共查询到20条相似文献,搜索用时 0 毫秒
1.
DegP (HtrA) is a periplasmic heat shock serine protease of Escherichia coli that degrades misfolded proteins at high temperatures. Biochemical and biophysical experiments have indicated that the purified DegP exists as a hexamer. To examine whether the PDZ domains of DegP were required for oligomerization, we constructed a DegP variant lacking both PDZ domains. This truncated variant, DegPDelta, exhibited no proteolytic activity but exerted a dominant-negative effect on growth at high temperatures by interfering with the functional assembly of oligomeric DegP. Thus, the PDZ domains contain information necessary for proper assembly of the functional hexameric structure of DegP. 相似文献
2.
Location of a gene (ssrA) for a small, stable RNA (10Sa RNA) in the Escherichia coli chromosome.
下载免费PDF全文

The gene for 10Sa RNA, which is a major small, stable RNA in Escherichia coli, is a unique gene in the E. coli chromosome. The 10Sa RNA gene (ssrA) has been located between 2,760 and 2,761 kilobases on the E. coli genome. 相似文献
3.
Mammalian high temperature requirement A3 (HtrA3) is a serine protease of the HtrA family. It is an important factor for placental development and a tumor suppressor. The biochemical properties of HtrA3 are uncharacterized. One critical step in biochemical characterization is overexpressing and purifying the full-length recombinant protein. However, utility of cell-based expression systems is limited for a protease because of autocleavage. The wheat-germ cell-free translation system is highly efficient at producing "difficult" eukaryotic multidomain proteins and is easily modifiable for protein synthesis at different temperatures. In this study, we evaluated the potential of the wheat-germ cell-free translation system for producing human HtrA3. HtrA3 underwent autocleavage when synthesized at 17 °C. When the synthesis temperature was lowered to 4 °C, full-length HtrA3 was successfully produced and proteolytically active. Catalytic site serine substitution with alanine (S305A) stabilized HtrA3 while abolishing its protease activity. This mutant was readily synthesized and stable at 17 °C. When used with glutathione S-transferase (GST) pull-down assay, S305A HtrA3 was a valuable bait in searching for endogenous HtrA3 binding proteins. Thus, we demonstrated the unique utility of the wheat-germ cell-free translation system for producing and characterizing human HtrA3. These strategies will be likely applicable to a wide range of proteases. 相似文献
4.
Tennstaedt A Pöpsel S Truebestein L Hauske P Brockmann A Schmidt N Irle I Sacca B Niemeyer CM Brandt R Ksiezak-Reding H Tirniceriu AL Egensperger R Baldi A Dehmelt L Kaiser M Huber R Clausen T Ehrmann M 《The Journal of biological chemistry》2012,287(25):20931-20941
Protective proteases are key elements of protein quality control pathways that are up-regulated, for example, under various protein folding stresses. These proteases are employed to prevent the accumulation and aggregation of misfolded proteins that can impose severe damage to cells. The high temperature requirement A (HtrA) family of serine proteases has evolved to perform important aspects of ATP-independent protein quality control. So far, however, no HtrA protease is known that degrades protein aggregates. We show here that human HTRA1 degrades aggregated and fibrillar tau, a protein that is critically involved in various neurological disorders. Neuronal cells and patient brains accumulate less tau, neurofibrillary tangles, and neuritic plaques, respectively, when HTRA1 is expressed at elevated levels. Furthermore, HTRA1 mRNA and HTRA1 activity are up-regulated in response to elevated tau concentrations. These data suggest that HTRA1 is performing regulated proteolysis during protein quality control, the implications of which are discussed. 相似文献
5.
6.
