首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Wu C  Lei H  Duan Y 《Biophysical journal》2005,88(4):2897-2906
We observed fast aggregation of partially ordered oligomers in an earlier simulation study of an amyloidogenic hexapeptide NFGAIL. In this work, the nucleation of highly ordered oligomers was further investigated by a combined total of 960 ns molecular dynamics simulations with explicit solvent on NFGAIL and its nonamyloidogenic mutant NAGAIL. In these simulations, four dimer subunits that each was constrained by harmonic forces as a two-strand beta-sheet were used to enhance the rate of formation. It was found that a critical role played by the aromatic residue Phe was to direct the stacking of beta-sheets to form ordered multilayer aggregates. We also found that many molecular arrangements of the peptide satisfied the "cross-beta-structure", a hallmark of amyloid fibrils. The tendency for the peptide to form either parallel or antiparallel beta-sheet was comparable, as was the tendency for the beta-sheets to stack either in parallel or antiparallel orientation. Overall, approximately 85% of the native hexapeptide formed octamers. The fact that only 8% of the octamers were well-ordered species suggests that the dissociation of the disordered oligomers be the rate-limiting step in the formation of highly ordered oligomers. Among the well-ordered subunit pairs, about half was formed by the beta-sheet extension along the main-chain hydrogen-bond direction, whereas the other half was formed by the beta-sheet stacking. Hence, a delicate balance between intersheet and intrasheet interactions appeared to be crucial in the formation of a highly ordered nucleus of amyloid fibrils. The disordered oligomers were mainly stabilized by nonspecific hydrophobic interactions, whereas the well-ordered oligomers were further stabilized by cross-strand hydrogen bonds and favorable side-chain stacking.  相似文献   

2.
Recent experimental studies indicate that oligomeric complexes of misfolded proteins and peptides are the primary agents of cytotoxicity in amyloid-related diseases. Given the prevalence of mixed-polarity interfaces in physiological environments, an understanding of the mechanisms of interactions between amorphous (pre-fibrillar) aggregates and surfaces is important for completing our knowledge of the behaviour of peptide aggregation phenomena. We have employed fully solvated molecular dynamics simulations to study the morphology, interactions and peptide conformations of disordered aggregates of the amyloidogenic NFGAIL (derived from human islet amyloid polypeptide) and non-amyloidogenic AGAIL peptides upon adsorption to vapour–water, decane–water, bilayer and solid–water interfaces. All of the interfaces studied promote elongation and surface-spreading of both peptide aggregates, with the liquid–liquid interface being particularly efficient at altering the gross morphology of disordered aggregates. NFGAIL aggregates are more effective at disrupting lipid bilayers compared to AGAIL. Additionally, the interfaces studied cause greater changes in peptide conformations within the NFGAIL aggregates compared to AGAIL. We propose that simulations may elucidate the capability of interfaces to effect changes in the behaviour of disordered peptide aggregates, which may also serve to provide measures of the intrinsic fibrillogenicity of a given peptide sequence.  相似文献   

3.
《Biophysical journal》2021,120(20):4536-4546
The aggregation of peptides into amyloid fibrils is associated with several diseases, including Alzheimer’s and Parkinson’s disease. Because hydrophobic interactions often play an important role in amyloid formation, the presence of various hydrophobic or amphiphilic molecules, such as lipids, may influence the aggregation process. We have studied the effect of a fatty acid, linoleic acid, on the fibrillation process of the amyloid-forming model peptide NACore (GAVVTGVTAVA). NACore is a peptide fragment spanning residue 68–78 of the protein α-synuclein involved in Parkinson’s disease. Based primarily on circular dichroism measurements, we found that even a very small amount of linoleic acid can substantially inhibit the fibrillation of NACore. This inhibitory effect manifests itself through a prolongation of the lag phase of the peptide fibrillation. The effect is greatest when the fatty acid is present from the beginning of the process together with the monomeric peptide. Cryogenic transmission electron microscopy revealed the presence of nonfibrillar clusters among NACore fibrils formed in the presence of linoleic acid. We argue that the observed inhibitory effect on fibrillation is due to co-association of peptide oligomers and fatty acid aggregates at the early stage of the process. An important aspect of this mechanism is that it is nonmonomeric peptide structures that associate with the fatty acid aggregates. Similar mechanisms of action could be relevant in amyloid formation occurring in vivo, where the aggregation takes place in a lipid-rich environment.  相似文献   

