the occupation of the template by ligands and the dispersion of occupation. The accuracy of the occupation of the template by ligands is inversely proportional to dispersion. As the length of the template and the number of reaction sites covered by one ligand upon binding increase, the accuracy of the occupation of the template by ligands increases. An important characteristic of binding is the degree of coverage of the template by ligands. This characteristic represents the portion of template reaction sites covered by all ligands adsorbed on the template. If polycations are bound to nucleic acid molecules, the coverage of the template determines the transition of nucleic acids to a compact state. The degree of template coverage for extended ligands depends only slightly on the binding constant in a wide range of concentrations of a free ligand in solution. Different adsorption models are considered from the unified point of view. The classification of cooperative interactions for a wide class of systems is given, from situations when several ligands are bound on nucleic acid templates to a situation when templates change by the action of ligands and begin to interact with each other.  相似文献   

19.
A new locked pyranosyl nucleoside was synthesized by phenylsulfinyl-assisted chemistry. The novel building block was inserted into oligonucleotides and provides new insight on conformational restricted pyranosyl nucleosides on duplex formation  相似文献   

20.
At the final step in viral replication, the viral genome must be incorporated into progeny virions, yet the genomic regions required for this process are largely unknown in RNA viruses, including influenza virus. Recently, it was reported that both ends of the neuraminidase (NA) coding region are critically important for incorporation of this vRNA segment into influenza virions (Y. Fujii, H. Goto, T. Watanabe, T. Yoshida, and Y. Kawaoka, Proc. Natl. Acad. Sci. USA 100:2002-2007, 2003). To determine the signals in the hemagglutinin (HA) vRNA required for its virion incorporation, we made a series of deletion constructs of this segment. Subsequent analysis showed that 9 nucleotides at the 3' end of the coding region and 80 nucleotides at the 5' end are sufficient for efficient virion incorporation of the HA vRNA. The utility of this information for stable expression of foreign genes in influenza viruses was assessed by generating a virus whose HA and NA vRNA coding regions were replaced with those of vesicular stomatitis virus glycoprotein (VSVG) and green fluorescent protein (GFP), respectively, while retaining virion incorporation signals for these segments. Despite the lack of HA and NA proteins, the resultant virus, which possessed only VSVG on the virion surface, was viable and produced GFP-expressing plaques in cells even after repeated passages, demonstrating that two foreign genes can be incorporated and maintained stably in influenza A virus. These findings could serve as a model for the construction of influenza A viruses designed to express and/or deliver foreign genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号