The nuclear poly(A)-binding protein (PABPN1) is involved in the synthesis of the mRNA poly(A) tails in most eukaryotes. We report that the protein contains two RNA binding domains, a ribonucleoprotein-type RNA binding domain (RNP domain) located approximately in the middle of the protein sequence and an arginine-rich C-terminal domain. The C-terminal domain also promotes self-association of PABPN1 and moderately cooperative binding to RNA. Whereas the isolated RNP domain binds specifically to poly(A), the isolated C-terminal domain binds non-specifically to RNA and other polyanions. Despite this nonspecific RNA binding by the C-terminal domain, selection experiments show that adenosine residues throughout the entire minimal binding site of approximately 11 nucleotides are recognized specifically. UV-induced cross-links with oligo(A) carrying photoactivatable nucleotides at different positions all map to the RNP domain, suggesting that most or all of the base-specific contacts are made by the RNP domain, whereas the C-terminal domain may contribute nonspecific contacts, conceivably to the same nucleotides. Asymmetric dimethylation of 13 arginine residues in the C-terminal domain has no detectable influence on the interaction of the protein with RNA. The N-terminal domain of PABPN1 is not required for RNA binding but is essential for the stimulation of poly(A) polymerase. 相似文献
7.
Tiaden AN Klawitter M Lux V Mirsaidi A Bahrenberg G Glanz S Quero L Liebscher T Wuertz K Ehrmann M Richards PJ 《The Journal of biological chemistry》2012,287(25):21335-21345
Human HTRA1 is a highly conserved secreted serine protease that degrades numerous extracellular matrix proteins. We have previously identified HTRA1 as being up-regulated in osteoarthritic patients and as having the potential to regulate matrix metalloproteinase (MMP) expression in synovial fibroblasts through the generation of fibronectin fragments. In the present report, we have extended these studies and investigated the role of HTRA1 in the pathogenesis of intervertebral disc (IVD) degeneration. HTRA1 mRNA expression was significantly elevated in degenerated disc tissue and was associated with increased protein levels. However, these increases did not correlate with the appearance of rs11200638 single nucleotide polymorphism in the promoter region of the HTRA1 gene, as has previously been suggested. Recombinant HTRA1 induced MMP production in IVD cell cultures through a mechanism critically dependent on MEK but independent of IL-1β signaling. The use of a catalytically inactive mutant confirmed these effects to be primarily due to HTRA1 serine protease activity. HTRA1-induced fibronectin proteolysis resulted in the generation of various sized fragments, which when added to IVD cells in culture, caused a significant increase in MMP expression. Furthermore, one of these fragments was identified as being the amino-terminal fibrin- and heparin-binding domain and was also found to be increased within HTRA1-treated IVD cell cultures as well as in disc tissue from patients with IVD degeneration. Our results therefore support a scenario in which HTRA1 promotes IVD degeneration through the proteolytic cleavage of fibronectin and subsequent activation of resident disc cells. 相似文献
8.
Hongjuan Xi 《FEBS letters》2009,583(13):2269-15405
Poly(A) is a relevant sequence in cell biology due to its importance in mRNA stability and translation initiation. Neomycin is an aminoglycoside antibiotic that is well known for its ability to target various nucleic acid structures. Here it is reported that neomycin is capable of binding tightly to a single-stranded oligonucleotide (A30) with a Kd in the micromolar range. CD melting experiments support complex formation and indicate a melting temperature of 47 °C. The poly(A) duplex, which melts at 44 °C (pH 5.5), was observed to melt at 61 °C in the presence of neomycin, suggesting a strong stabilization of the duplex by the neomycin. 相似文献
9.