4.
Molecular simulations are used to examine the aggregation behavior of several β-peptides in explicit water. The particular peptides considered here adopt a helical, rodlike conformation in aqueous solution. Four distinct molecular sequences are considered. Earlier experimental studies have revealed the formation of ordered and disordered aggregates for such molecules, depending on sequence. The simulations reported here, which are conducted by resorting to metadynamics techniques, lead to free energy surfaces for dimerization of the peptides in water as a function of separation and relative orientation. Such surfaces are used to identify the molecular origins for the behaviors observed in the experiments.  相似文献   

5.
The process of protein misfolding and self-assembly into various, polymorphic aggregates is associated with a number of important neurodegenerative diseases. Only recently, crystal structures of several short peptides have provided detailed structural insights into -sheet rich aggregates, known as amyloid fibrils. Knowledge about early events of the formation and interconversion of small oligomeric states, an inevitable step in the cascade of peptide self-assembly, however, remains still limited. We employ molecular dynamics simulations in explicit solvent to study the spontaneous aggregation process of steric zipper peptide segments from the tau protein and insulin in atomistic detail. Starting from separated chains with random conformations, we find a rapid formation of structurally heterogeneous, -sheet rich oligomers, emerging from multiple bimolecular association steps and diverse assembly pathways. Furthermore, our study provides evidence that aggregate intermediates as small as dimers can be kinetically trapped and thus affect the structural evolution of larger oligomers. Alternative aggregate structures are found for both peptide sequences in the different independent simulations, some of which feature characteristics of the known steric zipper conformation (e.g., -sheet bilayers with a dry interface). The final aggregates interconvert with topologically distinct oligomeric states exclusively via internal rearrangements. The peptide oligomerization was analyzed through the perspective of a minimal oligomer, i.e., the dimer. Thereby all observed multimeric aggregates can be consistently mapped onto a space of reduced dimensionality. This novel method of conformational mapping reveals heterogeneous association and reorganization dynamics that are governed by the characteristics of peptide sequence and oligomer size.  相似文献   

6.
Within the complex aggregation process of amyloidogenic peptides into fibrils, early stages of aggregation play a central role and reveal fundamental properties of the underlying mechanism of aggregation. In particular, low-molecular-weight aggregates of the Alzheimer amyloid-β peptide (Aβ) have attracted increasing interest because of their role in cytotoxicity and neuronal apoptosis, typical of aggregation-related diseases. One of the main techniques used to characterize oligomeric stages is fluorescence spectroscopy. To this end, Aβ peptide chains are functionalized with fluorescent tags, often covalently bound to the disordered N-terminus region of the peptide, with the assumption that functionalization and presence of the fluorophore will not modify the process of self-assembly nor the final fibrillar structure. In this investigation, we systematically study the effects of four of the most commonly used fluorophores on the aggregation of Aβ (1–40). Time-resolved and single-molecule fluorescence spectroscopy have been chosen to monitor the oligomer populations at different fibrillation times, and transmission electron microscopy, atomic force microscopy and x-ray diffraction to investigate the structure of mature fibrils. Although the structures of the fibrils were only slightly affected by the fluorescent tags, the sizes of the detected oligomeric species varied significantly depending on the chosen fluorophore. In particular, we relate the presence of high-molecular-weight oligomers of Aβ (1–40) (as found for the fluorophores HiLyte 647 and Atto 655) to net-attractive, hydrophobic fluorophore-peptide interactions, which are weak in the case of HiLyte 488 and Atto 488. The latter leads for Aβ (1–40) to low-molecular-weight oligomers only, which is in contrast to Aβ (1–42). The disease-relevant peptide Aβ (1–42) displays high-molecular-weight oligomers even in the absence of significant attractive fluorophore-peptide interactions. Hence, our findings reveal the potentially high impact of the properties of fluorophores on transient aggregates, which needs to be included in the interpretation of experimental data of oligomers of fluorescently labeled peptides.  相似文献   

7.
Nanoparticles introduced in living cells are capable of strongly promoting the aggregation of peptides and proteins. We use here molecular dynamics simulations to characterise in detail the process by which nanoparticle surfaces catalyse the self-assembly of peptides into fibrillar structures. The simulation of a system of hundreds of peptides over the millisecond timescale enables us to show that the mechanism of aggregation involves a first phase in which small structurally disordered oligomers assemble onto the nanoparticle and a second phase in which they evolve into highly ordered as their size increases.  相似文献   