PKR (double-stranded RNA-dependent protein kinase) is an important component of host defense to virus infection. Binding of dsRNA to two dsRBDs (double-stranded RNA binding domains) of PKR modulates its own kinase activation. How structural features of natural target RNAs, such as bulges and loops, have an effect on the binding to two dsRBDs of PKR still remains unclear. By using ITC and NMR, we show here that both the bulge and loop of TAR RNA are necessary for the high affinity binding to dsRBD1-dsRBD2 of PKR with 1:1 stoichiometry. The binding site for the dsRBD1-dsRBD2 spans from upper bulge to lower stem of the TAR RNA, based on chemical shift mapping. The backbone resonances in the 40 kDa TAR.dsRBD1-dsRBD2 were assigned. NMR chemical shift perturbation data suggest that the beta1-beta2 loop of the dsRBD1 interacts with the TAR RNA, whereas that of the dsRBD2 is less involved in the TAR RNA recognition. In addition, the residues of the interdomain linker between the dsRBD1 and the dsRBD2 also show large chemical perturbations indicating that the linker is involved in the recognition of TAR RNA. The results presented here provide the biophysical and spectroscopic basis for high-resolution structural studies, and show how local RNA structural features modulate recognition by dsRBDs. 相似文献
10.
The Xenopus laevis poly(A) binding protein is composed of multiple functionally independent RNA binding domains. 总被引:25,自引:7,他引:25
下载免费PDF全文

A family of eukaryotic RNA binding proteins is defined by the conserved RNP motif. The poly(A) binding protein has four such motifs. We report on the isolation and structural characterization of several variant cDNA clones, as well as of a gene encoding this protein in Xenopus laevis embryos. Wild-type protein as well as truncated versions carrying isolated single motifs or artificial combinations of two and more such elements were characterized for their ability to bind specifically to RNA homopolymers. Three of the isolated repeats were functional in specific RNA binding, whereas the N-terminal RNP motif was non-functional. Combinatorial effects in RNA binding were measured with constructs carrying multiple repeats, which were not predictable from the activity of isolated domains. 相似文献
11.
The transactivator Staf, which contains seven zinc finger motifs, exerts its effect on gene expression by binding to specific targets in small nuclear RNA (snRNA) and snRNA-type gene promoters. In this work, binding site selection allowed us to identify the 21-base pair ATTACCCATAATGCATYGCGG sequence as the high affinity consensus binding site for Staf. It shows a high sequence divergence with Staf-responsive elements in the Xenopus selenocysteine tRNA (tRNA(Sec)) and human U6 snRNA promoters. By using a combination of approaches, we analyzed the interaction of wild-type and truncated Staf zinc finger domains with the consensus, Xenopus tRNA(Sec), and human U6 sites. Two main conclusions emerged from our data. First, the data clearly indicate that zinc finger 7 does not establish base-specific contacts in Staf-DNA complexes. The second conclusion concerns zinc finger 1, which is required for the binding to the Xenopus tRNA(Sec) site but is dispensable in the case of the human U6 site. Taking into account the sequence differences in the two sites, these findings demonstrate that Staf utilizes zinc finger 1 in a rather flexible manner, illustrating how a protein can interact with DNAs containing targets of different sequences. 相似文献
12.
R Richardson CL Denis C Zhang ME Nielsen YC Chiang M Kierkegaard X Wang DJ Lee JS Andersen G Yao 《Molecular genetics and genomics : MGG》2012,287(9):711-730
Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1's defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made. 相似文献
13.
Pastore C Topalidou I Forouhar F Yan AC Levy M Hunt JF 《The Journal of biological chemistry》2012,287(3):2130-2143
Humans express nine paralogs of the bacterial DNA repair enzyme AlkB, an iron/2-oxoglutarate-dependent dioxygenase that reverses alkylation damage to nucleobases. The biochemical and physiological roles of these paralogs remain largely uncharacterized, hampering insight into the evolutionary expansion of the AlkB family. However, AlkB homolog 8 (ABH8), which contains RNA recognition motif (RRM) and methyltransferase domains flanking its AlkB domain, recently was demonstrated to hypermodify the anticodon loops in some tRNAs. To deepen understanding of this activity, we performed physiological and biophysical studies of ABH8. Using GFP fusions, we demonstrate that expression of the Caenorhabditis elegans ABH8 ortholog is widespread in larvae but restricted to a small number of neurons in adults, suggesting that its function becomes more specialized during development. In vitro RNA binding studies on several human ABH8 constructs indicate that binding affinity is enhanced by a basic α-helix at the N terminus of the RRM domain. The 3.0-Å-resolution crystal structure of a construct comprising the RRM and AlkB domains shows disordered loops flanking the active site in the AlkB domain and a unique structural Zn(II)-binding site at its C terminus. Although the catalytic iron center is exposed to solvent, the 2-oxoglutarate co-substrate likely adopts an inactive conformation in the absence of tRNA substrate, which probably inhibits uncoupled free radical generation. A conformational change in the active site coupled to a disorder-to-order transition in the flanking protein segments likely controls ABH8 catalytic activity and tRNA binding specificity. These results provide insight into the functional and structural adaptations underlying evolutionary diversification of AlkB domains. 相似文献
14.
A straightforward method to predict RNA duplex stability by neural network is described. The best network consists of three layers in which the input layer units are 12 (frequencies of 10 nearest-neighbors and 2 terminals), the hidden layer units are 3 and the output layer unit is 1 (measured Tm). This method to predict Tm has the advantage that the determinations of thermodynamic parameters is not needed. 相似文献
15.
Binding of the chloroplast poly(A)-binding protein, RB47, to the psbA mRNA is regulated in response to light and is required for translation of this mRNA in chloroplasts. The RNA binding activity of RB47 can be modulated in vitro by oxidation and reduction. Site-directed mutations to individual cysteine residues in each of the four RNA binding domains of RB47 showed that changing single cysteines to serines in domains 2 or 3 reduced, but did not eliminate, the ability of RB47 to be redox-regulated. Simultaneously changing cysteines to serines in both domains 2 and 3 resulted in the production of RB47 protein that was insensitive to redox regulation but retained the ability to bind the psbA mRNA at high affinity. The poly(A)-binding protein from Saccharomyces cerevisiae lacks cysteine residues in RNA binding domains 2 and 3, and this poly(A)-binding protein lacks the ability to be regulated by oxidation or reduction. These data show that disulfide bond formation between RNA binding domains in a poly(A)-binding protein can be used to regulate the ability of this protein to bind mRNA and suggest that redox regulation of RNA binding activity may be used to regulate translation in organisms whose poly(A)-binding proteins contain these critical cysteine residues. 相似文献
16.
Namanja AT Li YJ Su Y Wong S Lu J Colson LT Wu C Li SS Chen Y 《The Journal of biological chemistry》2012,287(5):3231-3240
The small ubiquitin-like modifiers (SUMOs) regulate many essential cellular functions. Only one type of SUMO-interacting motif (SIM) has been identified that can extend the β-sheet of SUMO as either a parallel or an antiparallel strand. The molecular determinants of the bound orientation and paralogue specificity of a SIM are unclear. To address this question, we have conducted structural studies of SUMO1 in complex with a SUMO1-specific SIM that binds to SUMO1 with high affinity without post-translational modifications using nuclear magnetic resonance methods. In addition, the SIM sequence requirements have been investigated by peptide arrays in comparison with another high affinity SIM that binds in the opposing orientation. We found that antiparallel binding SIMs tolerate more diverse sequences, whereas the parallel binding SIMs prefer the more strict sequences consisting of (I/V)DLT that have a preference in high affinity SUMO2 and -3 binding. Comparison of two high affinity SUMO1-binding SIMs that bind in opposing orientations has revealed common SUMO1-specific interactions needed for high affinity binding. This study has significantly advanced our understanding of the molecular determinants underlining SUMO-SIM recognition. 相似文献
17.