8.
A seven amino acid yeast prion sup-35 fragment (GNNQQNY) forms amyloid fibrils. The availability of its detailed atomic oligomeric structure makes it a good model for studying the early stage of aggregation. Here we perform long all-atom explicit solvent molecular simulations of various sizes and arrangements of oligomer seeds of the wild-type and its mutants to study its stability and dynamics. Previous studies have suggested that the early stage rate-limiting step of oligomer formation occurs in high-order oligomers. Our simulations show that with the increase in the number of strands even from a dimer to a trimer, oligomer stability increases dramatically. This suggests that the minimal nucleus seed for GNNQQNY fibril formation could be small and is likely three or four peptides, in agreement with experiment, and that higher-order oligomers do not dissociate quickly since they have small diffusion coefficients and thus slow kinetics. Further, for the hydrophilic polar GNNQQNY, there are no hydrogen bonds and no hydrophobic interactions between adjacent beta-sheets. Simulations suggest that within the sheet, the driving forces to associate and stabilize are interstrand backbone-backbone and side chain-side chain hydrogen bonds, whereas between the sheets, shape-complementary by the dry polar steric zipper via the side chains of Asn-2, Gln-4, and Asn-6 holds the sheets together, as proposed in an earlier study. Since the polar side chains of Asn-2, Gln-4, and Asn-6 act as a hook to bind two neighboring sheets together, these geometric restraints reduce the conformational search for the correct side chain packing to a two-dimensional problem of intersheet side chain interactions. Mutant simulations show that substitution of Asn-2, Gln-4, or Asn-6 by Ala would disrupt this steric zipper, leading to unstable oligomers.  相似文献   

9.
Abnormally expanded polyglutamine domains are associated with at least nine neurodegenerative diseases, including Huntington's disease. Expansion of the glutamine region facilitates aggregation of the impacted protein, and aggregation has been linked to neurotoxicity. Studies of synthetic peptides have contributed substantially to our understanding of the mechanism of aggregation because the underlying biophysics of polyglutamine-mediated association can be probed independent of their context within a larger protein. In this report, interrupting residues were inserted into polyglutamine peptides (Q20), and the impact on conformational and aggregation properties was examined. A peptide with two alanine residues formed laterally aligned fibrillar aggregates that were similar to the uninterrupted Q20 peptide. Insertion of two proline residues resulted in soluble, nonfibrillar aggregates, which did not mature into insoluble aggregates. In contrast, insertion of a β-turn template DPG rapidly accelerated aggregation and resulted in a fibrillar aggregate morphology with little lateral alignment between fibrils. These results are interpreted to indicate that (a) long-range nonspecific interactions lead to the formation of soluble oligomers, while maturation of oligomers into fibrils requires conformational conversion and (b) that soluble oligomers dynamically interact with each other, while insoluble aggregates are relatively inert. Kinetic analysis revealed that the increase in aggregation caused by the DPG insert is inconsistent with the nucleation-elongation mechanism of aggregation featuring a monomeric β-sheet nucleus. Rather, the data support a mechanism of polyglutamine aggregation by which monomers associate into soluble oligomers, which then undergo slow structural rearrangement to form sedimentable aggregates.  相似文献   

10.
Transport of large proteins into the nucleus involves two events, binding of the cargo protein to a transport receptor in the cytoplasm and passage of the cargo-transporter complex through the selective permeability barrier of the nuclear pore complex. The permeability barrier is formed by largely disordered polypeptides, each containing a number of conserved hydrophobic phenylalanine-glycine (FG) sequence motifs, connected by hydrophilic linkers of varying sequence (FG nups). How the motifs interact to form the permeability barrier, however, is not yet known. We have, therefore, carried out molecular dynamics simulations on various model FG repeat peptides to study the aggregation propensity of FG nups and the specific roles of the hydrophobic FG motifs and the hydrophilic linkers. Our simulations show spontaneous aggregation of the model nups into hydrated aggregates, which exhibit structural features assumed to be part of the permeability barrier. Our simulations suggest that short β-sheets are an important structural feature of the aggregates and that Phe residues are sufficiently exposed to allow rapid binding of transport receptors. A surprisingly large influence of the amino acid composition of the hydrophilic linkers on aggregation is seen, as well as a major contribution of hydrogen-bonding patterns.  相似文献   