Kerwitz Y Kühn U Lilie H Knoth A Scheuermann T Friedrich H Schwarz E Wahle E 《The EMBO journal》2003,22(14):3705-3714
During polyadenylation of mRNA precursors in metazoan cells, poly(A) polymerase is stimulated by the nuclear poly(A) binding protein PABPN1. We report that stimulation depends on binding of PABPN1 to the substrate RNA directly adjacent to poly(A) polymerase and results in an approximately 80-fold increase in the apparent affinity of poly(A) polymerase for RNA without significant effect on catalytic efficiency. PABPN1 associates directly with poly(A) polymerase either upon allosteric activation by oligo(A) or, in the absence of RNA, upon deletion of its N-terminal domain. The N-terminal domain of PABPN1 may function to inhibit undesirable interactions of the protein; the inhibition is relieved upon RNA binding. Tethering of poly(A) polymerase is mediated largely by the C-terminal domain of PABPN1 and is necessary but not sufficient for stimulation of the enzyme; an additional interaction dependent on a coiled-coil structure located within the N-terminal domain of PABPN1 is required for a productive interaction. 相似文献
18.
eIF4G, eIFiso4G, and eIF4B bind the poly(A)-binding protein through overlapping sites within the RNA recognition motif domains 总被引:1,自引:0,他引:1
The poly(A)-binding protein (PABP), a protein that contains four conserved RNA recognition motifs (RRM1-4) and a C-terminal domain, is expressed throughout the eukaryotic kingdom and promotes translation through physical and functional interactions with eukaryotic initiation factor (eIF) 4G and eIF4B. Two highly divergent isoforms of eIF4G, known as eIF4G and eIFiso4G, are expressed in plants. As little is known about how PABP can interact with RNA and three distinct translation initiation factors in plants, the RNA binding specificity and organization of the protein interaction domains in wheat PABP was investigated. Wheat PABP differs from animal PABP in that its RRM1 does not bind RNA as an individual domain and that RRM 2, 3, and 4 exhibit different RNA binding specificities to non-poly(A) sequences. The PABP interaction domains for eIF4G and eIFiso4G were distinct despite the functional similarity between the eIF4G proteins. A single interaction domain for eIF4G is present in the RRM1 of PABP, whereas eIFiso4G interacts at two sites, i.e. one within RRM1-2 and the second within RRM3-4. The eIFiso4G binding site in RRM1-2 mapped to a 36-amino acid region encompassing the C-terminal end of RRM1, the linker region, and the N-terminal end of RRM2, whereas the second site in RRM3-4 was more complex. A single interaction domain for eIF4B is present within a 32-amino acid region representing the C-terminal end of RRM1 of PABP that overlaps with the N-proximal eIFiso4G interaction domain. eIF4B and eIFiso4G exhibited competitive binding to PABP, supporting the overlapping nature of their interaction domains. These results support the notion that eIF4G, eIFiso4G, and eIF4B interact with distinct molecules of PABP to increase the stability of the interaction between the termini of an mRNA. 相似文献
19.
20.
A few drug-like molecules have recently been found to bind poly(A) and induce a stable secondary structure (Tm ≈ 60°C), even though this RNA homopolymer is single-stranded in the absence of a ligand. Here, we report results from experiments specifically designed to explore the association of small molecules with poly(A). We demonstrate that coralyne, the first small molecule discovered to bind poly(dA), binds with unexpectedly high affinity (Ka >107 M−1), and that the crescent shape of coralyne appears necessary for poly(A) binding. We also show that the binding of similar ligands to poly(A) can be highly cooperative. For one particular ligand, at least six ligand molecules are required to stabilize the poly(A) self-structure at room temperature. This highly cooperative binding produces very sharp transitions between unstructured and structured poly(A) as a function of ligand concentration. Given the fact that junctions between Watson–Crick and A·A duplexes are tolerated, we propose that poly(A) sequence elements and appropriate ligands could be used to reversibly drive transitions in DNA and RNA-based molecular structures by simply diluting/concentrating a sample about the poly(A)-ligand ‘critical concentration’. The ligands described here may also find biological or medicinal applications, owing to the 3′-polyadenylation of mRNA in living cells. 相似文献