11.
Marchut AJ  Hall CK 《Proteins》2007,66(1):96-109
Aggregation in the brain of polyglutamine-containing proteins is either a cause or an associated symptom of nine hereditary neurodegenerative disorders including Huntington's disease. The molecular level mechanisms by which these proteins aggregate are still unclear. In an effort to shed light on this important phenomenon, we are investigating the aggregation of model polyglutamine peptides using molecular-level computer simulation with a simplified model of polyglutamine that we have developed. This model accounts for the most important types of intra- and inter-molecular interactions-hydrogen bonding and hydrophobic interactions-while allowing the folding process to be simulated in a reasonable time frame. The model is used to examine the folding of isolated polyglutamine peptides 16, 32, and 48 residues long and the folding and aggregation of systems of 24 model polyglutamine peptides 16, 24, 32, 36, 40, and 48 residues long. Although the isolated polyglutamine peptides did form some alpha and beta backbone-backbone hydrogen bonds they did not have as many of these bonds as they would have if they had folded into a complete alpha helix or beta sheet. In one of the simulations on the isolated polyglutamine peptide 48 residues long, we observed a structure that resembles a beta helix. In the multi-chain simulations we observed amorphous aggregates at low temperatures, ordered aggregates with significant beta sheet character at intermediate temperatures, and random coils at high temperatures. We have found that the temperature at which the model peptides undergo the transition from amorphous aggregates to ordered aggregates and the temperature at which the model peptides undergo the transition from ordered aggregates to random coils increase with increasing chain length. Our finding that the stability of the ordered aggregates increases as the peptide chain length increases may help to explain the experimentally observed relation between polyglutamine tract length and aggregation in vitro and disease progression in vivo. We have also observed in our simulations that the optimal temperature for the formation of beta sheets increases with chain length up to 36 glutamine residues but not beyond. Equivalently, at fixed temperature we find a transition from a region dominated by random coils at chain lengths less than 36 to a region dominated by relatively ordered beta sheet structures at chain lengths greater than 36. Our finding of this critical chain length of 36 glutamine residues is interesting because a critical chain length of 37 glutamine residues has been observed experimentally.  相似文献   

12.
Polymerization of the amyloid beta (Abeta) peptide into protease-resistant fibrils is a significant step in the pathogenesis of Alzheimer's disease. It has not been possible to obtain detailed structural information about this process with conventional techniques because the peptide has limited solubility and does not form crystals. In this work, we present experimental results leading to a molecular level model for fibril formation. Systematically selected Abeta-fragments containing the Abeta16-20 sequence, previously shown essential for Abeta-Abeta binding, were incubated in a physiological buffer. Electron microscopy revealed that the shortest fibril-forming sequence was Abeta14-23. Substitutions in this decapeptide impaired fibril formation and deletion of the decapeptide from Abeta1-42 inhibited fibril formation completely. All studied peptides that formed fibrils also formed stable dimers and/or tetramers. Molecular modeling of Abeta14-23 oligomers in an antiparallel beta-sheet conformation displayed favorable hydrophobic interactions stabilized by salt bridges between all charged residues. We propose that this decapeptide sequence forms the core of Abeta-fibrils, with the hydrophobic C terminus folding over this core. The identification of this fundamental sequence and the implied molecular model could facilitate the design of potential inhibitors of amyloidogenesis.  相似文献   

13.
14.
Small oligomers formed early in the process of amyloid fibril formation may be the major toxic species in Alzheimer's disease. We investigate the early stages of amyloid aggregation for the tau fragment AcPHF6 (Ac-VQIVYK-NH2) using an implicit solvent all-atom model and extensive Monte Carlo simulations of 12, 24, and 36 chains. A variety of small metastable aggregates form and dissolve until an aggregate of a critical size and conformation arises. However, the stable oligomers, which are β-sheet-rich and feature many hydrophobic contacts, are not always growth-ready. The simulations indicate instead that these supercritical oligomers spend a lengthy period in equilibrium in which considerable reorganization takes place accompanied by exchange of chains with the solution. Growth competence of the stable oligomers correlates with the alignment of the strands in the β-sheets. The larger aggregates seen in our simulations are all composed of two twisted β-sheets, packed against each other with hydrophobic side chains at the sheet–sheet interface. These β-sandwiches show similarities with the proposed steric zipper structure for PHF6 fibrils but have a mixed parallel/antiparallel β-strand organization as opposed to the parallel organization found in experiments on fibrils. Interestingly, we find that the fraction of parallel β-sheet structure increases with aggregate size. We speculate that the reorganization of the β-sheets into parallel ones is an important rate-limiting step in the formation of PHF6 fibrils.  相似文献   

15.
Bernacki JP  Murphy RM 《Biochemistry》2011,50(43):9200-9211
Polyalanine (polyA) is the third-most prevalent homopeptide repeat in eukaryotes, behind polyglutamine and polyasparagine. Abnormal expansion of the polyA repeat is linked to at least nine human diseases, and the disease mechanism likely involves enhanced length-dependent aggregation. Because of the simplicity of its side chain, polyA has been a favorite target of computational studies, and because of their tendency to fold into α-helix, peptides containing polyA-rich domains have been a popular experimental subject. However, experimental studies on uninterrupted polyA are very limited. We synthesized polyA peptides containing uninterrupted sequences of 7 to 25 alanines (A7 to A25) and characterized their length-dependent conformation and aggregation properties. The peptides were primarily disordered, with a modest component of α-helix that increased with increasing length. From measurements of mean distance spanned by the polyA segment, we concluded that physiological buffers are neutral solvents for shorter polyA peptides and poor solvents for longer peptides. At moderate concentration and near-physiological temperature, polyA assembled into soluble oligomers, with a sharp transition in oligomer physical properties between A19 and A25. With A19, oligomers were large, contained only a small fraction of the total peptide mass, and slowly grew into loose clusters, while A25 rapidly and completely assembled into small stable oligomers of ~7 nm radius. At high temperatures, A19 assembled into fibrils, but A25 precipitated as dense, micrometer-sized particles. A comparison of these results to those obtained with polyglutamine peptides of similar design sheds light on the role of the side chain in regulating conformation and aggregation.  相似文献   

16.
17.
beta-amyloid peptide (Abeta) is one of the main protein components of senile plaques associated with Alzheimer's disease (AD). Abeta readily aggregates to forms fibrils and other aggregated species that have been shown to be toxic in a number of studies. In particular, soluble oligomeric forms are closely related to neurotoxicity. However, the relationship between neurotoxicity and the size of Abeta aggregates or oligomers is still under investigation. In this article, we show that different Abeta incubation conditions in vitro can affect the rate of Abeta fibril formation, the conformation and stability of intermediates in the aggregation pathway, and toxicity of aggregated species formed. When gently agitated, Abeta aggregates faster than Abeta prepared under quiescent conditions, forming fibrils. The morphology of fibrils formed at the end of aggregation with or without agitation, as observed in electron micrographs, is somewhat different. Interestingly, intermediates or oligomers formed during Abeta aggregation differ greatly under agitated and quiescent conditions. Unfolding studies in guanidine hydrochloride indicate that fibrils formed under quiescent conditions are more stable to unfolding in detergent than aggregation associated oligomers or Abeta fibrils formed with agitation. In addition, Abeta fibrils formed under quiescent conditions were less toxic to differentiated SH-SY5Y cells than the Abeta aggregation associated oligomers or fibrils formed with agitation. These results highlight differences between Abeta aggregation intermediates formed under different conditions and provide insight into the structure and stability of toxic Abeta oligomers.  相似文献   

18.
19.
The mechanisms of deposition and dissociation are implicated in the assembly of amyloid fibrils. To investigate the kinetics of unbinding of Abeta(16-22) monomers from preformed fibrils, we use molecular dynamics (MD) simulations and the structures for Abeta(16-22) amyloid fibrils. Consistent with experimental studies, the dissociation of Abeta(16-22) peptides involves two main stages, locked and docked, after which peptides unbind. The lifetime of the locked state, in which a peptide retains fibril-like structure and interactions, extends up to 0.5 micros under normal physiological conditions. Upon cooperative rupture of all fibril-like hydrogen bonds (HBs) with the fibril, a peptide enters a docked state. This state is populated by disordered random coil conformations and its lifetime ranges from approximately 10 to 200 ns. The docked state is stabilized by hydrophobic side chain interactions, while the contribution from HBs is small. Our simulations also suggest that the peptides located on fibril edges may form stable beta-strand conformations distinct from the fibril "bulk". We propose that such edge peptides can act as fibril caps, which impede fibril elongation. Our results indicate that the interactions between unbinding peptides constitute the molecular basis for cooperativity of peptide dissociation. The kinetics of fibril growth is reconstructed from unbinding assuming the reversibility of deposition/dissociation pathways. The relation of in silica dissociation kinetics to experimental observations is discussed.  相似文献   

20.
The clarification of the physico-chemical determinants underlying amyloid deposition is critical for our understanding of misfolding diseases. With this purpose we have performed a systematic all-atom molecular dynamics (MD) study of a series of single point mutants of the de novo designed amyloidogenic peptide STVIIE. Sixteen different 50ns long simulations using explicit solvent have been carried out starting from four different conformations of a polymeric six-stranded beta-sheet. The simulations have provided evidence for the influence of a small number of site-specific hydrophobic interactions on the packing and stabilization of nascent aggregates, as well as the interplay between side-chain interactions and the net charge of the molecule on the strand arrangement of polymeric beta-sheets. This MD analysis has also shed light into the origin of the position dependence on mutation of beta-sheet polymerization that was found experimentally for this model system. Our results suggest that MD can be applied to detect critical positions for beta-sheet aggregation within a given amyloidogenic stretch. Studies similar to the one presented here can guide site-directed mutations or the design of drugs that specifically disrupt the key stabilizing interactions of beta-sheet aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号